
Complete Event Trend Detection
in High-Rate Event Streams

Olga Poppe∗, Chuan Lei∗∗, Salah Ahmed∗ and Elke A. Rundensteiner∗
*Worcester Polytechnic Institute, 100 Institute Road, Worcester, MA 01609

**NEC Labs America, 10080 N Wolfe Rd, Cupertino, CA 95014
*opoppe|sahmed2|rundenst@wpi.edu, **chuan@nec-labs.com

ABSTRACT
Event processing applications from financial fraud detection
to health care analytics continuously execute event queries
with Kleene closure to extract event sequences of arbitrary,
statically unknown length, called Complete Event Trends
(CETs). Due to common event sub-sequences in CETs, ei-
ther the responsiveness is delayed by repeated computations
or an exorbitant amount of memory is required to store
partial results. To overcome these limitations, we define
the CET graph to compactly encode all CETs matched by
a query. Based on the graph, we define the spectrum of
CET detection algorithms from CPU-optimal to memory-
optimal. We find the middle ground between these two ex-
tremes by partitioning the graph into time-centric graphlets
and caching partial CETs per graphlet to enable effective
reuse of these intermediate results. We reveal cost mono-
tonicity properties of the search space of graph partition-
ing plans. Our CET optimizer leverages these properties to
prune significant portions of the search to produce a parti-
tioning plan with minimal CPU costs yet within the given
memory limit. Our experimental study demonstrates that
our CET detection solution achieves up to 42–fold speed-
up even under rigid memory constraints compared to the
state-of-the-art techniques in diverse scenarios.

1. INTRODUCTION
Complex Event Processing (CEP) has emerged as a promi-

nent technology for supporting streaming applications from
financial fraud detection to health care analytics. CEP sys-
tems consume high-rate streams of primitive events and eval-
uate expressive event queries to detect event sequences such
as circular check kites and irregular heart rate trends in near
real time. These event sequences may have arbitrary, stat-
ically unknown, and potentially unbounded length. They
are expressed by event queries with Kleene closure and are
henceforth called Complete Event Trends (CETs).

Motivating Examples. We now describe three applica-
tion scenarios of time-critical CET detection.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

SIGMOD’17, May 14-19, 2017, Chicago, Illinois, USA
c© 2017 ACM. ISBN 978-1-4503-4197-4/17/05. . . $15.00

DOI: http://dx.doi.org/10.1145/3035918.3035947

• Financial Fraud Detection. Circular check kiting is
an example of event-trend detection for financial fraud. In
a simple case, it involves writing a check for a value greater
than the account balance from an account in Bank A, then
writing a check from another account in Bank B, also with
insufficient funds, with the second check serving to cover the
non-existent funds from the first account. Fraudsters take
advantage of the float and withdraw funds from the account
before the banks can detect the scheme (Figure 1).

Complex versions of this scheme have occurred involving
multiple fraudsters posing as large businesses, thereby mask-
ing their activity as normal business transactions. This way
they coax banks to waive the limit of available funds [6]. To
implement this scheme, fraudsters transfer millions among
banks, using complex webs of worthless checks. As just one
example, in 2014, 12 people were charged in a large-scale
“bustout” scheme, costing banks over $15 million [5].

Figure 1: Circular check kiting

Q1 : PATTERN Check+ c[]
WHERE c.type = ‘notcovered’ AND

c.destination = NEXT(c).source
WITHIN 1 day SLIDE 10 minutes

Query Q1 detects a chain (or circle) of any length formed
by not covered check deposits during a time window of 1
day that slides every 10 minutes. The pattern of the query is
the Kleene closure on check deposit events, denoted Check+
c[]. The predicates require the checks in a chain to be not
covered. The destination of a check c must be the same as
the source of the next check NEXT(c) to form a chain.

Since arbitrary many fraudsters, financial transactions and
banks worldwide can be involved in this scheme, detection
of circular check kites is a computationally expensive prob-
lem. To prevent cash withdrawal from an account that is
involved in at least one check kiting scheme, the query con-
tinuously analyzes high-rate event streams with thousands
of financial transactions per second and detects all complete
check kiting trends in real time.

109

http://dx.doi.org/10.1145/3035918.3035947

Figure 2: Three check kite trends detected by query Q1

In Figure 2, (c1 : A → B) denotes a not-covered check
deposit event from Bank A into Bank B at time 1 and (w3 :
A) denotes a cash withdrawal event from Bank A at time 3.
Three check kiting trends are detected by query Q1. They
are shown as black lines above the event stream: (c1, c2),
(c1, c4, c5, c7) and (c1, c4, c6). Note that check c2 is part of
the first trend but is skipped to detect the second and third
event trends. Such flexible way of finding all matches is
called skip-till-any-match event selection strategy [10].
•Health Care Analytics. Cardiac arrhythmia is a group

of serious hearth diseases in which the heartbeat is irregular,
too fast or too slow. It can lead to life-threatening compli-
cations such as stroke or cardiac death. There are more
than 250k sudden cardiac deaths per year [9]. Thus, it is
very important to detect extreme differences in heartbeat in
high-rate streams of thousands of measurements per second
and immediately trigger lifesaving measures.

Q2 : PATTERN SEQ(Activity a, Activity+ b[])
WHERE [personID] AND b.rate < NEXT(b).rate AND

a.rate*2 < b.rate AND b.type = ‘passive’
WITHIN 10 minutes SLIDE 1 minute

Query Q2 monitors physical activity per patient and de-
tects life-threatening conditions when the heart rate gradu-
ally increases until it doubles compared to the first measure-
ment despite passive physical activity. The query pattern is
the sequence of the first activity measurement event and the
Kleene closure on all following activity events. The predi-
cates require all events in a trend to be about the same
person, denoted by [personID]. All complete irregular heart-
beat trends must be detected in real time to enable lifesaving
measures in critical stages of cardiac arrhythmia.
• Stock Trend Analytics platforms process thousands of

financial transactions per second to detect all event trends
that signify emerging profit opportunities. Examples of such
event trends include increasing and decreasing stock market
trends [10, 16], head-and-shoulders pattern [12], V-shaped [26],
M-shaped [19], and W-shaped [27] trends.

Q3 : PATTERN Stock+ s[]
WHERE [companyID] AND s.price < NEXT(s).price
WITHIN 1 hour SLIDE 30 minutes

Query Q3 detects increasing stock market trends per com-
pany using a Kleene closure on stock events. The predicates
require all events in a trend to have the same value of the
company identifier, denoted by [companyID]. The price of
consecutive events in a trend must increase. To reveal all
profit opportunities, the query detects all complete event
trends – ignoring local price fluctuations to preserve oppor-
tunities of detecting longer and thus more reliable trends.

Challenges of time-critical CET detection.
• Exponentially Many CETs of Unbounded Length.

Not only is each CET of statically unknown and potentially

unbounded length but also the number of CETs is proven
to be exponential in the number of relevant events in the
worst case (Appendix A). This complexity may jeopardize
the real-time CET detection in high-rate event streams.
• CPU versus Memory Trade-off of CET Detection.

Due to the occurrence of many common event sub-sequences
in CETs, either repeated computations are invoked or an
exorbitant amount of memory is required to store partial
CETs during CET detection. Consequently, the system may
either fail to deliver the CET results with low-latency, or run
out of memory due to high-rate event streams.
•NP-Hard Stream-Partitioning Problem. The divide

and conquer principle is a common solution to the above
problem of trading between CPU and memory. Namely, we
could partition the stream, cache results per partition and
reuse them for final result construction. However, with the
search space being exponential [21], an effective lightweight
stream-partitioning algorithm must be developed to guaran-
tee prompt system responsiveness.

State-of-the-Art Approaches. Existing event process-
ing approaches recognize the importance of Kleene closure
computation over event streams [10, 16, 26, 37, 38]. How-
ever, Cayuga [16] and ZStream [26] do not support the skip-
till-any-match semantics required to express the above use
cases. While SASE++ [38] supports Kleene closure compu-
tation under skip-till-any-match, it stores single events and
forms matches at the end of each window. Since an event
sub-sequence can be part of multiple matches, SASE++ re-
computes a common event sub-sequence for each match that
contains it. This approach suffers from repeated computa-
tions. For example, the query latency of SASE++ is 38 min-
utes when the event rate is 50k per second and the query
window is 30 minutes (Section 7.2). Such long processing
delay is unacceptable for time-critical applications which re-
quire responsiveness within a minute. In summary, the ex-
isting approaches do not fully address the above challenges
of real-time CET detection over high-rate event streams.

Figure 3: CET processing paradigm

Proposed CET Approach. Given an event query with
a Kleene pattern, our CET processing paradigm extracts
events matched by the query from a high-rate event stream
and encodes their CET relationships in a compact data struc-
ture, called CET graph (Figure 3). Based on the graph, we
propose a family of CET detection algorithms ranging from
the memory-optimal M-CET to the CPU-time-optimal T-

CET solution. M-CET avoids excessive storage of intermedi-
ate results and thus invokes repeated computations. T-CET

accelerates CET detection by incrementally maintaining in-
termediate results but unfortunately requires an exorbitant
amount of memory. To trade off between CPU and memory
costs, we develop the Hybrid CET detection algorithm H-

CET which is a middle ground between these two extremes.

110

Namely, we partition the CET graph into smaller graphlets.
Based on the partitioned graph, H-CET caches partial CETs
per graphlet using T-CET, and then stitches these partial
CETs together to form the final CET results using M-CET.
Partitioning faces the trade off that finer-grained partition-
ing plans reduce the memory consumption since CETs across
graphlets are not stored while increasing the execution time,
and vice versa. We thus design a cost-driven CET optimizer
that finds an optimal partitioning plan with minimal CPU
execution costs yet within the available memory limit.

Contributions. Our key innovations are the following:
1) We define the problem of real-time CET detection over

high-rate event streams under memory constraints. We prove
that the number of CETs is exponential in the number of
relevant events in the worst case.

2) We introduce a compact data structure, called CET
graph, to encode relevant events and their CET relation-
ships. The spectrum of CET detection algorithms rang-
ing from the CPU-time-optimal algorithm T-CET to the
memory-optimal algorithm M-CET is introduced.

3) To trade-off between CPU and memory costs, we de-
velop the Hybrid CET detection algorithm H-CET. We first
partition the CET graph into time-centric graphlets. Then,
H-CET computes CETs per graphlet using T-CET and reuses
these partial results to detect all CETs using M-CET.

4) We establish a cost model for CET detection. Our
analysis reveals cost monotonicity properties of the search
space of candidate partitioning plans. We then design the
CET optimizer that leverages these properties to effectively
prune sub-optimal plans. Our optimizer is guaranteed to
produce a graph-partitioning plan with minimal execution
time within the memory bound.

5) We conduct an extensive performance evaluation of our
CET approach using both synthetic and real data sets. Our
CET solution achieves up to 42–fold speed-up compared to
the state-of-the-art strategies [10, 37, 38] – bringing the
time-critical CET detection over high-rate event streams
into the realm of practicality.

Outline. We start with preliminaries in Section 2. We
design our baseline CET detection algorithm in Section 3,
while the CET-graph-based approaches are introduced in
Section 4. Sections 5 and 6 are devoted to the foundation of
CET-graph partitioning and the CET optimizer. We report
on the performance study in Section 7. Related work is
discussed in Section 8, while Section 9 concludes the article.

2. PRELIMINARIES

2.1 CET Data and Query Model
Time. Time is represented by a linearly ordered set of

time points (T,≤), where T ⊆ Q+ and Q+ denotes the set
of non-negative rational numbers.

Event. An event is a message indicating that something
of interest happens in the real world. An event e has an
occurrence time e.time ∈ T assigned by the event source.
An event e belongs to a particular event type E, denoted
e.type = E and described by a schema which specifies the
set of event attributes and the domains of their values.

Example 1. In the check kitting example, a check deposit
event carries a status (covered or not), a source bank and a
destination bank. Other attributes (such as account owner,
balance, amount) are ignored here for simplicity.

Event Stream. Events are sent by event producers (e.g.,
ATM machines) to event consumers (e.g., financial fraud
detection system) on an input event stream I.

CET Query. The input event stream is continuously
monitored by event queries that detect CETs in near real
time. To avoid reinventing the wheel, we borrow the query
syntax and semantics from SASE [10]. We focus on event
queries with Kleene closure. As demonstrated by our ex-
amples in Section 1, Kleene enables expressive event queries
that detect matches of arbitrary, statically unknown length.

Definition 1. (CET Query.) A CET query has the form:

PATTERN P [WHERE θ] WITHIN l SLIDE s

and consists of an event pattern P defined below, optional
predicates θ, and a sliding window of length l time units
that slides every s time units.

An event pattern P is a time-ordered sequence of one
Kleene closure pattern and any number of event types. More
exactly, let E1, ..., En be event types, x[] be an array, and
y1, ..., yn be variables. Then P = pi or P = SEQ(p1, ..., pn)
where one sub-pattern pi = (Ei + x[]) is a Kleene closure
pattern on events of type Ei while all other sub-patterns
pj = (Ej yj) are event types. Events matched by pi and pj
are bound to the array x[] and the variable yj respectively.
n ∈ N, 1 ≤ i, j ≤ n, i 6= j.

Complete Event Trend. We call the matches of a CET
query event trends instead of using the traditional term of
an event sequence since event sequences usually have fixed,
statically known length [23, 30, 31].

A new event extends an existing event trend if the event
is compatible with the trend. An event e ∈ I is compatible
with an event trend tr matched by q if for each event ei
in the trend tr ei.time < e.time holds, the trend (tr, e) is
matched by the event pattern of q, satisfies the predicates
of q, and is within the window of q.

Example 2. In Figure 2, the event c4 is compatible with
the trends tr2 and tr3 since c4 is matched by the pattern of
Q1 (c4.type = Check), satisfies the predicate of Q1 (c1.desti-
nation = c4.source), and is within the window of Q1. In
contrast, c4 is not compatible with tr1 because the predicate
of Q1 is violated (c2.destination 6= c4.source).

The result of a CET query corresponds to the subset of all
possible matches, namely, complete matches, called complete
event trends. The shorter matches can then be easily derived
from complete matches [38].

Definition 2. (CET.) Let w ⊆ I be the set of events
within the window of q. An event trend tr is complete (Com-
plete Event Trend, CET for short) if 6 ∃e ∈ w that the trend
tr is compatible with and e is not part of the trend tr. A
trend tr is said to be incomplete in w otherwise.

Example 3. The trends in Figure 2 are complete since no
event can be added to them without violating query Q1.

2.2 CET Detection Optimization Problem
Many CET detection applications are time-critical (Sec-

tion 1). Thus, our goal is to minimize CPU processing time
of CET detection in main-memory settings.

Definition 3. (Problem Statement.) Given a CET query
q, a high-rate stream I, and available memory M , the CET
detection optimization problem is to detect all CETs matched
by the query q in the stream I while minimizing the CPU
costs and staying within the memory limit M .

111

This problem is prohibitively expensive with respect to
both CPU processing time and memory consumption since
the number of CETs is exponential (Theorem 1).

Theorem 1. [Maximal Number of CETs.] 3
n
3 CETs

can be constructed from n events in the worst case.

To keep the discussion brief, we prove Theorem 1 in Ap-
pendix A while we sketch the intuition here. The problem
of determining the maximal number of CETs that can be
constructed from n events is equivalent to the problem of
dividing n elements into groups such that the product of all
group sizes is maximal. To maximize the product, all groups
must have the same size x = 3.

(a) (b)

Figure 4: Maximal number of CETs given n = 12 events

Example 4. In Figure 4(a), we consider three scenarios
with the same number of events n = 12. These events are
divided into dn

x
e groups with at most x events in each group

where n, x ∈ N, 1 ≤ x ≤ n. Events in one group are in-
compatible with each other. Each event in a group is com-
patible with each event in the following group. A pair of
compatible events is connected by an edge. Then the num-
ber of CETs corresponds to the product of all group sizes:

y =
∏n

x
i=1 x = x

n
x . Figure 4(b) shows the number of CETs

y = x
n
x given n = 12 events while varying the size of event

groups x from 1 to 12. If x = 3, y = 3
n
3 = 81 is maximal.

3. BASELINE CET DETECTION
We now design our baseline CET detection algorithm. It

consumes a CET query and an event stream. As new events
arrive, it incrementally constructs CETs and returns them
when the query window ends.

Three Cases of the Baseline Algorithm. Three cases
are possible for processing a new event e. If e is compatible
with an existing CET tr, e is appended to tr (Case 2). e
may be compatible not with a whole CET tr but with its
prefix. In this case, a new CET is created by appending e to
the prefix (Case 3). If tr is a CET of length n, its prefix tr(i)
is a CET that contains all events from the first till the ith

event of the trend tr in the same order, 1 ≤ i ≤ n. Lastly,
if e is compatible neither with an existing CET nor with its
prefix, e starts a new CET (Case 1). We now illustrate this
baseline algorithm by Example 5.

Example 5. Assume query Q1 in Section 1 is evaluated
against the events c1-c4 in Table 1. At the beginning, the set
of CETs is empty. When c1 arrives, a new CET tr1 = (c1)
is started (Case 1). When c2 arrives, it is compatible with
tr1 and thus extends it: tr1 = (c1, c2) (Case 2). When
c3 arrives, it is compatible with c1 but not c2. In other
words, c3 is compatible with the prefix of tr1. The newly
formed trend is tr2 = (c1, c3) (Case 3). Lastly, when c4
arrives it is compared to the existing CETs tr1 = (c1, c2)

Event Event trends Explanation

c1 : A→ B (c1) Case 1: Create a new CET
c2 : B → C (c1, c2) Case 2: Append to a CET
c3 : B → D (c1, c2),

(c1, c3)
Case 3: Append to the
compatible prefix of a CET

c4 : D → E (c1, c2), (c4),
(c1, c3, c4)

Eliminate incomplete
event trends

Table 1: Three cases of the baseline algorithm

and tr2 = (c1, c3). Since c4 can be appended neither to tr1
nor to its prefix, it starts a new trend tr3 = (c4) (Case 1).
However, c4 can extend tr2 = (c1, c3, c4) which makes the
trend tr3 incomplete. Thus, tr3 is eliminated.

Algorithm 1 Baseline CET detection algorithm

Input: CET query q, input event stream I
Output: CETs Tprev
1: Tprev ← ∅
2: for all e ∈ I such that e.isMatchedBy(q) do
3: Tnew ← ∅
4: if Tprev = ∅ then
5: Tnew ← {e} // Case 1
6: else
7: for all t ∈ Tprev do
8: if isCompatible(q, t, e) then
9: Tnew ← Tnew ∪ {t, e} // Case 2

10: else
11: p← getCompatiblePrefix(q, t, e)
12: if p.length > 0 then
13: Tnew ← Tnew ∪ t∪ {p, e} // Case 3
14: else
15: Tnew ← Tnew ∪ t ∪ {e} // Case 1
16: Tprev ← eliminateIncomplete(Tnew)
17: return Tprev

Drawbacks. As proven in Appendix A, Algorithm 1 has
exponential CPU and memory costs. Indeed, a single event
(or, more generally, an event sequence) can be part of several
CETs. For example, the event c1 is part of all CETs in
Table 1. The baseline approach replicates such shared event
sequences for each CET that contains them. Worse yet,
when a new event arrives and is compared to the previously
constructed CETs, repeated computations arise since the
new event may need to be compared to each shared event
sequence within each CET that contains this sequence.

4. THE GRAPH-BASED CET DETECTION

4.1 Compact CET Graph Encoding
The baseline algorithm is inefficient because it does not

take common event sequences in CETs into account. To
tackle this problem, we propose a compact data structure,
called CET graph. The graph prevents event duplication by
storing each relevant event exactly once. It avoids repeated
computations since each new event is compared to a common
event sequence at most once.

Given a CET query and an event stream, the nodes of the
graph correspond to events in the stream that are matched
by the query, while the edges connect events that are ad-
jacent in a CET. Thus, a path in the CET graph from a
node without ingoing edges (“first event”) to a node without
outgoing edges (“last event”) corresponds to one CET.

112

Figure 5: CET graph
for Example 5

(a) M-CET algorithm (b) T-CET algorithm (c) H-CET algorithm

Figure 6: Approaches to CET detection

M-CET algorithm T-CET algorithm H-CET algorithm

Memory cost = Graph +
CET number * CET length

Θ(|V |+ |E|) +O(|V |) Θ(|V |+ |E|) +O(3
|V |
3 |V |) Θ(|V |+|E|)+O(

k∑
i=1

3
|Vi|
3 |Vi|)+O(|V |)

CPU cost = Graph con-
struction + Graph traver-
sal + CET update

O(|V |4)+O(3
|V |
3 |V |)+

O(3
|V |
3 |V |)

O(|V |4)+Θ(|E|)+O(3
|V |
3) O(|V |4) + Θ(

k∑
i=1

|Ei|) +O(
k∑
i=1

3
|Vi|
3) +

O(3
|V |
3 k) +O(3

|V |
3 k)

Table 2: Cost model

Definition 4. (CET Graph.) Given a CET query q and
an event stream I, the CET graph G = (V,E) is a directed
acyclic graph with a set of vertices V and a set of edges E.
The vertices V ⊆ I are events matched by q. For two events
e1, e2 ∈ V , there is an edge (e1, e2) ∈ E if e1 and e2 are
adjacent in a CET matched by q.

Example 6. The CET graph for Example 5 is depicted in
Figure 5. The paths from the first event c1 to the last events
c2 and c4 correspond to two CETs.

The CET graph construction algorithm is analogous to
the baseline algorithm (Section 3), except that it updates
the CET graph instead of CETs. It has quadratic CPU and
memory costs in the number of events (Appendix B). Our
cost model in Table 2 and experiments in Section 7.2 demon-
strate that the CET graph considerably accelerates CET
detection compared to the baseline algorithm and the state-
of-the-art techniques, while the graph maintenance cost is
negligible compared to the overall costs of CET detection.

4.2 Spectrum of Graph-based CET Detection
Based on the CET graph, the traditional graph traversal

algorithms such as Depth First Search (DFS) and Breadth
First Search (BFS) can be applied to extract all CETs.
These algorithms optimize the usage of critical resources
such as memory and CPU. We distinguish between the fol-
lowing two algorithms at the extreme ends of the CPU versus
memory trade-off spectrum:

The M-CET algorithm is memory-optimal since it main-
tains only one current CET during the DFS traversal. For
example, Figure 6(a) shows the current CET after the col-
ored edges have been traversed. Since no intermediate re-
sults are stored, the algorithm applies backtracking to find
alternative paths through the graph. Thus, an edge is re-
traversed for each CET.

The T-CET algorithm is CPU-time-optimal since it stores
all CETs found so far during the BFS traversal. For ex-
ample, Figure 6(b) shows all CETs when events c5 and c6
are reached. Since all CETs found so far are stored, no

backtracking is necessary. Thus, T-CET traverses each edge
exactly once.

Complexity Analysis. Table 2 summarizes the costs
of these algorithms further described in Appendix C. In a
nutshell, by storing all CETs detected so far, T-CET reduces
the CPU costs for graph traversal from exponential to linear
and the CPU costs of CET updates by the multiplicative
factor |V |. On the down side, the memory requirement of
T-CET degrades from linear to exponential. Thus, it risks to
exceed the available memory when event queries with long
windows are evaluated against high-rate event streams.

4.3 Hybrid CET Detection Algorithm
To achieve our goal of minimizing the CPU costs with-

out running out of memory (Definition 3), our CET opti-
mizer partitions the CET graph into smaller graphlets (Sec-
tion 6.1). Based on the partitioned graph, we now propose
the H-CET algorithm (H for hybrid) that exploits the
best of both M-CET and T-CET approaches in a divide-and-
conquer fashion. The H-CET algorithm takes two steps:

1) The T-CET algorithm is applied to each graphlet to
extract and cache CETs per graphlet.

2) The M-CET algorithm is applied to stitch these partial
CETs within graphlets into final CETs across graphlets.

Complexity Analysis. Figure 6(c) illustrates that every
edge in the cut between two graphlets requires concatenat-
ing the respective CETs within these graphlets to construct
final results. This concatenation provokes additional CPU
overhead. In other words, the smaller the graphlets, the
fewer CETs per graphlet are computed and stored but the
higher the CPU overhead of constructing the final CETs
from these partial results becomes.

The memory (CPU) costs of H-CET correspond to the sum
of the memory requirement to store the CET graph itself
(CPU time to construct CET graph), the memory (CPU)
costs of T-CET within graphlets, and the memory (CPU)
cost of M-CET across graphlets. In Table 2, k denotes the

113

number of graphlets. The cost of graph partitioning, ignored
here, will be determined in Section 6.1.

The memory costs of H-CET are exponential in the num-
ber of events per graphlet, not in the number of events per
query window as is for T-CET. This can result in several or-
ders of magnitude reduction for high-rate event streams as
demonstrated by our experiments in Section 7.2.

Example 7. Partitioning even the small graph in Figure 6(c)
reduces the memory costs almost 3-fold. The CPU cost in-
creases by 1.5% due to partitioning.

5. FOUNDATIONS OF CET-GRAPH
PARTITIONING PROBLEM

In this section, we study the properties of the graph parti-
tioning search space to efficiently find an optimal CET-graph
partitioning plan (Section 6).

Definition 5. (Optimal CET-Graph Partitioning Plan.)
Let G = (V,E) be a CET graph. A partitioning plan p
of G into k graphlets is a set of k sub-graphs p = {g1 =
(V1, E1) . . . , gk = (Vk, Ek)} such that k ∈ N, 1 ≤ k ≤ |V |,
V = V1 ∪· ...∪· Vk and E = E1 ∪· ...∪· Ek ∪· Ec where Ec is the
set of cut edges that connect events in different graphlets.

Let M be a memory limit, G be a CET graph, and P
be the set of all partitioning plans of G. For a partitioning
plan p ∈ P , let cpu(p) and mem(p) denote the CPU and
memory costs of H-CET for the graph G partitioned by p,
respectively. An optimal partitioning plan of G is popt ∈ P
such that mem(popt) ≤ M and 6 ∃p ∈ P with cpu(p) <
cpu(popt) and mem(p) ≤M .

5.1 CET-Graph Partitioning Search Space

Figure 7: Search space of event-centric partitioning plans

Event-Centric Partitioning Plans. Figure 7 shows
the search space of all partitioning plans for the CET graph
in Figure 5. Each node in the search space is a partitioning
plan. Events in different graphlets are separated by slashes.
The number of graphlets per plan increases top to bottom in
the search space. That is, the top node has only one graphlet
with all events in it. The bottom node has as many graphlets
as there are events since each event belongs to a separate
graphlet. Generally, the size of the search space is expo-
nential, described by the Bell number which represents the
number of different partitions of a set of elements [21]. Thus,
streaming graph partitioning is an NP-hard problem [11].

Time-Centric Partitioning Plans. Fortunately, we are
not interested in all partitioning plans shown in Figure 7.
We aim to partition a CET graph in such a way that we
achieve the following goals:

1) Correct CET detection : The H-CET algorithm can
extract all CETs from the partitioned graph.

2) Expeditious CET detection : Each final CET can be
constructed after visiting each graphlet at most once.

3) Feasible memory requirement : The memory cost of
all graphlets satisfies the memory constraint.

Figure 8: Search space of time-centric partitioning plans

Correct and Expeditious CET Detection. To achieve
the first two goals, we consider only those partitioning plans
which respect the order of events in a CET. We call such
partitioning plans effective. A partitioning plan p = {g1 =
(V1, E1) . . . , gk = (Vk, Ek)} of a CET graph G is effective if
for each CET tr in G that contains an event sequence (v1, v2)
it holds that if v1 ∈ Vi, v2 ∈ Vj then i ≤ j. Effective parti-
tioning plans are indicated by rectangular frames in Figure 7
in contrast to ineffective plans with round frames. An inef-
fective partitioning plan requires visiting the same graphlet
multiple times to construct one final CET. This diminishes
the gain of sharing intermediate results and introduces CPU
overhead as illustrated by Example 8.

Example 8. Consider the partitioning into graphlets g1
and g2 with nodes {c1, c2} and {c3, c4} respectively. This
plan is effective since the CET tr1 = (c1, c2) is extracted
from g1 and the CET tr2 = (c1, c3, c4) results by concate-
nating c1 from g1 with (c3, c4) from g2.

In contrast, consider the partitioning into graphlets g′1
and g′2 with nodes {c1, c2, c4} and {c3} respectively. This
plan is ineffective because the CET tr2 = (c1, c3, c4) requires
visiting g′1 twice: Once to extract c1 and once to get c4.

We can exclude ineffective partitioning plans by traversing
the CET graph to determine the order of events in all CETs.
However, this is an expensive process (Table 2). Instead, we
partition the CET graph into non-overlapping consecutive
time intervals. All events within a time interval are assigned
to the same graphlet (similar to Chunking [34]). Since con-
secutive time intervals contain consecutive sub-sequences of
CETs, a time-centric partitioning plan is guaranteed to be
effective. The search space remains exponential, however,
now in the number of time intervals (Figure 8), not is the
number of events in the window (Figure 7). This results in
a substantial reduction for high-rate event streams in which
multiple events fall into the same time interval.

Feasible Memory Requirement. To achieve the third
goal, we differentiate between first, middle, and last events
in a graphlet. An event e is called the last (first) in its
graphlet g if there are no outgoing (incoming) edges from
(to) e in the same graphlet g. An event that is neither first
nor last is called a middle event. For example, events c3 and
c4 are the last events in graphlet g1 while events c5 and c6
are the first events in graphlet g2 in Figure 6(c).

To reduce the memory consumption, we store complete
event trends per graphlet, i.e., an event trend from a first to
a last event in the graphlet. No intermediate event trends
per graphlet are stored. To guarantee correctness, cut edges
may connect only a first and a last event in their respec-

114

Figure 9: Cut of a CET graph

tive graphlets (Figure 9). The dashed edges are prohibited
since they would require storing incomplete event trends per
graphlet. To construct final results, for each edge from a
last event el in a graphlet g1 to a first event ef in another
graphlet g2, we concatenate all CETs that end with el in g1
with all CETs that start with ef in g2 (Figure 6(c)).

Definition 6. (Cut of a CET Graph.) A time point
t ∈ T partitions a CET graph G = (V,E) into two graphlets
g1 and g2 such that events are assigned to these graphlets
by their time stamps. That is, ∀e ∈ V if e.time ≤ t then
e ∈ g1. Otherwise e ∈ g2. The time point t is called a cut of
the graph G if the following conditions hold:
• If a last event in the graphlet g1 has an outgoing edge to
an event e, then e must be the first event in its graphlet g2.
• If a first event in the graphlet g2 has an ingoing edge from
an event e, then e must be the last event in its graphlet g1.
• If a middle event in the graphlet g2 has an ingoing edge
from an event e, then e must belong to the graphlet g2.

A graphlet is called atomic if it cannot be cut into smaller
non-empty graphlets.

5.2 Monotonicity Properties Across Levels
Based on the cost model in Table 2, we now reveal the cost

monotonicity properties across different levels and within
the same level of the search space. We use these properties
in Section 6.1 to design the branch-and-bound algorithm
that effectively prunes the search space to find an optimal
CET-graph partitioning plan.

Figure 8 illustrates the cost variations across levels of the
search space. There are two extreme cases represented by
the top and the bottom nodes. In the top node, all events
are in one graphlet. Thus, CET detection takes place only in
this graphlet. In other words, H-CET coincides with T-CET.
In the bottom node, each event is in a separate graphlet.
Thus, CET detection takes place across graphlets only. That
is, H-CET coincides with M-CET. To further study the cost
variations across levels of the search space, we define the
parent-child relationship between nodes.

Definition 7. (Parent Partitioning Plan.) Let p be a
partitioning plan of a CET graph G. Let p′ be a partitioning
plan of G that is the same as p except that a graphlet gi ∈ p
is further partitioned into two graphlets gi1, gi2 ∈ p′. Then
p is called a parent of p′ and p′ is called a child of p.

Partitioning a graphlet gi into two smaller graphlets gi1
and gi2 reduces the memory requirement because fewer and
shorter CETs are stored in the smaller graphlets gi1 and
gi2 than in the original graphlet gi. In other words, mem-
ory costs monotonically decrease from parent to child in the
search space (Theorem 2).

Theorem 2. [Memory Cost Monotonicity.] Let p and
p′ be partitioning plans of a CET graph G such that p is a

parent of p′. The H-CET algorithm in G partitioned by p′

has lower memory costs than in G partitioned by p.

Partitioning a graphlet gi into two smaller graphlets gi1
and gi2 introduces additional CPU overhead because CETs
in the smaller graphlets gi1 and gi2 have to be combined
to final results. In other words, CPU cost monotonically in-
creases from parent to child in the search space (Theorem 3).

Theorem 3. [CPU Cost Monotonicity.] Let p and p′

be partitioning plans of a CET graph G such that p is a
parent of p′. The H-CET algorithm in G partitioned by p′

has higher CPU costs than in G partitioned by p.

The proofs of Theorems 2 and 3 are in Appendix D.

5.3 Monotonicity Properties Within One Level
The number of partitioning plans at one level of the search

space is exponential, described by the Stirling number that
represents the number of ways to partition n elements into k
partitions [21]. To restrict the search at one level, we differ-
entiate between balanced, nearly balanced, and unbalanced
graph partitioning plans and compare their costs.

A balanced partitioning plan divides a CET graph into
graphlets such that the number of events in any two graphlets
differs by at most 1. However, such perfect partitioning plan
is not always possible since an atomic graphlet cannot be di-
vided (Definition 6). Thus, we define the notion of a nearly
balanced partitioning plan that allows a graphlet to exceed
the ideal size by less than the size of its first or last atomic
graphlet. Otherwise a partitioning plan is unbalanced. These
notions are formally defined in Appendix D.

Figure 10: Nearly balanced vs. unbalanced partitioning plans

Example 9. Assume a CET graph consists of atomic graph-
lets g1-g5 with equal number of events for the sake of sim-
plicity (Figure 10). Assume we want to partition it into 2
graphlets. Obviously, no balanced partitioning plan exists
since the atomic graphlet g3 cannot be divided. However,
2 nearly balanced partitioning plans are possible. One of
them assigns g3 to the first graphlet and the other one as-
signs g3 to the second graphlet. Note that the size of these
nearly balanced graphlets exceeds the ideal size by less than
the size of one atomic graphlet g3. In contrast to that, if the
graphlets are unbalanced, their size exceeds the ideal size by
the size of more than one atomic graphlet.

The closer a partitioned CET graph is to balanced, the
lower the CPU and memory costs of CET detection are. In-
tuitively, if a partitioned graph is unbalanced, many CETs
are stored in its large graphlets. All of them have to be com-
bined to final results. Hence, the costs of large graphlets
dominate the overall costs. In contrast, a balanced parti-
tioning plan has the minimal costs among all partitioning
plans with the same number of graphlets (Theorem 4).

Theorem 4. [Cost of Balanced Partitioning Plan.]
Let G be a CET graph and k ∈ N . The H-CET algorithm on

115

a balanced partitioning of G into k graphlets has the minimal
CPU and memory costs compared to all other partitionings
of G into k graphlets.

If no balanced partitioning plan exists, a nearly balanced
partitioning plan has lower costs than unbalanced partition-
ing plans with the same number of graphlets (Theorem 5).

Theorem 5. [Cost of Nearly Balanced Partitioning
Plan.] Let G be a CET graph and k ∈ N . The H-CET algo-
rithm on a nearly balanced partitioning of G into k graphlets
has lower CPU and memory costs than on an unbalanced
partitioning of G into k graphlets.

The proofs of Theorems 4 and 5 are in Appendix D.

6. CET DETECTION OPTIMIZATION

6.1 Branch-and-Bound Partitioning Algorithm
As explained in Section 5.1, the search space of partition-

ing plans is exponential in the number of atomic graphlets.
Thus, we now utilize the cost monotonicity properties iden-
tified in Sections 5.2 and 5.3 to define an efficient branch-
and-bound CET-graph partitioning algorithm (B&B).

Figure 11: Search space of the branch-and-bound algorithm

The search space is depicted in Figure 8. Each node in
it is a CET-graph partitioning plan that is connected to its
parents and children (Definition 7). Our B&B algorithm
(Algorithm 2) traverses the search space top down. Since
memory costs decrease and CPU costs increase from parent
to child in the search space, B&B prunes top levels with too
high memory costs and brunches with too high CPU costs
(Figure 11). In addition, the algorithm disregards unbal-
anced partitioning plans at each level. B&B consists of the
following 2 phases:

1. Level Search Algorithm. Since the memory require-
ment is high at the top levels, we skip infeasible levels that
are guaranteed to contain no partitioning plan that fits into
memory. To achieve this goal, the algorithm compares the
estimated memory cost of a hypothetical balanced partition-
ing plan of the input CET graph G at level i to the memory
limit M . The memory cost of this hypothetical balanced
partitioning plan with i graphlets is the lower bound of the
actual minimal memory cost at level i (Theorem 4).

Infeasible level pruning principle: If a balanced parti-
tioning plan with i graphlets does not fit into memory, then
no other partitioning plan with i graphlets will. Thus, level
i can be safely purged.

The algorithm returns the highest level that satisfies the
memory constraint M with i balanced graphlets (lines 1–9).

Algorithm 2 Branch-and-bound partitioning algorithm

Input: Graph G, Memory limit M , Heap heap, List pruned
Output: Node solution
1: s = 1, e = atomicGraphletNumber(G) // Level search
2: while s ≤ e do
3: m = s+ (e− s)/2
4: Node b = balanced(G,m)
5: if mem(b) ≤M then
6: level = m
7: e = m− 1
8: else
9: s = m+ 1

10: minCPU = +∞ // Node search
11: Node[] nodes = nearlyBalanced(G, level, pruned)
12: PushAll(heap, nodes)
13: while !isEmpty(heap) do
14: temp = Pop(heap)
15: if temp.isPruned(pruned) then
16: continue
17: if memory(temp) < M then
18: if cpu(temp) < minCPU then
19: solution = temp
20: minCPU = cpu(temp)
21: pruned.add(temp.cuts)
22: if temp.level = level then
23: level + +
24: nodes = nearlyBalanced(G, level, pruned)
25: PushAll(heap, nodes)
26: return solution

2. Node Search Algorithm. Knowing the minimal
number i of required graphlets, this algorithm aims to find
an optimal partitioning plan with at least i graphlets. To
this end, the algorithm keeps track of the (nearly) balanced
nodes to consider in a heap. It disregards all other (un-
balanced) partitioning plans since according to Theorem 4
(Theorem 5) they are less efficient.

Unbalanced node pruning principle : If a (nearly) bal-
anced partitioning plan with i graphlets exists at a level
i, then any other (unbalanced) partitioning plans with i
graphlets will have higher CPU and memory costs. Thus,
all other nodes at level i can be safely purged.

Starting from the highest feasible level i, in every step the
algorithm reduces the memory utilization (Theorem 2) at
the expense of increased CPU time (Theorem 3). As soon as
a feasible solution is found, we can disregard the descendants
of this feasible node since these descendants will have higher
CPU costs than their ancestor (lines 11, 15–16, 21, 24).

Inefficient branch pruning principle : If a graph parti-
tioning plan p that satisfies the memory constraint is found,
then p’s descendants will have higher CPU cost than p.
Thus, they can be safely purged.

Since CPU cost increases from parent to child (not from
level i to level i− 1), it is possible that a node at level i has
lower CPU than a node at level i − 1. Thus, the algorithm
considers all nearly balanced not pruned nodes. They are
shown as white area in Figure 11. The figure conveys that
the number of such nodes decreases top down. Node search
terminates when it either reaches the lowest level or a level
at which all nearly balanced nodes are pruned.

All descendants of a node n will have the cuts that are

116

present in the node n (Figure 8). The cuts of feasible nodes
are maintained in the list pruned. In lines 11 and 24, we
avoid generating nearly balanced nodes from pruned branches.
In lines 15–16, we disregard pruned nodes since a node may
be pruned after it is added to the heap.

B&B keeps track of the best partitioning plan found so
far (lines 18–20) and returns it at the end of the node search
(line 26). H-CET in the graph partitioned by this plan is
guaranteed to be optimal, i.e., have the minimal CPU pro-
cessing time and stay within the memory limit (Definition 5).

Theorem 6. [Partitioning Plan Optimality.] B&B
returns an optimal CET-graph partitioning plan.

Theorem 6 follows from Theorems 2-5. Details are omit-
ted here to keep the discussion brief.

Complexity Analysis. Let k be the number of levels
in the search space, i.e., the number of atomic graphlets in
the input CET graph. Then, level search has logarithmic
CPU cost in k. It utilizes binary search and computes the
memory cost of exactly one perfectly balanced partitioning
plan at each level. Thus, the CPU time is O(log k).

The node search algorithm has exponential CPU cost in
k. The while-loop in lines 13–25 is called at most for ev-
ery nearly balanced node in the search space, i.e., O(2k)
times. Computing all nearly balanced not pruned partition-
ing plans at a level i in lines 11 and 24 has exponential CPU
cost O(2i). Checking whether a node is pruned in line 15 is
also exponential. All other auxiliary methods have constant
CPU complexity. Thus, the CPU cost is O(2k).

The memory cost of level search is constant. In contrast,
the memory cost of node search is exponential in k. It is de-
termined by the size of the list pruned and the heap. Both
are bounded by the maximal number of nearly balanced
nodes in one level of the search space, namely, O(2k).

Despite three pruning principles, the CPU and memory
costs of B&B are exponential in the number of atomic graph-
lets in the worst case.

6.2 Greedy Partitioning Algorithm
In this section, we thus propose a greedy search algorithm

for high efficiency. It reuses the level search strategy from
Algorithm 2 without change while the node search is sim-
plified. Namely, the greedy search considers only one greed-
ily constructed nearly balanced partitioning plan at level i.
If it satisfies the memory constraint, the algorithm returns
it as a result. Otherwise, a nearly balanced partitioning
plan at level i − 1 is considered. Thus, the result of the
greedy search is guaranteed to be a nearly balanced par-
titioning plan. However, this result might not be optimal
since it might have more graphlets than necessary to satisfy
the memory constraint. In other words, the greedy search
algorithm does not utilize the entire available memory to
speed up CET detection.

Complexity Analysis. Since the greedy search algo-
rithm considers only one (nearly) balanced partitioning plan
at a level, its memory cost is constant and its CPU complex-
ity is linear O(k) in the number of atomic graphlets k.

6.3 Graphlet Sharing Across Windows
Our CET executor effectively shares graphlets between

overlapping sliding windows. When the window slides, graph-
lets are categorized into the following three groups (Fig-
ure 12): (1) Partially expired graphlet, (2) Shared graphlets
among previous and new window, and (3) (Partially) new

Figure 12: Graphlet sharing technique

graphlets. Since graphlets store consecutive stream por-
tions, there can be at most one partially expired graphlet
(I2 in Figure 12) and at most one partially new graphlet
(I5). There can be however any number of (completely) ex-
pired, shared, or new graphlets. The shared graphlets can be
reused across overlapping windows such that repeated CET
graph partitioning, construction, traversal, and CET detec-
tion in the shared graphlets can be avoided. The construc-
tion of partially expired graphlets can be shared between
several windows by ignoring expired events. A partially new
graphlet must be updated by new events.

Analogously to sharing graphlets between overlapping win-
dows of the same CET query, the execution of a workload
of multiple CET queries can be optimized by sharing the
processing of common graphlets across sub-queries. How-
ever, sharing graphlets may not always be beneficial due to
different window parameters or predicates associated with
each CET query. Hence, multi-CET-query optimization is
left as subject for future research.

7. PERFORMANCE EVALUATION

7.1 Experimental Setup and Methodology
Experimental Infrastructure. We have implemented

our CET detection approach in Java with JRE 1.7.0 25.
We run our experiments on a cluster machine with Ubuntu
14.04, 16-core 3.4GHz QEMU Virtual CPU, and 128GB of
RAM. We execute each experiment three times and report
their average results here.

Data Sets. We evaluate the performance of our CET

approach using the following data sets.
• PA: Physical Activity Real Data Set . The physi-

cal activity monitoring real data set [32] (1.6GB) contains
physical activity reports for 14 people during 1 hour 15 min-
utes. There are 20 physical activities which can be classified
into active (e.g., running, soccer playing) and passive (e.g.,
watching TV, working on computer). Other attributes are
time stamp, heart rate, temperature and person identifier.
• ST: Stock Real Data Set . The NYSE data set [1] con-

tains 225k transaction records of 10 companies in 1 sector
during 12 hours. Each event carries company, sector, and
transaction identifiers, volume, price, time stamp, and type
(sell or buy). We replicate this data set 10 times with ad-
justed company, sector, and transaction identifiers such that
the resulting data set contains transactions for 110 compa-
nies in 11 sectors. No other attributes except identifiers were
changed in the replicas compared to the original.
• FT: Financial Transaction Data Set . We developed

an event stream generator that creates check deposit events
for 3 days. Each event carries time stamp in seconds, source
bank, destination bank, and status (covered or not). The
generator allows us to vary event rate per second R, event
compatibility C, and predicate selectivity S. Given these
3 parameters, each of R ∗ S events with time stamp t is

117

(a) Event rate (FT) (b) Window length (ST) (c) Window overlap (PA,ST) (d) Event compatibility (FT)

Figure 13: CPU costs of CET detection algorithms

(a) Event rate (FT) (b) Window length (ST)

Figure 14: Memory costs of CET detection algorithms

compatible with C events with earlier time stamps than t.
Unless stated otherwise, the default event rate is 3.5k events
per second and the default event compatibility is 3.

CET Queries. We evaluate the workload of 10 appropri-
ate CET queries against each of these event streams. These
queries are variations of queries Q1, Q2, and Q3 in Section 1.
They differ by event patterns and predicates.

Methodology. To show the efficiency of our CET ap-
proach, we compare it to the baseline algorithm (BL, Sec-
tion 3) and SASE++ [38] because both approaches support
Kleene closure computation over event streams under the
skip-till-any-match semantics. To achieve fair comparison,
we have implemented SASE++ [38] including its optimiza-
tion techniques [10, 37] on top of our platform. In a nutshell,
SASE++ stores each matched event e in a stack and com-
putes pointers to e’s previous events in a CET. At the end of
each window, DFS-based CET extraction is applied to these
stacks. Section 8 contains a more detailed discussion.

We also compare our approach to the open-source stream-
ing system Apache Flink [7] that supports event pattern
matching under skip-till-any-match. We express our CET
queries using Flink operators. Flink guarantees that events
are processed in parallel but in-order by their time stamps.
Each event is processed exactly once. However, like most
industrial streaming systems [2, 3, 4], the Kleene operator is
not explicitly supported by Flink. It is currently being devel-
oped for the next release [8]. To express our CET queries in
Flink, each CET query q with a Kleene operator is flattened
into a set of event sequence queries that cover all possible
lengths of event trends matched by the query q. We vary the
event rate, event compatibility, window length, and window
overlap size in these experiments.

To demonstrate the effectiveness of our branch-and-bound
graph partitioning (B&B, Section 6.1), we compare it to the
exhaustive (Exh) and greedy search (Greedy, Section 6.2)
by varying the event rate and window length. Additional

experiments comparing the performance of CET-graph par-
titioning algorithms are in Appendix E.

Under certain parameter settings, Flink, BL, SASE++,
and Exh are unable to produce results within several hours.
Thus, the results are either discontinued in the line charts or
highlighted by bars with maximal height in the bar charts.

Since event rate and event compatibility cannot be varied
for the real data sets, we ran these experiments on the FT
data set. We vary window length and window overlap size
on the PA and ST real data sets.

Metrics. We measure two metrics common for streaming
systems, namely, average CPU time and memory require-
ment per window [10, 23, 30, 31, 38]. Average CPU time
is measured in milliseconds as the sum of total elapsed time
in all windows divided by the number of windows. Average
memory requirement is measured as the sum of peak mem-
ory units in all windows divided by the number of windows.
For CET detection algorithms, an event in a stored CET
is a memory unit. Additionally, a vertex or an edge in our
CET graph as well as an event or a pointer in a SASE++
stack [38] are also memory units. The size of one memory
unit is 8 bytes. For CET graph partitioning algorithms, a
node in the search space is a memory unit. Its size is 20
bytes * k where k is the number of graphlets.

7.2 CET Detection Algorithms
In Figures 13–14, we compare our CET approach to other

CET detection solutions.
Varying Number of Events per Window. CPU costs

of all approaches grow exponentially with an increasing stream
rate and window length (Figures 13(a)–13(b)). For large
numbers of events per window, Flink, BL, and SASE++ do
not terminate within several hours. These approaches do
not scale because they construct all CETs from scratch –
provoking repeated computations. In contrast, our CET ap-
proach stores partial CETs and reuses them while construct-
ing final CETs. Thus, CET is 42–fold faster than SASE++
if stream rate is 50k events per second and 2 orders of mag-
nitude faster than Flink if stream rate is 3k events per sec-
ond. Flink is even slower than BL in all experiments because
Flink expresses each Kleene query as a set of event sequence
queries. Thus, the workload of Flink is considerably higher
than other approaches tailored for Kleene computation.

Figure 14 demonstrates that the CET approach adapts to
the available memory. That is, it partitions the graph in
such a way that CET detection in the partitioned graph is
guaranteed to stay within the given memory limit. If the
stream rate is below 50k events per second or the window
is shorter than 50 minutes, H-CET coincides with T-CET

(Section 4.3). Otherwise, T-CET would run out of memory

118

since it stores CETs for the whole graph. Instead, our CET

approach partitions the graph into smaller graphlets and
stores CETs per each graphlet.

CET and BL have almost the same memory cost (Figure
14). Thus, the amount of memory required for the CET
graph is negligible compared to the amount of memory re-
quired for CET storage. We thus conclude that CET graph
is worth maintaining to compactly capture all CETs.

SASE++ requires 5 orders of magnitude less memory than
the CET approach if event rate is 50k events per second
since SASE++ stores events in stacks and pointers to their
previous events. When the window ends, these pointers are
traversed using DFS to extract all CETs. Hence, SASE++
is conceptually close to the M-CET algorithm, namely, it is
lightweight but slow (Figures 13 and 14).

Flink requires 2 orders of magnitude more memory than
CET if stream rate is 3k events per second because Flink
stores all trends of all possible lengths since it expresses
Kleene closure by a set of sequence queries.

We also ran the experiment on the PA data set varying
window lengths. These charts have similar trends as in Fig-
ures 13(b) and 14(b). Thus, they are omitted here due to
the space constraints.

Varying Window Overlap. Figure 13(c) measures the
effect of the graphlet sharing technique. As the window
overlap increases, the CPU time of the CET approach de-
creases exponentially. This is explained by the fact that
CET graph construction, partitioning and CET detection
within graphlets is shared between overlapping windows.
The larger the overlap, the more the gain of sharing. In
contrast, the average CPU time per window of SASE++
remains fairly constant since no intermediate results are
shared among overlapping windows. Our CET approach out-
performs SASE++ 13–fold if window overlap is 50 minutes.
Since Flink and BL do not keep up with such long windows,
they are omitted in Figure 13(c).

Varying Event Compatibility. Figure 13(d) experi-
mentally confirms Theorem 1. Namely, the number of CETs
(and thus the cost of CET detection) is maximal if event
compatibility is 3. When event compatibility increases, the
CPU time of all algorithms decreases exponentially. When
event compatibility is 3, our CET approach is up to 5.4–fold
faster than SASE++ since it avoids repeated computations
by caching and reusing intermediate results. Neither Flink
nor BL can produce any results in this worst case scenario.

7.3 CET-Graph Partitioning Algorithms
Varying the Number of Events per Window. In Fig-

ures 15–16, we compare the performance of the CET graph
partitioning algorithms used by our optimizer.

The search space for an optimal CET graph partitioning
plan has a lattice shape (Figure 8). Thus, the B&B op-
timizer performs best if it searches the top or the bottom
of the search space where the number of nodes is relatively
small. This happens if the memory constraint is loose or
tight for the given number of events (first and last cases
on the X-axis). Otherwise, B&B searches the middle of the
search space where the number of nodes is large. This causes
higher CPU and memory costs (middle cases on the X-axis).

The CPU and memory costs of the exhaustive algorithm
grow exponentially with an increasing event rate or window
length. Due to 3 effective pruning principles, our B&B is up
to 2 orders of magnitude faster if stream rate is 40k events

per second and requires up to 12–fold less memory if window
length is 20 minutes than the exhaustive optimizer yet B&B
returns an optimal CET graph partitioning plan.

The greedy optimizer has fairly constant CPU and mem-
ory costs. It is up to 3–fold faster and requires up to 3 orders
of magnitude less memory than B&B if the stream rate is
40k events per second.

(a) Event rate (FT) (b) Window length (PA)

Figure 15: CPU costs of CET graph partitioning algorithms

(a) Event rate (FT) (b) Window length (PA)

Figure 16: Memory costs of CET graph partitioning algorithms

(a) CPU time (FT) (b) Memory cost (FT)

Figure 17: Partitioned graph quality

Partitioned Graph Quality. The greedy optimizer
tends to return a sub-optimal CET graph partitioning plan
because it considers only one nearly balanced partitioning
plan per level until it finds a plan that satisfies the mem-
ory constraint. Thus, the greedy search tends to partition
a CET graph more than necessary. In other words, it does
not utilize the entire memory resources to speed up CET de-
tection. Figure 17 compares the CPU and memory costs of
CET detection in an optimally-partitioned versus a greedily-
partitioned CET graph. A greedy partitioning plan is 2.8–
fold slower than an optimal partitioning solution if event
rate is 20k events per second.

8. RELATED WORK
Complex Event Processing. Most existing approaches

either compute event sequences of fixed length [23, 30, 31]
or assume a known upper bound on the length of event se-
quences [12]. They do not support event queries with Kleene
patterns. Thus, their expressive power is limited.

119

Several approaches [10, 16, 26, 37, 38] support Kleene clo-
sure computation over event streams. However, ZStream [26]
and Cayuga [16] do not support Kleene closure computation
under skip-till-any-match. In contrast, SASE [10, 37] opti-
mize Kleene queries under various semantics. SASE adapts
a Finite State Automaton (FSA)-based execution paradigm.
Each event query is translated into an FSA. Each state of
an FSA is associated with a stack with single events stored
in each stack. To speed up stack traversal, each event is
augmented with a pointer to its previous event in a match.

SASE++ [38] further optimizes query evaluation by break-
ing it into pattern matching and result construction phases.
Pattern matching computes the main runs of an FSA (equiv-
alent to CETs) with certain predicates postponed. Result
construction derives all matches of the Kleene pattern by ap-
plying the postponed predicates to remove non-viable runs.
The pattern matching phase in SASE++ simply reuses the
FSA-based approach from SASE [10, 37] without any op-
timization. Computing matches for the main runs incurs
repeated computations since the same common event sub-
sequence is re-traversed for each match that contains it. In
contrast, we introduce a compact CET graph to capture all
CETs and partition the graph to trade off between CPU and
memory costs of CET detection.

Recursive Queries. Kleene closure computation has
been studied in recursive query processing as well [14, 15,
17, 24, 25, 27, 28, 33]. However, most existing solutions
either focus on achieving high expressive power for recur-
sive queries [28], or ensuring correctness of such queries [14,
24]. These approaches incur additional execution costs for
supporting more expressive queries than CEP queries. The
optimization techniques proposed in [15, 17, 25, 27] neither
support the skip-till-any-match semantics nor take memory
constraints into consideration. Therefore, none of the ex-
isting solutions fully tackles the challenges of event queries
with Kleene closure we target.

Streaming Graph Partitioning approaches [29, 34, 36]
consider dynamic graphs in which vertexes or edges or both
change over time. These approaches aim at a balanced one-
pass dynamic graph partitioning algorithm. Since the prob-
lem is NP-hard [11], several approximation algorithms [11,
22] and heuristics [13, 18, 20] have been developed.

While these strategies also aim to find a balanced graph
partitioning, they focus on optimization criteria that are dis-
tinct from our problem. Namely, they minimize the total
number [18, 20, 34, 36] or weight [11] of cut edges. If we
were to apply their method and minimize the number of cut
edges, it would not necessarily reduce the cost of CET de-
tection since one cut edge may need to be traversed multiple
times. Potentially, we could address this problem by defin-
ing an edge weight as the number of edge traversals. How-
ever, CETs within and across graphlets would have to be
computed to determine the number of edge traversals. This
risks making our CET-graph partitioning algorithm more
expensive than the CET detection algorithm itself.

Furthermore, existing graph partitioning approaches do
not take the order of events in a CET into consideration
– which is crucial to CET detection. Indeed, if a graph
partitioning algorithm is oblivious to the event order, then
correct CET detection that visits each graphlet at most once
for each CET would not be possible (Section 5.1). Also,
graphlets could not be shared between overlapping sliding
windows (Section 6.3). Lastly, the properties of the graph

partitioning search space we uncover are specific to the cost
model for CET detection, and thus lead us to unique pruning
principles of our B&B algorithm.

9. CONCLUSIONS
To the best of our knowledge, we are the first to guaran-

tee optimal CPU time of complete event trend detection
over high-rate event streams given limited memory. We
compactly encode the relevant events and their CET rela-
tionships into the CET graph. To trade-off between CPU
and memory costs, our CET optimizer partitions the CET
graph into time-centric graphlets. To this end, our CET op-
timizer leverages the cost monotonicity properties that we
have discovered to find an optimal CET-graph partitioning
plan in practical time. Given the partitioned CET graph,
our CET executor caches CETs per each graphlet and reuses
them while constructing CETs within one window and be-
tween overlapping sliding windows. Our experimental re-
sults demonstrate that our CET approach is up to 42-fold
faster than the state-of-the-art solutions in various scenarios.

Acknowledgments
We sincerely thank Prof. David Maier for his suggestions to
improve this paper. This work was supported by NSF grants
IIS 1018443, IIS 1343620, IIS 1560229, and CRI 1305258.

10. REFERENCES
[1] Stock trade traces.

http://davis.wpi.edu/datasets/Stock Trace Data/.

[2] Esper. http://www.espertech.com/, 2015. [Online; accessed
20-April-2015].

[3] Storm. https://storm.apache.org/, 2015. [Online; accessed
9-January-2015].

[4] StreamInsight. https://technet.microsoft.com/en-us/library/
ee362541%28v=sql.111%29.aspx, 2015. [Online; accessed
20-April-2015].

[5] The Press Enterprise.
http://www.pe.com/articles/checks-694614-people-bank.html,
2015. [Online; accessed 6-October-2015].

[6] Wikipedia. https://en.wikipedia.org/wiki/Check kiting, 2015.
[Online; accessed 6-October-2015].

[7] Apache Flink. https://flink.apache.org/, 2016. [Online; accessed
14-October-2016].

[8] Apache Flink Forum.
https://issues.apache.org/jira/browse/FLINK-3318, 2016.
[Online; accessed 14-October-2016].

[9] Boulder Community Health. http://www.bch.org/cardiac-care/
arrhythmia-electrophysiology.aspx, 2016. [Online; accessed
6-July-2016].

[10] J. Agrawal, Y. Diao, D. Gyllstrom, and N. Immerman. Efficient
pattern matching over event streams. In SIGMOD, pages
147–160, 2008.

[11] K. Andreev and H. Räcke. Balanced graph partitioning. In
SPAA, pages 120–124, 2004.

[12] C. Balkesen, N. Dindar, M. Wetter, and N. Tatbul. RIP:
Run-based intra-query parallelism for scalable Complex Event
Processing. In DEBS, pages 3–14, 2013.

[13] S. T. Barnard. PMRSB: Parallel Multilevel Recursive Spectral
Bisection. In Supercomputing, 1995.

[14] B. Chandramouli, J. Goldstein, and D. Maier. On-the-fly
progress detection in iterative stream queries. VLDB,
2(1):241–252, Aug. 2009.

[15] Y. Chen, S. B. Davidson, and Y. Zheng. An Efficient XPath
Query Processor for XML Streams. In ICDE, pages 1–12, 2006.

[16] A. Demers, J. Gehrke, B. Panda, M. Riedewald, V. Sharma,
and W. White. Cayuga: A general purpose event monitoring
system. In CIDR, pages 412–422, 2007.

[17] T. J. Green, A. Gupta, G. Miklau, M. Onizuka, and D. Suciu.
Processing XML streams with deterministic automata and
stream indexes. ACM Trans. Database Syst., 29(4):752–788,
2004.

120

http://davis.wpi.edu/datasets/Stock_Trace_Data/
http://www.espertech.com/
https://storm.apache.org/
https://technet.microsoft.com/en-us/library/ee362541%28v=sql.111%29.aspx
https://technet.microsoft.com/en-us/library/ee362541%28v=sql.111%29.aspx
http://www.pe.com/articles/checks-694614-people-bank.html
https://en.wikipedia.org/wiki/Check_kiting
https://flink.apache.org/
https://issues.apache.org/jira/browse/FLINK-3318
http://www.bch.org/cardiac-care/arrhythmia-electrophysiology.aspx
http://www.bch.org/cardiac-care/arrhythmia-electrophysiology.aspx

[18] B. Hendrickson and R. Leland. A multilevel algorithm for
partitioning graphs. In Supercomputing, 1995.

[19] M. Hirzel. Partition and compose: Parallel Complex Event
Processing. In DEBS, pages 191–200, 2012.

[20] G. Karypis and V. Kumar. Multilevel graph partitioning
schemes. In Parallel Processing, pages 113–122, 1995.

[21] M. Klazar. Bell numbers, their relatives, and algebraic
differential equations. J. Comb. Theory, Ser. A, 102(1):63–87,
2003.

[22] R. Krauthgamer, J. S. Naor, and R. Schwartz. Partitioning
graphs into balanced components. In SODA, pages 942–949,
2009.

[23] M. Liu, E. A. Rundensteiner, K. Greenfield, C. Gupta,
S. Wang, I. Ari, and A. Mehta. E-Cube: Multi-dimensional
event sequence analysis using hierarchical pattern query
sharing. In SIGMOD, pages 889–900, 2011.

[24] M. Liu, N. E. Taylor, W. Zhou, Z. G. Ives, and B. T. Loo.
Recursive computation of regions and connectivity in networks.
In ICDE, pages 1108–1119, 2009.

[25] B. Ludäscher, P. Mukhopadhyay, and Y. Papakonstantinou. A
transducer-based XML query processor. In VLDB, pages
227–238, 2002.

[26] Y. Mei and S. Madden. ZStream: A Cost-based Query
Processor for Adaptively Detecting Composite Events. In
SIGMOD, pages 193–206, 2009.

[27] B. Mozafari, K. Zeng, and C. Zaniolo. From regular expressions
to nested words: Unifying languages and query execution for
relational and XML sequences. VLDB, 3(1-2):150–161, Sept.
2010.

[28] B. Mozafari, K. Zeng, and C. Zaniolo. High-performance
complex event processing over XML streams. In SIGMOD,
pages 253–264, 2012.

[29] J. Nishimura and J. Ugander. Restreaming graph partitioning:
Simple versatile algorithms for advanced balancing. In KDD,
pages 1106–1114, 2013.

[30] M. Ray, C. Lei, and E. A. Rundensteiner. Scalable pattern
sharing on event streams. In SIGMOD, pages 495–510, 2016.

[31] M. Ray, E. A. Rundensteiner, M. Liu, C. Gupta, S. Wang, and
I. Ari. High-performance complex event processing using
continuous sliding views. In EDBT, pages 525–536, 2013.

[32] A. Reiss and D. Stricker. Creating and benchmarking a new
dataset for physical activity monitoring. In PETRA, pages
40:1–40:8, 2012.

[33] A. Shkapsky, M. Yang, M. Interlandi, H. Chiu, T. Condie, and
C. Zaniolo. Big data analytics with Datalog queries on Spark.
In SIGMOD, pages 1135–1149, 2016.

[34] I. Stanton and G. Kliot. Streaming graph partitioning for large
distributed graphs. In KDD, pages 1222–1230, 2012.

[35] J. Stewart. Calculus: Early Transcendentals. Thompson
Brooks/Cole, 8th edition, 2015.

[36] C. E. Tsourakakis, C. Gkantsidis, B. Radunovic, and
M. Vojnovic. Fennel: Streaming graph partitioning for massive
scale graphs. Technical report, 2012.

[37] E. Wu, Y. Diao, and S. Rizvi. High-performance Complex Event
Processing over streams. In SIGMOD, pages 407–418, 2006.

[38] H. Zhang, Y. Diao, and N. Immerman. On complexity and
optimization of expensive queries in Complex Event Processing.
In SIGMOD, pages 217–228, 2014.

APPENDIX
A. COMPLEXITY OF CET DETECTION

Theorem 1. [Maximal Number of CETs.] 3
n
3 CETs

can be constructed from n events in the worst case.

Proof. Let x ∈ N be the number of events that all cur-
rent CETs are compatible with. We first show that the
number of CETs to be constructed for a given set I of n
events is maximal when the number of events xi in I that
each CET is compatible with is identical. Then the maxi-
mum number of CETs is given by maximize

∏
xi, subject

to
∑
xi = n. The method of Lagrange multiplier in math-

ematical optimization [35] introduces an auxiliary function
L(xi, λ) =

∏
xi + λ ·

∑
xi. Solving the following equation

5xi,λL(xi, λ) = 0, we have x1 = ... = xi = xi+1 = ... =

xn/x. This proves that the maximum number of CETs that

can be constructed from n events is y = x
n
x .

Now our goal is to determine the global maximum of this
continuous function on the interval [1, n]. Below we de-
rive the critical value of x following the standard approach
in [35]. First we take the logarithm of both sides:

ln y = lnx
n
x =

n

x
lnx.

We then differentiate both sides:

yt

y
= (

n

x
)′ lnx+(lnx)′

n

x
=

0 · x− n · 1
x2

lnx+
n

x2
=

n

x2
(1−lnx).

Lastly, we multiply by y and substitute y with n
x

lnx.

yt = y
n

x2
(1− lnx) = x

n
x
n

x2
(1− lnx) = x

n
x
−2n(1− lnx).

We have yt = 0 if x = e (e is Euler’s number here). Since

x ∈ N, we round x to 3. Thus, y = 3
n
3 is the absolute

maximum value of the function.

Complexity Analysis of the Baseline CET Detec-
tion Algorithm. Let n be the number of events in the
query window, y be the number of CETs, l be the maximal
length of a CET, and p be the number of predicates in the
query q. The for-loop in lines 2–16 in Algorithm 1 is called
n times. The for-loop in lines 7–15 is executed for each
CET, y times. The isCompatible(q, t, e) method has the
CPU cost O(p) since each predicate needs to be executed to
conclude compatibility. The getCompatiblePrefix(q, t, e)
method has the CPU cost O(lp) since in the worst case the
compatibility is checked for each possible prefix of the trend
tr. Finally, the eliminateIncomplete(Tnew) method has the
CPU cost O(y2l) since each event trend is compared to all
other event trends and the cost of one comparison is O(l).
Altogether, the CPU cost is O(nyp2l + ny2l).

According to Theorem 1, y = 3
n
3 in the worst case and

thus y is the dominant factor in the overall CPU complexity.
Thus, the execution time of Algorithm 1 is exponential in
the number of events n in the window:

CPUBL = O(n(yp2l + y2l)) = O(n(3
n
3 p2l + 3

2n
3 l)).

The memory consumption of Algorithm 1 is also exponen-
tial in n since all CETs are stored:

MemBL = O(yl) = O(3
n
3 l).

B. CET GRAPH CONSTRUCTION
The CET graph construction algorithm in Algorithm 3

avoids comparing each new matched event with each previ-
ously matched event by maintaining the set Vlast of all last
events in the CETs constructed so far. Each new matched
event e becomes a vertex in the CET graph (line 5). The
edges are drawn as follows: The event e has no ingoing edges
if it is incompatible with all events in the graph. Then e
starts a new CET (Case 1). If the event e is compatible
with a last event el of a CET tr, an edge from el to e is
built and e becomes the last event of the trend tr (Case 2).
If the event e is incompatible with the last event el of a CET
tr, we backtrack along the edges from this event el until we
find a compatible event which is the last event in the prefix
of the trend tr compatible with e, if any (Case 3).

Complexity Analysis. Let q be a CET query, n be the
number of events in the window of q, and p be the number

121

Algorithm 3 CET graph construction algorithm

Input: CET query q, input event stream I
Output: CET graph G
1: Vlast ← ∅, V ← ∅, E ← ∅, G← (V,E)
2: for all e ∈ I such that e.isMatchedBy(q) do
3: V ← V ∪ e
4: if Vlast = ∅ then
5: Vlast ← e // Case 1
6: else
7: for all el ∈ Vlast do
8: if isCompatible(q, el, e) then
9: E ← E ∪ (el, e) // Case 2

10: Vlast ← (Vlast − el) ∪ e
11: else
12: C ← getLatestCompEvents(q, el, e)
13: for all ec ∈ C do
14: E ← E ∪ (ec, e) // Case 3
15: Vlast ← Vlast ∪ e // Case 1
16: return G

of predicates in q. The outermost for-loop is called for each
matched event, i.e., O(n) times. The following two cases are
possible for a new event e:
• e is compatible with each last event. The isCompa-

tible(q, el, e) method has the CPU cost O(p) since each pred-
icate needs to be executed to conclude compatibility. This
method is called at most n times since in a extreme case
each event in the graph is a last event.
• e is compared to earlier events to find latest compatible

events. The getLatestCompEvents(q, el, e) method returns
the set of all events that are compatible with e and are latest
in the event trends which end with el. The CPU costs are
O(np) since in the worst case the compatibility with each
event in the graph has to be checked.

Altogether, the CPU costs are quadratic in n: O(n2p) =
O(n2) since p < n for high-rate event streams. The memory
costs are also quadratic in n because the number of nodes
is O(n), while the number of edges is O(n2) if each event is
compatible with all other events in the graph.

C. CPU- AND MEMORY-OPTIMIZED
CET DETECTION ALGORITHMS

Complexity Analysis. In terms of memory utilization,
both algorithms store the CET graph itself, that is, |V | ver-
texes and |E| edges. Storing the current CET requires at
most |V | space since in an extreme case all events build one
CET. Thus, the memory cost of the M-CET algorithm is:

memM−CET = Θ(|V |+ |E|) +O(|V |).

The memory requirement for all CETs in the extreme
case can be bounded by multiplying the maximal number

of CETs 3
|V |
3 by the maximal length of a CET |V |. Hence,

the memory cost of the T-CET algorithm is:

memT−CET = Θ(|V |+ |E|) +O(3
|V |
3 |V |).

Both algorithms construct the CET graph in O(|V |4) time
(Appendix B). The M-CET algorithm stores only one current

CET and thus performs at most 3
|V |
3 |V | edge traversals and

at most 3
|V |
3 |V | CET updates. Altogether, the CPU cost of

the M-CET algorithm thus is:

cpuM−CET = O(|V |4) +O(3
|V |
3 |V |) +O(3

|V |
3 |V |).

In contrast, the T-CET algorithm stores all CETs found
so far and thus traverses an edge exactly once. In addition,
it updates the current CETs (Figure 6(b)). According to
Theorem 1, the number of CETs is maximal if there are
|V |
3

groups with 3 events at each group. Thus, the T-CET

algorithm performs O(

|V |
3∑
i=1

3i) = O(3
|V |
3) CET updates in

total. Its CPU cost is:

cpuT−CET = O(|V |4) + Θ(|E|) +O(3
|V |
3).

D. PROPERTIES OF THE CET GRAPH PAR-
TITIONING SEARCH SPACE

Theorem 6. [Partitioning Plan Optimality.] B&B
returns an optimal CET-graph partitioning plan.

Proof. Since the memory costs for storing the CET graph
are the same for all algorithms in Table 2, we ignore this
cost factor in the following. Let G = (V,E) be a CET graph
such that V = V1 ∪· V2. The memory cost of T-CET in the
non-partitioned graph G is:

O(3
|V1|+|V2|

3 (|V1|+ |V2|)) = O(3
|V1|+|V2|

3 |V1|+ 3
|V1|+|V2|

3 |V2|).

The memory cost of H-CET in the partitioned graph p2 =
{g1 = (V1, E1), g2 = (V2, E2)} is:

O(3
|V1|
3 |V1|+ 3

|V2|
3 |V2|) +O(|V1|+ |V2|) =

O((3
|V1|
3 + 1)|V1|+ (3

|V2|
3 + 1)|V2|).

The latter is considerably smaller than the former since:

(3
|V1|
3 + 1)|V1| ≤ 3

|V1|+|V2|
3 |V1|, (3

|V2|
3 + 1)|V2| ≤ 3

|V1|+|V2|
3 |V2|.

Assume that the graphlet g2 = (V2, E2) is further par-
titioned into two smaller graphlets g21 = (V21, E21) and
g22 = (V22, E22). Then the memory cost of the H-CET algo-
rithm in the partitioned graph p3 = {g1, g21, g22} is:

O(3
|V1|
3 |V1|+ 3

|V21|
3 |V21|+ 3

|V22|
3 |V22|) +O(|V1|+ |V21|+ |V22|).

Memory cost of CET detection in p3 is lower than the mem-
ory cost of CET detection in p2 since:

3
|V2|
3 |V2| = 3

|V21|+|V22|
3 (|V21|+ |V22|) = 3

|V21|+|V22|
3 |V21|+

3
|V21|+|V22|

3 |V22| ≥ 3
|V21|

3 |V21|+ 3
|V22|

3 |V22|. 2

Theorem 3. [CPU Cost Monotonicity.] Let p and p′

be partitioning plans of a CET graph G such that p is a
parent of p′. The H-CET algorithm in G partitioned by p′

has higher CPU costs than in G partitioned by p.

Proof. Since the CPU time for constructing the CET
graph is the same for all algorithms in Table 2, we ignore
this cost factor in the following. Let G = (V,E) be a CET
graph such that V = V1 ∪· V2 and E = E1 ∪· E2 ∪· Ec. The
CPU cost of T-CET in the non-partitioned graph G is:

O(|E1|+ |E2|+ |Ec|) +O(3
|V1|+|V2|

3)

122

The CPU cost of H-CET using the partitioning plan p2 =
{g1 = (V1, E1), g2 = (V2, E2)} is:

O(|E1|+ |E2|) +O(3
|V1|
3 + 3

|V2|
3) +O(3

|V1|+|V2|
3 ∗ 4)

The factors that differentiate costs are underlined. They re-
veal the trade-off between the CPU costs within and across
graphlets. Namely, a large number of small graphlets re-
duces the CPU cost for CET update within graphlets. The
CPU overhead within graphlets is the difference between the
CPU cost within graphlets in a partitioned graph and the
CPU cost within graphlets in a non-partitioned graph:

CPUwithin = O(

k∑
i=1

3
|Vi|
3 − |Ec|)

On the other hand, a small number of large graphlets reduces
the CPU cost for traversing edges across graphlets. The
CPU overhead across graphlets is the difference between the
CPU costs across graphlets in a partitioned graph and the
CPU cost across graphlets in a non-partitioned graph:

CPUacross = O(3
|V |
3 (4k − 1))

Since ∀k ∈ N, k ≥ 2. CPUacross ≥ CPUwithin, we conclude
that the CPU cost degrades due to partitioning.

Definition 8. (Balanced, Nearly Balanced and Un-
balanced CET-Graph Partitioning Plans.) A parti-
tioning plan p of a CET graph G = (V,E) into k graphlets

is called balanced if ∀i ∈ N, 1 ≤ i ≤ k, |Vi| ≤ d |V |k e holds.
Let gi = (Vi, Ei) be a graphlet in a partitioning plan p

such that |Vi| > d |V |k e. Let gf = (Vf , Ef) be the first and
gl = (Vl, El) be the last atomic graphlet in gi. A partitioning
plan p is called nearly balanced if two conditions hold:

• If i > 1 then |Vi| < d |V |k e+ |Vf | and

• If i < k then |Vi| < d |V |k e+ |Vl|.
Otherwise, a partitioning plan p is called unbalanced.

Theorem 4. [Cost of Balanced Partitioning Plan.]
Let G be a CET graph and k ∈ N . The H-CET algorithm on
a balanced partitioning of G into k graphlets has the minimal
CPU and memory costs compared to all other partitionings
of G into k graphlets.

Proof. Since the memory cost for storing one CET across
graphlets and the CPU cost for computing CETs across
graphlets are independent from the quality of partitioning a
CET graph into k graphlets, we ignore these costs below.

We now prove that moving one vertex from one balanced
graphlet to another balanced graphlet increases both mem-
ory and CPU costs. Let pb = (gb1 = (Vb1, Eb1), gb2 =
(Vb2, Eb2)) be a balanced partitioning plan of a CET graph.
Assume for simplicity that |Vb1| = |Vb2| = v holds. Let
po = (go1 = (Vo1, Eo1), go2 = (Vo2, Eo2)) be a partitioning
plan which is the same as pb except that one vertex is moved
from the first graphlet into the second one, i.e., |Vo1| = v−1
and |Vo2| = v+ 1. Then, the memory cost of CET detection
in these two partitioning plans is computed as follows:

mem(pb) = 2(
3
√

3)vv

mem(po) = (
3
√

3)v−1(v − 1) + (
3
√

3)v+1(v + 1)

=
(3
√

3)vv
3
√

3
− (3
√

3)v

3
√

3
+ (

3
√

3)v
3
√

3v + (
3
√

3)v
3
√

3.

We verify the fact that mem(pb) < mem(po) as follows:

2(
3
√

3)vv <
(3
√

3)vv
3
√

3
− (3
√

3)v

3
√

3
+ (

3
√

3)v
3
√

3v + (
3
√

3)v
3
√

3.

We multiply both sides of the equation by
3√3

(3√3)vv
.

2
3
√

3 < 1− 1

v
+ (

3
√

3)2 +
(3
√

3)2

v
.

For a high-rate input event stream, the number of events

per graphlet v will be large. Therefore, (3√3)2−1
v

≈ 1
v
≈ 0.

2
3
√

3 ≈ 2.88 < 1 + (
3
√

3)2 ≈ 3.08 (1)

Analogously, we verify that cpu(pb) < cpu(po) below.

2(
3
√

3)v <
(3
√

3)v

3
√

3
+ (

3
√

3)v
3
√

3

We multiply both sides by
3√3

(3√3)v
and get Equation 1.

Theorem 5. [Cost of Nearly Balanced Partitioning
Plan.] Let G be a CET graph and k ∈ N . The H-CET algo-
rithm on a nearly balanced partitioning of G into k graphlets
has lower CPU and memory costs than on an unbalanced
partitioning of G into k graphlets.

Proof. Since the memory cost for storing one CET across
graphlets and the CPU cost for computing CETs across
graphlets are independent from the quality of partitioning
a CET graph into k graphlets, we ignore these costs be-
low. We now prove that even moving one atomic graphlet
from one nearly balanced graphlet to another nearly bal-
anced graphlet increases both the memory and CPU costs.

Let G = (V,E) be a CET graph. Let pn = {gn1 =
(Vn1, En1), gn2 = (Vn2, En2)} be a nearly balanced partition-
ing plan of G and pu = {gu1 = (Vu1, Eu1), gu2 = (Vu2, Eu2)}
be an unbalanced partitioning plan of G. The unbalanced
partitioning plan pu is same as the nearly balanced one
pn except that one atomic graphlet g with m nodes (m ∈
N,m ≥ 1) is copied from the first graphlet to the second.
That is, |Vu1| = |Vn1|−m and |Vu2| = |Vn2|+m (Figure 18).

Figure 18: Nearly balanced vs. unbalanced partitioning plan

According to Definition 8, T = d |V |
2
e is the threshold for

the number of events in the nearly balanced graphlets gn1
and gn2. Assume |Vn1| = b + m where m is the number of
events in the atomic graphlet g that we move from gn1 to
gn2 and b ∈ N, b ≥ 1. Since gn1 is nearly balanced, removing
the atomic graphlet g with m events form gn1 causes an
underflow in gn1, i.e., |Vu1| = b < T .

According to Definition 8, the partitioning plan pu is un-
balanced if at least two atomic graphlets cause an overflow
in Gu2. Since b < T and all m nodes belong to the same
atomic graphlet g, |Vu2| > b+m. Let |Vu2| = b+ d+m for
some d ∈ N, d ≥ 1. Then |Vn2| = b+ d.

123

Let x = 3
√

3. Then the memory cost of CET detection ac-
cording to these 2 partitioning plans is computed as follows:

mem(pb) = xb+m(b+m) + xb+d(b+ d)

= xbxmb+ xbxmm+ xbxdb+ xbxdd

= xbb(xm + xd) + xbxmm+ xbxdd

mem(pu) = xbb+ xb+d+m(b+ d+m)

= xbb+ xbxdxmb+ xbxdxmd+ xbxdxmm

= xbb(1 + xdxm) + xbxdxmd+ xbxdxmm

mem(pb) < mem(pu) since xbb(xm + xd) < xbb(1 + xdxm),
xbxdd < xbxdxmd and xbxmm < xbxdxmm.

Analogously, we verify that cpu(pb) < cpu(pu) as follows:

xb(xm + xd) < xb(1 + xd+m). 2

E. ADDITIONAL EXPERIMENTS

E.1 CET-Graph Partitioning Algorithms
Continuing our experiments in Section 7.3, in Figure 19

we measure the CPU time of the CET-graph partitioning
algorithms while varying the memory limit and the number
of compatible events.

(a) Memory limit (PA) (b) Event compatibility (FT)

Figure 19: CPU costs of CET graph partitioning algorithms

Varying Memory Limit. As Figure 19(a) illustrates,
the exhaustive optimizer is indifferent to the memory limit.
It traverses the entire search space to find an optimal par-
titioning plan. In contrast, both the B&B and greedy algo-
rithms utilize the memory constraint to skip infeasible levels.
Thus, B&B is 2 orders of magnitude faster and requires 12–
fold less memory than the exhaustive optimizer if memory
limit is 10k memory units.

When the memory constraint is loose, a few cuts are
enough to satisfy the memory constraint. Thus, the B&B
and greedy algorithms perform almost equally well. How-
ever, when the memory constraint is tight, a CET graph
has to be partitioned more to avoid an out-of-memory error.
While our B&B optimizer considers all nearly balanced par-
titioning plans at a level to find an optimal partitioning plan,
the greedy optimizer considers only one per level. Thus, the
greedy optimizer is up to 4–fold faster than B&B if mem-
ory limit is 10k memory units at the expense of finding a
sub-optimal partitioning plan.

Varying Event Compatibility. With the increasing
number of compatible events the size of graphlets increases
and their number decreases (Figure 19(b)). Thus, the size of
the search space also decreases. Consequently, the CPU time
of the algorithms rapidly decreases as well until it becomes
almost constant if more than 10 events are compatible. If
3 events are compatible, our B&B optimizer is 2 orders of
magnitude faster than the exhaustive optimizer thanks to
our effective pruning principles.

E.2 Properties of Partitioning Search Space
In Figure 20, we experimentally confirm the cost monoto-

nicity properties of the CET graph partitioning search space
(Sections 5.2 and 5.3) while varying the number of graphlets
and their size ratio.

(a) Cost variation across levels (b) Cost variation at one level

Figure 20: Search space properties (PA)

Varying Graphlet Number. The goal of this experi-
ment is to confirm the properties across levels of the search
space (Theorems 2 and 3) which support the infeasible level
and inefficient branch pruning by our B&B optimizer.

In Figure 20(a), we observe the monotonic CPU and mem-
ory cost variation while varying the number of graphlets.
The first case on the X-axis (1 graphlet) corresponds to T-

CET since all events belong to 1 graphlet. The last case on
the X-axis (69 graphlets) corresponds to M-CET since each
relevant event is a separate graphlet. In all other cases, H-

CET is applied to an optimally-partitioned CET graph into
the given number of graphlets.

As the number of graphlets increases, the memory re-
quirement decreases exponentially (5 orders of magnitude
comparing 1 and 69 graphlets) and CPU time increases ex-
ponentially (7–fold comparing 1 and 69 graphlets). Such
cost variation is expected since the larger the number of
graphlets, the smaller their size, the less CETs are stored
per graphlet and the more CPU overhead is provoked while
computing CETs across graphlets.

Varying Graphlet Size Ratio. The goal of this exper-
iment is to confirm the properties at one level of the search
space (Theorems 4 and 5) which lead to the unbalanced node
pruning by our B&B optimizer.

In Figure 20(b), we observe the monotonic cost variation
while varying the graphlet size ratio. The first case on the X-
axis (the ratio is 1) corresponds to CET detection in a CET
graph that is partitioned in a balanced way. The last case on
the X-axis (the ratio is 13) shows the costs of CET detection
in a CET graph that is partitioned in an unbalanced way,
namely, one graphlet has 13 times more events than another.

As the graphlet size ratio increases, the memory require-
ment increases exponentially (2 orders of magnitude com-
paring the balanced and the unbalanced partitioning plans).
Such memory increase is expected since the larger the size
of a graphlet the more CETs are stored in it. In contrast,
the CPU time increases only slightly (1.03–fold comparing
these extreme cases). This is explained by the fact that the
same number of graphlets causes the same amount of CPU
overhead for CET construction across graphlets.

124

	Introduction
	PRELIMINARIES
	CET Data and Query Model
	CET Detection Optimization Problem

	Baseline CET Detection
	The Graph-Based CET Detection
	Compact CET Graph Encoding
	Spectrum of Graph-based CET Detection
	Hybrid CET Detection Algorithm

	Foundations of CET-Graph Partitioning Problem
	CET-Graph Partitioning Search Space
	Monotonicity Properties Across Levels
	Monotonicity Properties Within One Level

	CET Detection Optimization
	Branch-and-Bound Partitioning Algorithm
	Greedy Partitioning Algorithm
	Graphlet Sharing Across Windows

	Performance Evaluation
	Experimental Setup and Methodology
	CET Detection Algorithms
	CET-Graph Partitioning Algorithms

	Related Work
	Conclusions
	References
	Complexity of CET Detection
	CET Graph Construction
	CPU- and Memory-Optimized CET Detection Algorithms
	Properties of the CET Graph Partitioning Search Space
	Additional Experiments
	CET-Graph Partitioning Algorithms
	Properties of Partitioning Search Space

