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ABSTRACT
The data markets are emerging to address many organizations’ need
to find more useful external data sets for deeper insights. Existing
data markets have two main limitations. First, they either sell a
whole data set or some fixed views, but do not allow arbitrary ad-
hoc queries. Second, they only sell static data, but not data that are
frequently updated. While there exist proposed solutions for selling
ad-hoc queries, it is an open question what mechanism should be
used to sell ad-hoc queries on dynamic data. In this paper, we study
a data market framework that enables the sale or sharing of dynamic
data, where each sharing is specified by an ad-hoc query. To keep
the shared data up-to-date, the service provider should create a view
of the shared data and maintain the view for the data buyer. We pro-
vide solutions to two important problems in this framework: how
to efficiently maintain the views, and how to fairly determine the
cost each sharing incurs for its view to be created and maintained
by the service provider. Both problems are challenging since in the
first problem, different sharings with the same operations in their
plans may reuse these operations, and each sharing plan must be
generated online. In the second problem, there are several factors
that impact the fairness of a costing function and a straightforward
mechanism won’t work. We propose an intuitive online algorithm
for sharing plan selection, as well as a set of fair costing criteria
and an algorithm that maximizes the fairness.

1. INTRODUCTION
In the big data era, data has become an integral part of deci-

sion making and user experience enhancement. An important ob-
servation is that organizations not only use internal data but also
find compelling ways of integrating external data (such as publicly
available data sets, surveys, curated data from other organizations,
etc.) into their decision making and planning processes. As a re-
sult, several data markets have emerged, where the data can be sold
and bought (e.g., Microsoft Azure Marketplace [3], Infochimps [2],
Xignite [5], Gnip [1], etc,), or in some cases data are freely shared
with the public in the cloud [4].1

1Since data can be shared freely or at a price, which could also be
called a sale, we use sharing and sale interchangeably.
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These recently emerged data markets are limited in functional-
ity in two aspects. First, they either sell a whole data set or some
fixed views of a data set, but do not allow arbitrary ad-hoc queries.
This limitation leads to buyers needing to browse a large set of
pre-defined views and possibly buying more data than what they
need [19, 20]. Second, current data markets only sell static data
sets2, e.g., the GDP of a country from 1997 to 2011. This lim-
its the sale of many useful data sets that receive frequent updates.
For example, a food retailer may be interested in purchasing users’
check-ins at restaurants, tweets, etc., in order to infer a user’s food
preference and recommend corresponding products; a hotel book-
ing service may be interested in purchasing users’ flight booking
data and calendar data in order to recommend hotels and design
targeted promotions; a deal service may find helpful to purchase
users’ location data in order to alert the users of good deals near
them. The data to be purchased in all these scenarios are dynamic
and frequently updated. There are proposed solutions for the first
limitation [19, 20], where the authors developed a mechanism that
automatically prices ad-hoc queries, which is proved to achieve cer-
tain desirable properties such as arbitrage-free.

In this paper, we focus on the second limitation, and propose
a way to sell dynamic data in a data market. The data market
has three roles: data owner, data buyer, and data market service
provider. An individual or an organization may be both an owner
and a buyer. The data owner is willing to sell/share the data at a
price. Although the data owner may choose to sell the data directly
to the data buyer, this direct sell would require significant amount
of automation, as well as infrastructure efforts. Hence, data sell-
ers typically prefer to go through the data market and leverage the
services it offers, which is a common practice in cloud comput-
ing. As the data owners benefit from the services provided by the
data market, the provider also benefits from serving a multitude
of data owners and data buyers by consolidating them to achieve
economies of scale.

When a buyer specifies the data sets she’s willing to buy, the
service provider has two tasks: (1) deliver and maintain the data in
a way that minimizes the operational cost (analogous to finding a
query plan with minimum cost), and (2) calculate the price of the
data, which should be a function of the monetary value of the data
specified by the owner, and the operational cost. In this paper we
discuss how to deal with these two problems. For problem (2), we
only focus on calculating the operational cost. The monetary value
of the data is assumed to be determined by the data owner. The
function that maps the cost to the price is an economics problem
that is out of scope of this work and interested readers can refer
to [23, 35] for pricing strategies.

2Certain data sets in the markets may be updated, however, the
buyers need to buy the updated data set again.
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Figure 1: Sharing plans for two buyers. Source data are located
on servers 1-2, and the purchased data (view) are located on
server 3 (for buyer 1) and server 4 (for buyer 2).

The following example illustrates the problems studied in this
paper. Following the terminology in [9], we use the term dynamic
data sharing to refer to the sale or sharing of such dynamic data
sets. A sharing plan specifies the set of operations/subexpressions
to prepare the data for the buyer (such as the order of joins among
the requested tables, time to apply predicates, time to move data
between servers, etc.), which is analogous to a query plan for a
SQL query.

EXAMPLE 1.1. [Selecting Sharing Plans]: Consider three data
sets in the data market in the form of relational tables: check-in
at restaurants (CHK), restaurant information (RES), and restau-
rant reviews (REV). A data buyer (buyer 1) is interested in a dy-
namic data sharing that joins these three tables. These tables may
be owned by different data owners and reside in different physical
servers in the cloud infrastructure. It is not trivial to design a plan
with minimum cost that delivers and maintains the data requested
by buyer 1, which involves the order of join, the way to move data
between the servers, etc.; each of these operations may incur a dol-
lar cost for the service provider, especially if the service provider
rents infrastructures from an IaaS provider. Furthermore, if there’s
an existing data sharing that maintains the join of CHK and RES,
it should be taken into account when choosing the plan for the new
sharing, since the data of the existing sharing (CHK Z RES) may
be reused.

[Costing Sharing Plans]: Suppose we’ve selected a plan for this
data sharing, as shown in solid lines in Figure 1 with details omit-
ted. Later another buyer (buyer 2) is also interested in a dynamic
data sharing that joins CHK, RES and REV, but she is only inter-
ested in restaurants in Seattle. The service provider decides that
the best plan for this buyer is to reuse the previous plan, and add a
filter “city = Seattle” in the end, as shown in the dotted part in Fig-
ure 1. Now suppose that the operational cost of maintaining these
two sharings is $200/month. Then, what is the operational cost of
each sharing? If we use a trivial approach that evenly divides the
cost of each operation/subexpression among the sharings using the
subexpression, the second sharing will be considered more costly
than the first, since the second sharing plan has an additional step,

“city = Seattle”. Consequently, buyer 2 may pay a higher price
than buyer 1. However, this is not fair to buyer 2 because if buyer 1
did not exist, the second sharing plan may apply the predicate “city
= Seattle” earlier, which may make the RES table much smaller and
the sharing plan much cheaper.

There are similarities between the problem of selecting sharing
plans and some classic problems such as distributed query pro-
cessing, multiple query optimization, view maintenance, and in-
dex/view selection. These problems are indeed related but are also
fundamentally different. More detailed related work discussion is
presented in Section 2.

For selecting sharing plans, we propose an online algorithm.
The algorithm should be online since it needs to service a shar-
ing request as soon as it is received without knowing future re-
quests. Our algorithm makes a significant improvement upon an
existing work [9], which uses a greedy online algorithm (referred
to as algorithm GREEDY in this paper). Algorithm GREEDY enu-
merates the plans for the new sharing and chooses the plan that
incurs the smallest additional dollar cost after integrating into the
plans for existing sharings (referred to as global plan). We show
that algorithm GREEDY can perform arbitrarily badly even for very
simple instances of the problem. We also analyze another base-
line algorithm named algorithm NORMALIZE, which normalizes
the cost of a subexpression using the number of prior occurrences
of the subexpression, and show that it can also perform arbitrarily
badly. In contrast, our proposed algorithm, named algorithm MAN-
AGEDRISK, judiciously chooses the plan for each sharing such that
it neither avoids taking risks nor takes too much risks, which avoids
making arbitrarily bad decisions for those instances where the base-
line algorithms fail.

For costing sharing plans, we propose a set of fairness criteria
for costing data sharings that consists of five conditions (details will
be given in Section 5) . These five conditions capture the degree of
fairness, which is represented as a value between 0 and 1. The five
conditions are non-redundant since it is possible to meet any four
conditions but not the remaining one. We further present the nec-
essary and sufficient condition of their satisfiability, and present an
algorithm, named algorithm FAIRCOST, that maximizes the degree
of fairness.

Our contributions are summarized as:

• We propose an online algorithm, algorithm MANAGEDRISK,
that selects sharing plans for dynamic data sharings in a cloud
data market. Algorithm MANAGEDRISK avoids the pitfalls
in the baseline algorithms and avoids making bad decisions
observed on the baseline algorithms.

• This is the first study on fair costing of data sharing in a data
market. We propose fairness criteria which represent fairness
as a value between 0 and 1, and design an algorithm to find
the costing function that maximizes the fairness.

• Our experiments verified the effectiveness and efficiency of
the proposed approaches.

The rest of the paper is organized as follows. Section 2 discusses
related work. Section 3 presents backgrounds, including the data
market model, dynamic data sharings, sharing plans and cost of a
sharing plan. Section 4 discusses several online algorithms for shar-
ing plan selection, including two baseline algorithms GREEDY and
NORMALIZE, as well as the proposed algorithm MANAGEDRISK.
Section 5 introduces fairness criteria for costing data sharings, and
explains an algorithm that maximizes fairness. Results of evalua-
tions are reported in Section 6. Section 7 makes conclusions and
discusses future works.
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2. RELATED WORK

2.1 Selecting Sharing Plans
The problem of selecting sharing plans is related to but different

from several classic problems such as distributed query processing,
multiple query optimization, view maintenance and index/view se-
lection.

Distributed Query Processing aims to quickly find a good plan
for a query whose data are distributed in multiple machines [18,
25, 27]. In our problem the algorithm for selecting sharing plans
doesn’t need to have a very short response time, and thus for each
sharing, we can often afford to explore a much larger space of pos-
sible plans or even enumerate all possible plans. The challenge in
our problem is that, since there are multiple sharings and we pro-
cess them in an online fashion, it is difficult to choose the right plan
for each query that will optimize the total cost of the global plan,
which is the focus of our proposed algorithm MANAGEDRISK. As
to be shown later, if we simply use the cheapest plan for each query
(i.e., algorithm GREEDY), the result can be arbitrarily bad even for
simple instances of the problem.

The studies on Multiple Query Optimization have different fo-
cuses. Earlier works such as [32, 33, 34] focus on choosing the
right plan for each query such that common subexpressions in mul-
tiple queries can be reused. It is related to our problem, however,
it is an offline problem where all queries are known in advance
and it starts to process all queries at the same time. Algorithms
for this problem are based on heuristics such as A* search. Later
works mainly focus on how to synchronize a single operation (such
as table scan) among multiple query plans that use this operation,
which is a hard problem if different queries are submitted at differ-
ent times [10, 11, 15, 16]. By contrast, in our problem the shared
data need to be constantly maintained, and our focus is which plan
should be used for each sharing, which is an orthogonal problem.

View maintenance is complementary to the problem of selecting
sharing plans. In view maintenance, the views to be maintained are
given and the optimization goal is to decide when to propagate up-
dates, reduce the number of queries to bring a view to a consistent
state, decide whether to maintain views in incremental or recompu-
tation fashion, etc. [6, 22, 28, 29]. In our problem, the main focus
is to determine a plan for each sharing, and after a plan is selected,
view maintenance techniques can be applied to maintain the views
for the selected plan.

Index/view selection is the problem of selecting indexes to build
or views to materialize in relational databases based on the work-
load [7, 8, 13, 14, 30, 31, 37]. The idea is to select indexes/views
which benefit a window of recent queries, with the assumption that
queries in the near future will be similar as recent queries. There
are mainly three types of algorithms: hill climbing approaches([7,
8, 13, 14]) which enumerate small subsets of indexes/views, se-
lect subsets with large benefits and small costs, and greedily in-
crease the size of the subsets until a target is reached; Knapsack
approaches([37]), which alter the benefits/costs of indexes/views in
a way that accounts for the interactions among indexes/views, and
use the knapsack algorithm for index/view selection; and feedback-
based approaches([30]) that involve elicitation from DBAs. Many
aspects of the index/view selection problem differ from those of our
problem, for example: (1) we focus on dynamic data and the views
in our problem are constantly maintained; (2) in our problem we
cannot choose each view independently, since each sharing plan is
composed of multiple views which must be materialized together
if this plan is selected; (3) the goal of index/view selection is to
maximize the benefit of the selected indexes/views given a storage
budget, whereas the goal of our problem is minimizing the cost of

the global sharing plan where sharings are received online; (4) in
our problem it is much more difficult to determine how selecting a
particular plan for one sharing affects (positively or negatively) the
cost of another sharing, since the cost may be collectively affected
by the plans selected for many other sharings.

A knapsack-based algorithm is not suitable for our problem since
there are a large number of interactions among different sharings as
well as different plans for the same sharing, and it is infeasible to
assign an independent benefit and cost for each individual view or
sharing plan. A feedback-based approach is also ineffective since a
sharing may have a large number of possible plans that involve an
even larger number of views, and they heavily interact with one an-
other. It is difficult for a human being to come up with a feedback
for each view or plan. The hill climbing idea is applicable to our
problem: given a new sharing, we can generate a subset of plans
and select the most desirable one, using the hill climbing philos-
ophy. The two baseline algorithms to be introduced in Section 4,
algorithm Greedy and algorithm Normalize, are based on similar
ideas. However, their solutions may have an unbounded cost for
simple instances of the problem.

2.2 Costing Sharing Plans
Pricing data has been studied in several publications in the database

community [17, 19, 20, 21, 36]. [17] aims to help database service
providers determine the prices of structures (indexes, materialized
views, cached columns) built by the service provider that benefit
future queries. [36] has a similar setting as [17] where an optimiza-
tion can be built that benefits future users. It takes a bidding ap-
proach where each user tells the service provider how much she’s
willing to pay for an optimization. An optimization is built if a
set of users can be found such that, by charging each users the
same amount, the cost of the optimization can be recovered, and
this amount does not exceed each user’s budget.

Both [17] and [36] study how to determine the price of a prod-
uct assuming the cost of the product can be easily obtained. On
the other hand, we focus on the problem of determining the cost
of a product (i.e., sharing), since different sharings interact in the
global sharing plan, and it is challenging to calculate the cost of
each sharing in a fair way. In our case, given the cost, determin-
ing the price is an independent problem, where methodologies in
the economics field can be applied. Besides, although the pricing
strategies in [17, 36] are also fair, it is much more challenging to
achieve fairness in costing sharing plans. In [17, 36], since dif-
ferent users/queries are independent, fairness is simply achieved
by charging each user/query the same price to use the same opti-
mization/structure. However, in our costing problem many sharing
plans interact in the global plan by reusing subexpressions. It is
further complicated by the fact that each sharing has multiple pos-
sible plans, and a plan may need to be considered even if it is not
used, as shown in Example 1.1. A simple approach that equally
distributes the cost of each subexpression to the sharing plans that
use this subexpression is not fair.

[19] studies the problem of pricing a query that returns a set
of tuples, given the price of the whole data set and the prices of
some views of the data. The main idea is to find the cheapest data-
dependent rewriting of the query using views, and price the query
as the sum of the prices of these views (the price of computation
is neglected, which is fair for static data since the monetary value
of the data may far exceed the cost of computation). If a rewriting
cannot be found, the query will have the same price as the whole
data set. In this way, the price of the query satisfies two desirable
properties: arbitrage-free and discount-free. [20] extends [19] by
formulating the rewriting problem for a wide range of queries, most
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of which makes the rewriting NP-hard, as ILP. It further discusses
how to avoid double-charging when the user buys similar queries,
how to price data updates, and how to fairly share the revenue if the
query involves data from multiple data sellers.

The problems studied in [19, 20] are orthogonal to ours. They
study the price of data, rather than the operational cost, i.e., cost
of delivering and maintaining the data. Our problem, on the other
hand, focuses on the latter, as explained in Section 1.

3. PRELIMINARIES
3.1 Data Market and Dynamic Data Sharing

We use the data market model proposed in [9]. A data market
is a cloud computing infrastructure where tenants pay to use com-
puting resources to run their applications and have the opportunity
to sell data to one another through data sharings. Since tenants’
applications keep collecting new data (e.g., the CHK table in Fig-
ure 1 keeps collecting new check-in information), the data sold in
the data market are dynamic. This is in contrast to the type of data
markets like Microsoft Azure Marketplace, Infochimps, etc., where
static data sets are sold.

A data owner willing to sell a data set makes the data set acces-
sible to the service provider. In this paper we follow [9, 19, 20]
in considering data in the form of relational tables, but other forms
can also be used. A buyer willing to purchase data may submit a
data sharing request to the service provider in the form of a query,
such as the example in Section 1 where a buyer wants to purchase
the join of CHK, RES and REV. To service the request, the ser-
vice provider is responsible for creating and maintaining the view
specified in the query, which incurs dollar costs for using resources
such as storage, CPU, network, etc., if the service provider rents re-
sources from an IaaS provider such as AWS. As explained before,
the price of a data sharing is a function of the data price specified
by the data owner, as well as the operational cost incurred to deliver
and maintain the data for the buyer.

3.2 Sharing Plan
A sharing plan determines how data should be moved among the

servers, in which order the joins and predicates should be applied,
etc., in order to maintain the shared data. Each join in the sharing
plan can be specified as

(A, s1) Z (B, s2)→ s3

where s1, s2 are the servers that have a copy of A and B, respec-
tively, which may be frequently updated, and s3 is where the result
should be placed. A possible plan for this join where s1 = server 1
and s2, s3 = server 2 is shown in Figure 2, where an ellipse denotes
a base relation and a rounded rectangle denotes a delta relation,
which receives updates to the corresponding base relation. Note
that this plan avoids copying base relations across servers, and only
copies delta relations.

For multiple sharings with common subexpressions, such as the
two sharings in Example 1.1, the computation of a common subex-
pression can be reused so that the subexpression is only computed
once. A plan involving multiple sharings is called a global plan.
Next we introduce the costing of sharing plans in the global plan.

3.3 Costing of Sharing Plans
We assume that the data market service provider has a cost model

for estimating the dollar cost of each subexpression, e.g., copy,
merge, join, etc. To obtain the cost model, there exist analytical
models to estimate resource usages for various operations in the
cloud [24], and the resource usages can be directly mapped to dol-
lar cost in cloud services such as AWS. Thus the service provider

A B

△B

△A

△(A⋈△B)

△B

△A

△(△A⋈B)△(A⋈△B)

△(A⋈B) A⋈B

SERVER 2

⋈

c

m

au

au

c
⋈

au

c

SERVER 1

updates to A updates to B

au = apply updates c = copy m = merge
 

Figure 2: A possible plan for joining relation A on server 1 and
relation B on server 2 such that the resulting view A Z B is
placed on server 2

can calculate the cost per time unit of an individual sharing plan,
which is the sum of the cost of each subexpression in the plan,
multiplied by the number of times they are executed per time unit.
However, this is not sufficient, as the service provider needs to de-
termine the cost incurred by each sharing plan in the global plan
in order to calculate the price of each sharing. This is complicated
since different sharing plans in the global plan may reuse common
subexpressions, and as said before, simply dividing the cost of each
subexpression by the number of sharing plans that use it isn’t fair.

Suppose the cost of the global plan is cost(GP) and there are n
sharing plans P1, · · · , Pn where the cost attributed to Pi (referred to
as “attributed cost”) is AC(Pi), then the total cost of these sharing
plans should equal the cost of the global plan, i.e.,

n∑
i=1

AC(Pi) = cost(GP)

and cost(GP) should be distributed to each AC(Pi) in a fair way.
Section 5 will further discuss the criteria of fairness and how to
achieve maximum fairness.

4. ONLINE SHARING PLAN SELECTION
4.1 Problem Definition

As discussed before, the service provider needs to select a shar-
ing plan for each new sharing without knowing future sharings.
Thus the algorithm needs to be online. We define the following
online sharing plan selection problem.

DEFINITION 4.1 (ONLINE SHARING PLAN SELECTION). The
input contains a sequence of dynamic data sharings, a cost model
and the initial state of the system. The service provider should se-
lect a sharing plan for each sharing without the knowledge of future
sharings. The goal of the service provider is to minimize the total
cost of servicing the sequence of sharings.

The cost model is used to calculate the cost of each subexpres-
sion in a sharing plan, and the initial state of the system refers to the
initial placement of data, i.e., which table is on which servers, and
the server capacity constraint, which can be expressed in multiple
ways such as how many tuples the server can handle per second.

For ease of illustration and explanation, we first consider a spe-
cial case of the problem, where servers have unlimited capacity, and
each sharing is a join-only query with no predicates or projections.
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We will discuss the general case in Section 4.5. Note that servers
having unlimited capacity doesn’t mean that all sharings are pro-
cessed on a single server, since different source data may be stored
on different servers.

In the following, we denote a sharing as a set of source tables.
For example, let a, b, c be three tables. A sharing that joins these
three tables is denoted as (a, b, c).3 A subexpression (i.e., join) is
denoted by two sets of tables, e.g., ab is the join of a and b, and
a(bc) is the join of a with b Z c. A sharing plan is represented
by a sequence of joins, e.g., a(bc) is the plan where we first join
b with c, and then join the result with a. Note that notation a(bc)
may represent either a subexpression or a sharing plan, but it is not
a problem when the context is clear.

We use C[·] to represent the cost of a sharing plan and c[·] to
represent the cost of a subexpression. For example, C[a(bc)] is the
cost of the aforementioned sharing plan, and c[a(bc)] denotes the
cost of joining a with b Z c. Thus C[a(bc)] = c[bc] + c[a(bc)].
Let # join(S ) be the number of joins in a plan of sharing S . For
example, the value of # join for sharing (a, b, c) is 2, and all plans
for this sharing have 2 joins.

Next, we discuss two baseline algorithms, namely algorithm GRE-
EDY and algorithm NORMALIZE, before presenting our proposed
algorithm MANAGEDRISK. Both baseline algorithms adopt the
idea of hill-climbing, which is seen in the algorithms of many clas-
sic problems including index/view selection [13]. It refers to the
attempt to add a good plan of the new sharing to the global plan.
Algorithm GREEDY prefers a plan that adds the smallest cost to the
global plan, while Algorithm NORMALIZE considers the subex-
pressions occurred in the existing sharings and assumes that they
will occur again in future, and thus it chooses a plan with this as-
sumption in mind. At a high level, for each sharing, all three al-
gorithms enumerate all possible plans, but use different criteria to
decide which plan to select.

Note that in most cases we can afford to enumerate all possible
plans, since choosing sharing plans is not an interactive or time-
critical task. In case the sharing involves a complex query for which
enumerating all plans is infeasible, we can use various heuristics,
such as hill climbing and beam search, to generate a manageable
subset of all possible plans [12].

4.2 Algorithm Greedy
Algorithm GREEDY is adopted in an existing work [9]. As its

name suggests, it enumerates all possible plans for a sharing, and
chooses the one with the minimum additional cost after adding it
to the global plan. The following example shows how algorithm
GREEDY works and why it may perform poorly, even if each shar-
ing has at most two joins.

EXAMPLE 4.1. Suppose there is a single server, and all shar-
ings are processed within this server. Consider a sequence of shar-
ings (a, b, c1), (a, b, c2), · · · . Suppose there are two possible plans
for each sharing: (ab)cx and a(bcx), such that c[ab] = 100, c[(ab)cx] =
ϵ where ϵ is a negligibly small positive number, and C[a(bcx)] = 10.
If there are sufficiently many such sharings (more than 10), an op-
timal algorithm will use plan (ab)c1 for the first sharing, so that all
other sharings can reuse the result of ab and will only cost ϵ each.
Suppose there are n sharings, the total optimal cost is 100 + nϵ.
Algorithm GREEDY, on the other hand, will always use plan a(bcx)
for each sharing, and has a total cost of 10n, which is unbounded
compared to the optimal cost.

3We focus on natural joins, so no further specification is needed for
a sharing. Our approach supports other types of joins but they will
make the notations in this paper unnecessarily more complicated.

As we can see, algorithm GREEDY does not take any risk (here
“risk” refers to using plan (ab)cx, since we do not know whether
there will be future sharings to amortize the cost of ab, c[ab]). At
the first glance, this seems what an algorithm should do, since it
does not know the future and there is no incentive to take the risk
and use plan (ab)cx. However, we will show in Section 4.4 that this
is not necessarily true.

4.3 Algorithm Normalize
An attempt to solve the weakness of algorithm GREEDY can

lead to another baseline algorithm, which we name algorithm NOR-
MALIZE. To explain it, we introduce the following definition.

DEFINITION 4.2. A sharing S is said to contain a subexpres-
sion s, denoted as s ▹ S , if the subexpression occurs in one of the
possible plans for the sharing.

For example, a sharing (a, b, c, d) may contain subexpressions
ab, bc, cd, ac, (ab)c, a(bcd), (ab)(cd), etc. (depending on joinabil-
ity between tables), each of which denotes a join.

Algorithm NORMALIZE normalizes the cost of each subexpres-
sion in the current sharing by the number of sharings seen so far
that contain this subexpression. Let Cn and cn denote the normal-
ized cost of a sharing plan and a subexpression, respectively. Al-
gorithm NORMALIZE selects the plan with the smallest normalized
cost. For the sharing sequence in Example 4.1, when NORMAL-
IZE processes the xth sharing, if the first x − 1 sharings all use plan
a(bcx), then cn[ab] in the xth sharing is considered to be its original
cost (100) divided by x, because ab is contained in all x sharings
seen so far.

In this way, NORMALIZE will use a(bcx) for the first 10 shar-
ings, and for the 11th sharing, cn[ab] is 100/11, so Cn[(ab)c11] <
Cn[a(bc11)] and NORMALIZE will select plan (ab)c11. In other
words, although NORMALIZE makes the wrong choices for the first
10 sharings, it eventually realizes that subexpression ab has oc-
curred many times and decides to use ab even though it adds more
cost to the global plan than the other option. Although it doesn’t
give the optimal solution, its cost is bounded in this particular ex-
ample compared with the optimal solution.

Although NORMALIZE works better than GREEDY for Exam-
ple 4.1, it may still have an unbounded cost even if each sharing
has at most two joins, as shown in the following example.

EXAMPLE 4.2. Consider a sequence of n sharings (a, b, c1),
(a, b, c2), · · · , (a, b, cn). Again, suppose there are two possible plans
for each sharing: (ab)cx and a(bcx). c[ab] = n. For 1 ≤ x ≤ n − 1,
C[a(bcx)] = ϵ and c[(ab)cx] = ϵ. For the nth sharing, C[a(bcn)] =
1 + 2ϵ and c[(ab)cn] = ϵ.

For this sharing sequence, NORMALIZE will choose a(bcx) for
the first n − 1 sharings, incurring a cost of (n − 1)ϵ. For the last
sharing, cn[ab] = 1 (since it is contained in all n sharings), thus
Cn[(ab)cn] = 1+ϵ < Cn[a(bcn)] = 1+2ϵ, and NORMALIZE chooses
plan (ab)cn. The total cost of NORMALIZE is n + nϵ. An optimal
algorithm would choose plan a(bcx) for all sharings for a total cost
of 1 + (n + 1)ϵ. Since n can be arbitrarily large and ϵ can be
arbitrarily small, algorithm NORMALIZE has an unbounded cost
compared with the optimal cost.

As we can see, NORMALIZE takes a big risk for the last sharing
by using plan (ab)cn, for which it gets no reward since it is the last
sharing. To address the problem in both algorithms discussed so
far, next we propose algorithm MANAGEDRISK.

4.4 Algorithm ManagedRisk
We can see from the previous two examples that we need to take

some risk, since an algorithm that takes no risk, such as GREEDY,
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has a poor performance; however, the risk we take needs to be
somehow controlled to avoid the situation in Example 4.2. The idea
of algorithm MANAGEDRISK, at a high level, is that we should take
risks, but we should only take a risk on a sharing if the cost of pre-
vious sharings are sufficiently high, so that even if the risk we take
turns out to be a bad one, the additional cost incurred can be “ab-
sorbed” by previous sharings. We introduce the concept of regret
to capture this idea.

DEFINITION 4.3. Let S 1, S 2, · · · be a sequence of sharings, and
let Pi denote the sharing plan for S i. For each sharing S i and
each subexpression s ▹ S i, the regret of s wrt S i, denoted by rgi(s),
is recursively defined as: if the result of s is not produced in any
P j(1 ≤ j < i),

rgi(s) =
∑

S j | j<i,s▹S j

C[P j] −
∑
s′∈P j

rg j(s′)

m − 1
(1)

where m = # join(S i). Otherwise, rgi(s) = 0.

“The result of s is not produced in any P j(1 ≤ j < i)” means that
the result of s is not available when we process sharing S i, i.e., if
we wish to use s in the plan of S i, we need to pay a cost of c[s].
For example, if s = (ab)c, then this means that no sharing prior to
S i uses subexpression (ab)c or a(bc) in its sharing plan.

Algorithm MANAGEDRISK is shown in Algorithm 1. For each
sharing S i in the sequence and each plan Pi j for S i, it uses a scoring
function score(Pi j) defined as

score[Pi j] =
∑
s∈Pi j

rgi(s) −C[Pi j] (2)

A sharing plan with large regret and small cost gets a high score.
MANAGEDRISK chooses the plan for sharing S i with the maximum
score among all possible plans for S i.

The intuition of algorithm MANAGEDRISK is as follows. When
we process a sharing S i, if there exists a subexpression s ▹S i which
is contained in some of the previous sharings but is never used be-
fore, then we give algorithm MANAGEDRISK an incentive to use s
equivalent to rgi(s). rgi(s) is large if there are many sharings prior
to S i that contain subexpression s. By giving such an incentive,
we can avoid the problem in Example 4.1 where a subexpression
is never used, because the incentive keeps increasing if we don’t
use it, and at some point the incentive will be big enough that the
subexpression will be used. Even if this is a bad choice, e.g., fu-
ture sharings will never utilize this subexpression (like the situation
in Example 4.2: after algorithm NORMALIZE uses ab, there is no
more sharing to benefit from it), the “damage” it causes will likely
be controlled, because the incentive to use this subexpression won’t
be too large (otherwise it should have been used earlier). These are
of course intuitions rather than strict statements, but we will show
in Example 4.3 that algorithm MANAGEDRISK does avoid the pit-
falls in both previous examples.

Note that the regrets of subexpressions used in each P j (i.e.,
rg j(s′) in Eq. (1)) are subtracted from rgi(s), because rg j(s′) has
already made an impact on choosing plan P j for sharing S j, and it
should not make another impact on choosing the plan for S i. Oth-
erwise, the selected plans may have an unbounded cost compared
with the optimal cost even if each sharing has at most two joins.
The factor of 1/(m − 1) in Eq. (1) is to avoid the total regret of a
sharing plan with many subexpressions being too large.

EXAMPLE 4.3. Consider the sharing sequence in Example 4.1.
For the first 10 sharings, MANAGEDRISK uses plan a(bcx), and

Algorithm 1: Algorithm MANAGEDRISK for the Special Case
Input : a sequence of sharings S 1, · · · , S n. The algorithm

processes each sharing S i without the information of
sharings after S i.

foreach sharing S i do
foreach subexpression p ▹ S i do

compute rgi(p) using Eq. 1
end
enumerate all plans for S i

foreach possible plan Pi j of S i do
compute C(Pi j) using the cost model
score(Pi j) =

∑
s∈Pi j

rgi(s) −C(Pi j)

end
j = arg max score(Pi j)
use plan Pi j for sharing S i

end

pays a cost of 10 for each plan. When it processes the 11th sharing,
we have rg11(ab) = 100, and the regrets of all other subexpressions
are 0. Since

rg11(ab) −C[(ab)c11] = −ϵ > −C[a(bc11)] = −10,

algorithm MANAGEDRISK chooses plan (ab)c11 for this sharing.
Note that even if the 11th sharing is the last sharing, which means
using (ab)c11 at this point is a bad choice, the cost of MANAGEDRISK
won’t be arbitrarily bad because the incentive given to MANAGEDRISK
to use ab is no more than the total cost of the first 10 sharing plans.
In this example the cost of MANAGEDRISK is no more than twice
the optimal cost.

Now consider the sharing sequence in Example 4.2. For 1 ≤ x ≤
n−1, MANAGEDRISK uses plan a(bcx), incurring a cost of (n−1)ϵ,
and thus rgn(ab) = (n − 1)ϵ. For the nth sharing, since the regrets
of all other subexpression are 0, we have

rgn(ab) −C[(ab)cn] < −C[a(bcn)]

thus MANAGEDRISK will choose a(bcn). In this case, even though
subexpression ab is contained in many sharings seen before, MAN-
AGEDRISK still doesn’t use ab for the nth sharing, since the total
cost of all previous sharings that contain ab (i.e., rgn(ab)) is too
small and thus the incentive to use ab is not big enough. MAN-
AGEDRISK finds the optimal plans for this sharing sequence.

There is a similar notion of regret (also called opportunity loss)
in decision theory [26], which is defined as the additional payoff if
a different action is chosen. Although the idea is somewhat simi-
lar, there are some key differences. First, decision theory aims to
make a choice (such as determining the inventory level of a prod-
uct) that minimizes the future regret if something goes wrong in
future; whereas we do not analyze what can possibly happen in the
future (because we don’t know or make assumptions on how many
sharings we will receive in the future, and what they are). Instead,
regret is computed from previous sharings. Second, regret in deci-
sion theory is simply the difference in payoff, whereas in our prob-
lem the “difference in payoff” cannot be easily computed, because
using a different plan for one sharing may affect the “difference in
payoff” of many other sharings.

After explaining how algorithm MANAGEDRISK works in a spe-
cial setting, in the next subsection we discuss how to apply algo-
rithm MANAGEDRISK in the general case.

1364



Algorithm 2: Algorithm MANAGEDRISK for the General Case
Input : a sequence of sharings S 1, · · · , S n. The algorithm

processes each sharing S i without the information of
sharings after S i.

foreach sharing S i do
foreach subexpression p ▹ S i do

compute rgi(p) using Eq. 1
end
enumerate all plans for S i

foreach possible plan Pi j of S i do
compute C(Pi j) using the cost model
score(Pi j) =

∑
s∈Pi j

rgi(s) · percs(Pi j) −C(Pi j)

end
foreach possible plan Pi j of S i in descending order of
score do

if Pi j does not violate server capacity then
use plan Pi j for sharing S i

break
end

end
if no feasible plan exists then

reject S i

end
end

4.5 Extension of Algorithm ManagedRisk for
the General Case

We previously made two simplifications: (1) server capacity is
considered unlimited; (2) sharings are join-only with no projec-
tions or predicates. To cope with the general case, we propose the
following extensions of Algorithm MANAGEDRISK.

When a server has limited capacity such that the desired plan
violates the capacity of some servers, we will use the best plan that
does not violate any server capacity. If no such plan exists, the
sharing is rejected.

When sharings have predicates and projections, we modify the
way we compute the score of a sharing plan (Eq. 2). Intuitively,
even if the regret of a subexpression s (e.g., a Z b) is high, if a
sharing plan P for the current sharing only computes a small subset
of the result of s (e.g., s′ = aa.x<10 Z b), then it is not very helpful to
use plan P, since it only has a small chance to be helpful for future
sharings that contain a Z b. Consequently, the incentive to use s′

should be smaller than the regret of s. We use percs(P) to denote
the percentage of tuples computed by subexpression s (possibly
with predicates) in plan P, compared with the tuples computed by
the same subexpression with no predicate. For a plan P with no
predicate, percs(P) = 100% for all s ∈ P. Otherwise, percs(P)
may be smaller than 100%, which can be estimated using various
existing techniques for selectivity estimation. We modify Eq. 2 as
follows:

score(Pi j) =
∑
s∈Pi j

rgi(s) · percs(Pi j) −C(Pi j) (3)

The extension of Algorithm 1 for the general case is shown in
Algorithm 2.

5. FAIR COSTING FOR SHARINGS
Calculating the operational cost incurred for the service provider

to provide and maintain the view of a sharing is necessary in pricing
the sharing. We have shown in Example 1.1 that a fair costing

ab

4

S1=(a,b) S2=(a,b,c,d)

ab

4

(ab)c

10

(abc)d

5

ab

4

(ab)c

10

(a)

(b)

LPC = 4 LPC = 15

S3=(a,b,c,d)

bc

8

a(bc) 

6

(abc)d

5

LPC = 15

S4=(a,b,c,e)

ab

4

(ab)c

10

(abc)e

3

LPC = 5

S5=(a,b,c,f)

ab

4

(ab)c

10

(abc)f

9

LPC = 23

(abc)d

5
(abc)d

5

(abc)e

3

ab

4

(ab)c

10

(abc)f

9

 

Figure 3: Individual Plans (a) and Global Plan (b) for Five
Sharings

mechanism is not trivial to obtain. To better motivate our proposed
fairness criteria, we use a more sophisticated example as follows.

EXAMPLE 5.1. Consider five sharings shown in Figure 3. Fig-
ure 3(a) shows the plans for the sharings generated by an algo-
rithm, where each edge represents a subexpression, and is anno-
tated by the subexpression it represents, along with its cost. It also
shows the minimum cost of a plan for this sharing alone, denoted
by LPC(·) (lowest possible cost). Figure 3(b) shows the global plan
where some common subexpressions in the plans are reused. The
red arrow denotes reusing the result of ab and the green arrows
denote reusing the result of (ab)c.

Next we introduce and explain the fair costing criteria. We use
AC (attributed cost) to denote the cost attributed to each sharing,
and our goal is to compute a fair AC for each sharing.

(1) For any two identical sharings S 1 = S 2, AC(S 1) should be
identical with AC(S 2) regardless of the plans chosen for them. Buy-
ers only request data sharings. They do not know or care about
what plans the service provider decides to use for their sharings.
The service provider may use different plans for the same sharings
for several reasons, e.g., server capacity limit, reuse of subexpres-
sions, etc. From the buyers’ points of view, in order to be fair,
neither should get a lower or higher attributed cost than the other.
In Example 5.1, sharings S 2 and S 3 are identical. Although they
use different plans, i.e., ((ab)c)d for S 2 and (a(bc))d for S 3, they
should have the same AC.

(2) For any sharing S , AC(S ) should be no more than LPC(S ).
Since LPC(S ) is the lowest cost of S if no other sharing exists
(thus there’s no reuse of subexpressions), it represents the actual
complexity of S . A sharing with a high LPC is inherently expen-
sive in terms of operational cost, and conversely, a sharing with a
low LPC is inherently cheap. For global optimization purpose, the
service provider may not use the cheapest plan for a sharing, such
as the one with predicate “city = Seattle” in Example 1.1, as well as
S 4 in Example 5.1. Both of them use plans that have an additional
step after some expensive operations. However, from the fairness
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perspective, buyers of such inherently cheap sharings should not be
penalized by the optimization, and thus we propose that AC cannot
be more than LPC for a sharing.

(3) For two sharings S 1 and S 2, if S 1’s query is contained in
S 2’s query (i.e., the tuples retrieved by S 1 are a subset of those
retrieved by S 2), and LPC(S 1) ≤ LPC(S 2), then AC(S 1) should
be no more than AC(S 2). Because otherwise, even if a buyer only
needs the data of S 1, she can purchase S 2 for a lower price. This is
undesirable for the service provider since the service provider pays
more but gets a lower revenue.

(4) A sharing plan that has common subexpressions with other
sharings, which gives the service provider the opportunity to save
cost by reusing subexpressions, should be compensated. In Exam-
ple 5.1, sharing plans for S 1, S 2, S 4 and S 5 all compute a Z b
(denoted by ab), and sharing plans for S 2, S 3, S 4 and S 5 all com-
pute a Z b Z c. These common intermediate results enable the
service provider to reuse them in different sharing plans and reduce
the cost. Although an intermediate result may not be reused by all
sharing plans that contain this intermediate result (e.g., a Z b in
S 1’s plan is only reused by S 2), all sharings whose plans contain
the intermediate result should be equally rewarded. To capture this
idea we introduce the concept of saving of an intermediate result in
a sharing plan.

DEFINITION 5.1 (SAVING OF AN INTERMEDIATE RESULT).
The saving of an intermediate result r, denoted as saving(r), is the
increase of the cost of the global plan if r is no longer reused in
the global plan, i.e., all sharings whose plans include r need to
compute r and pay the cost of the corresponding subexpressions.

In Example 5.1, there are two intermediate results that are reused,
shown in red (ab) and green (abc). If we remove the red arrow,
sharing S 2 will need to use a separate subexpression ab, thus the
cost of the global plan increases by 4. If we remove the two green
arrows, sharing S 3 will need to use subexpressions bc and a(bc),
and sharing S 4 will need to use subexpressions ab and (ab)c, and
the cost of the global plan increases by 28.

We require that part of the saving of an intermediate result should
be equally awarded to the sharings whose plans include this inter-
mediate result. Let α be a parameter that indicates at least how
much percentage of the saving is awarded to the sharings. Let
num(r) denote the number of sharings in the global plan whose
plans include r as an intermediate result. We require that

AC(S ) ≤ GPC(S ) − α ·
∑
r∈S

saving(r)
num(r)

(4)

where GPC(S ) is the cost of S ’s plan in the global plan. It is cal-
culated by summing up the cost of all edges in S ’s plan, even if an
edge is used by other sharing plans. In Example 5.1, the GPC for
the five sharings are 4, 19, 19, 17, 23, respectively.

Parameter α reflects the degree of fairness. α = 0 means the
savings of the intermediate results are not awarded to the relevant
sharings, which is the least fair since a sharing with much com-
monality with other sharings is treated in the same way as a sharing
with no commonality with others. α = 1 means that the savings are
maximally awarded to the sharings. α = 1 is not always achievable
because of other fairness requirements, and thus we want to find
the maximum possible value of α.

(5) Finally, the sum of AC of all sharings in the global plan
should equal the cost of the global plan, i.e., the cost of the global
plan should be recovered. This is not directly related to fairness per
se, but it is a necessary requirement for a costing function.

The five criteria above are collectively referred to as the fair-
ness criteria. The following lemmas show that these requirements

Algorithm 3: Algorithm FAIRCOST

Input : global plan GP, sharings S 1, · · · , S n

if
∑

S i
LPC(S i) < cost(GP) then

return IMPOSSIBLE
end
build a DAG: each node is a sharing (or multiple identical
sharings); each arc (S i, S j) indicates that S i is contained in S j

and LPC(S i) ≤ LPC(S j)
foreach intermediate result r in GP do

calculate saving(r) according to definition 5.1
end
lowα = 0, highα = 1, α = 0.5
while true do

foreach sharing S in increasing order of LPC do
let PS be the predecessors of S in DAG
costUB(S ) =
min{LPC(S ),minS ′∈PS costUB(S ′),GPC(S ) − α ·∑
r∈S

saving(r))
num(r)

}

end
if
∑

S i
costUB(S i) = cost(GP) then

break
end
else if

∑
S i

costUB(S i) < cost(GP) then
highα = α − ϵ

end
else

lowα = α + ϵ
end
α = (lowα + highα)/2

end
foreach sharing S i do

AC(S i) = costUB(S i)
end

are non-redundant, as well as the condition under which they are
achievable. We omit the proofs due to space limitation.

LEMMA 5.1. The five fairness conditions are non-redundant: it
is possible to satisfy any four not the fifth.

LEMMA 5.2. All five fairness conditions are satisfiable on a
global plan GP for a setS of sharings if and only if

∑
S∈S LPC(S ) ≥

cost(GP).

Given a specific value of α, we can use the fairness criteria to
compute an upper bound cost for each sharing. Note that conditions
(1) and (3) make the set of sharings in the global plan a partially
ordered set, which means the cost upper bound of a sharing depends
on other sharings. Thus we should calculate the upper bound cost
of the sharings according to the partial order, i.e., the cost upper
bound of a sharing can be determined only after the cost upper
bounds of all its predecessors have been determined. If the sum of
all cost upper bounds are higher than the cost of the global plan, it
means this value of α is feasible.

The algorithm for computing the maximum value of α, named
algorithm FAIRCOST, is shown in Algorithm 3. Note that its input
is the global plan and the output is the attributed cost (AC) for each
sharing, and thus when a new sharing arrives, the costs of existing
sharings may change. This is because if the costs of existing shar-
ings cannot be changed, it is impossible to satisfy the above fairness
criteria in a non-trivial way (i.e., α > 0). However, the price of each
sharing S won’t change arbitrarily as it will never exceed LPC(S ).
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Algorithm FAIRCOST first builds a DAG to reflect the partial
order between sharings. Multiple identical sharings can be repre-
sented by a single node in the DAG. We then do a binary search
on α. For a specific value of α, we compute the cost upper bounds
for the sharings in the order of LPC, which ensures that a sharing
is processed after all its predecessors in the DAG have been pro-
cessed. If the total cost upper bound is more than cost(GP) we
search for a higher α value, and if the total cost upper bound is less
than cost(GP) we search for a lower α value.

If we run Algorithm FAIRCOST on Example 5.1, it first com-
putes the savings of the intermediate results: savings(ab) = 4
and saving(abc) = 28. There are 4 sharings whose plans include
ab: S 1, S 2, S 4 and S 5, and there are 4 sharings whose plans in-
clude abc: S 2, S 3, S 4 and S 5. The maximum possible value of
α in this case is 0.8, and the attributed cost of the sharings are:
AC(S 1) = 3.2, AC(S 2) = 12.6, AC(S 3) = 12.6, AC(S 4) = 5,
AC(S 5) = 16.6. Their sum is 50, which is exactly the cost of the
global plan in Figure 3(b). A higher value of α would mean that
the attributed costs of S 1, S 2, S 3 and S 5 all need to be reduced,
which is not possible, because the attributed cost of S 4 cannot be
increased as it is the same as its LPC.

6. EVALUATION

6.1 Setup

6.1.1 Algorithms Evaluated
The evaluation has two parts. The first part (Section 6.2) evalu-

ates online sharing plan selection, and the second part (Section 6.3)
evaluates the fair costing of sharings. In the first part we test four
algorithms: algorithms GREEDY, NORMALIZE, MANAGEDRISK
presented in Section 4, as well as algorithm EXHAUSTIVE, which
is an offline algorithm that knows all sharings in the sequence in
advance, and searches for the optimal global plan exhaustively. Al-
gorithm EXHAUSTIVE is not feasible in practice, since we do not
know all sharings in advance, and even if we do, the search space
is much too large. We only test Algorithm EXHAUSTIVE for small
sharing sequences.

In the second part we compare Algorithm FAIRCOST with a
baseline algorithm that evenly distributes the cost of each subex-
pression in the global plan to the sharings whose plans use the
subexpression. This is a commonly adopted criterion for fairness,
e.g., in [17, 36], all users/queries that use the same structure built
by the service provider pay the same price for it. As an example, for
the global plan in Figure 3(b), the baseline algorithm distributes the
cost of ab to S 1, S 2, S 3 and S 4, and distributes the cost of (ab)c to
S 2, S 3 and S 4. The two algorithms are compared based on whether
they satisfy the fairness criteria discussed in Section 5.

6.1.2 Environment
The experiments were performed on a machine with two Intel

Xeon 2.40GHz cores, 12GB memory, running Windows 7 Ulti-
mate. We collected tweets on twitter from a gardenhose stream,
which is composed of a 10% sampling of tweets in a 6-month pe-
riod starting from September 2010. The tweets are stored in 9
base relations: USERS, TWEETS, CURLOC, LOC, SOCNET, URLS,
FOURSQ, HASHTAGS, PHOTOS. These base tables are distributed
in a round-robin fashion among a number of machines that varies
from 5 to 9 machines (6 by default).

We specified 25 base sharings, each of which is a join of two or
more tables. These sharings were derived from real mobile appli-
cations that join the mentioned tables. The base sharings are shown
in Table 1. For each base sharing, we give an existing real appli-

cation that may benefit from such a sharing (e.g., twitaholic may
benefit from USERS Z SOCNET). Predicates are randomly gener-
ated and added to the base sharings; each predicate has the form of
“Table.Attribute [>, <,=] Constant”.

In order to test the scalabilities of the algorithms, we also gen-
erated a set of synthetic tables/sharings, which are used in Sec-
tion 6.2.2. The synthetic data has a star schema with up to 5 fact
tables and 30 dimension tables distributed among 1-20 machines,
and the sharing sequence contains up to 2500 sharings, each of
which is a star-join with no predicates. The cost of each join is a
random number between 1 and 105.

In a prior work [9] we developed a cost model used to calculate
the cost of each subexpression in a sharing plan, which is proved
fairly accurate. Thus in this paper we use the cost model in [9] for
sharing plan cost calculation instead of setting up and running the
sharings in the system.

The algorithm for costing sharings are invoked on the output of
Algorithm MANAGEDRISK on the Twitter data.

6.2 Online Sharing Plan Selection

6.2.1 Effectiveness of Plan Selection
We run the three online algorithms, GREEDY, NORMALIZE and

MANAGEDRISK, on the 25 base sharings in Table 1. We vary the
number of sharings in the sequence (10 to 60), number of predicates
in each sharing (0 to 3) and number of machines (5 to 9). On av-
erage, the global plans generated by the three algorithms have sim-
ilar costs. However, there exists certain sharing sequences where
each algorithm performs much better (up to 3 times) than the other
two. In general, GREEDY tends to use a subexpression too late as
shown in Example 4.1; NORMALIZE tends to use a subexpression
too early as shown in Example 4.2. Algorithm MANAGEDRISK
generally avoids using a subexpression too late or too early, al-
though it sometimes can still be a bit earlier or later than the optimal
solution, which makes it occasionally have a higher cost than ei-
ther GREEDY or NORMALIZE. However, by taking managed risks,
algorithm MANAGEDRISK does not make choices that cause un-
bounded damages, as shown below.

To further illustrate the worst case scenario, we generate se-
quences of synthetic sharings, each of which consists of a three-
way join without predicates. The synthetic sharings consists of
cases similar as Example 4.1 where there exists a subexpression
contained in many sharings and used by the optimal solution, and
cases similar as Example 4.2 where there exists a subexpression
contained in many sharings but not used by the optimal solution,
among others. Figure 4 shows the worst case scenario in this test for
each algorithm, e.g., “Greedy/MR” is the largest cost ratio between
GREEDY and MANAGEDRISK on a sharing sequence in the test. As
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Figure 4: Worst Case Performance for Online Sharing Plan
Selection
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Table 1: Sharings Used in the Evaluations
S 1 USERS Z SOCNET (twitaholic) S 9 FOURSQ Z TWEETS (checkoutcheckins) S 17 USERS Z LOC (twittermap)
S 2 USERS Z TWEETS Z CURLOC (twellow) S 10 HASHTAGS Z TWEETS (monitter) S 18 USERS Z TWEETS Z PHOTOS Z CURLOC

(twittermap)
S 3 USERS Z TWEETS Z URLS (tweetmeme) S 11 FOURSQ Z USERS Z TWEETS Z CURLOC

(arrivaltracker)
S 19 USERS Z TWEETS Z HASHTAGS Z CUR-

LOC (hashtags.org)
S 4 USERS Z TWEETS Z URLS Z CURLOC

(twitdom)
S 12 FOURSQ Z USER Z TWEETS (route) S 20 USERS Z TWEETS Z HASHTAGS Z PHO-

TOS Z CURLOC (nearbytweets)
S 5 USERS Z TWEETS (tweetstats) S 13 FOURSQ Z USER Z TWEETS Z LOC

(locc.us)
S 21 USERS Z TWEETS Z FOURSQ Z PHOTOS

Z CURLOC (nearbytweets)
S 6 TWEETS Z CURLOC (nearbytweets) S 14 TWEETS Z LOC (locafollow) S 22 FOURSQ Z CURLOC (nearbytweets)
S 7 URLS Z CURLOC (nearbyurls) S 15 USERS Z LOC Z TWEETS Z CURLOC

(twittervision)
S 23 PHOTOS Z CURLOC (twitxr)

S 8 TWEETS Z PHOTOS (twitpic) S 16 FOURSQ Z USERS Z TWEETS Z SOCNET
(yelp)

S 24 HASHTAGS Z CURLOC (nearbytweets)

S 25 HASHTAGS Z USERS Z TWEETS (twistori)
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Figure 5: Running Time on Twitter Data

we can see, the sharing plans generated by MANAGEDRISK have
much more stable qualities than those generated by the baselines,
which validates the effectiveness of our strategy to take managed
risks when selecting sharing plans.

6.2.2 Efficiency and Scalability
Figure 5 shows the running time of the sharings on Twitter data.

In (a), sharings have no predicates and we vary the number of shar-
ings in the sequence from 10 to 60. In (b), sharings in the sequence
have 0-2 predicates. Half of the sharings in a sequence have no
predicate, and the other half have 1 or 2 randomly generated pred-
icates. In (c), the number of available machines varies from 5 to
9. In (d), the maximum number of predicates per sharing increases
from 0 to 3. When the maximum number of predicates is 1, 2 or
3, half of the sharings have no predicates and the other half have
random predicates. For example, when the maximum number of
predicates is 3, 1/6 of the sharings in the sequence have 1 predi-
cate, 1/6 have 2 predicates, 1/6 have 3 predicates, and the other 1/2
have no predicate.

The running time of the three algorithms are similar. Compared
with Algorithm GREEDY, Algorithm NORMALIZE and Algorithm
MANAGEDRISK need to maintain the counts and the regrets, re-

spectively, of subexpressions that are contained in previous shar-
ings but not used in existing sharing plans, but they do not add
much overhead. The running time grows exponentially with num-
ber of predicates (Figure 5(d)) since the number of possible shar-
ing plans grows exponentially. However, the processing time for
3 predicates is under 5 seconds, and as mentioned before, if the
sharings are more complicated, heuristics can be applied to filter
sharing plans [12].

To test Algorithm EXHAUSTIVE, we use a smaller sharing se-
quence that consists of 3-5 sharings, each of which has at most 1
predicate. The result is shown in Table 2, which is the average
of 50 sharing sequences. The cost of MANAGEDRISK is never 3
times higher than that of EXHAUSTIVE for any sharing sequence.
When each sharing sequence contains up to 10 sharings, EXHAUS-
TIVE cannot finish processing a test case of 50 sharing sequences
within 48 hours, and thus we do not further test EXHAUSTIVE for
scalability.

Figure 6 is the result of scalability test on synthetic data and
randomly generated sharings, in order to test the scalability of the
system at larger input scales. By default there’s one fact table, 20
dimension tables, and the sequence contains 1000 sharings, each
of which consists of a fact table and up to 7 dimension tables. (a)
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Figure 6: Running Time on Synthetic Data
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Figure 7: Fair Costing Results

Table 2: Performance of Algorithm EXHAUSTIVE
MANAGEDRISK EXHAUSTIVE

cost 1 0.84
time 1 2.18

shows the running time with increasing sharing size on a single
machine (where, for example, sharing size of 10 means 1 fact ta-
ble and 9 dimension tables). (b) shows the running time with in-
creasing sharing size on 10 machines. The running time increases
exponentially because the algorithms enumerates all plans, whose
numbers increase exponentially wrt the sharing size. But it can be
observed that the running time is reasonable for sharings of up to
10 tables on a single machine and sharings of up to 8 tables on mul-
tiple machines. And as said before, if the sharings are so big that
exhaustive plan enumeration is not feasible, we can use heuristics
to explore a manageable subset of plans.

(c) shows the running time wrt the number of sharings in the
sequence on a single machine. The running time slightly declines
with more sharings since sharings that come later in the sequence
have higher probabilities of having occurred before and these shar-
ings don’t need to be processed. In (d) we increase the number of
machines used from 1 to 20. More machines leads to more pos-
sible plans and thus longer processing times. In (e) and (f) we

vary the total number of dimension tables and fact tables used in
all sharings. These two paramters have little effect on the average
processing time per sharing.

6.3 Fair Costing
Figure 7 shows the qualities of the two costing algorithms mea-

sured by the fairness criteria proposed in Section 5. LPC, Identical
and Contained are for the baseline algorithm (for algorithm FAIR-
COST their values are always 1). LPC is the percentage of sharings
in the sequence whose costs assigned by the baseline algorithm are
no more than their LPCs. Identical is the percentage of pairs of
identical sharings whose costs assigned by the baseline algorithm
are the same. Contained is the percentage of pairs of sharings such
that the first sharing is contained in the second sharing and has a
lower LPC than the second sharing, and the cost assigned to the
first sharing is no more than that assigned to the second sharing. α
is the minimum percentage of the saving of a sharing plan that is
awarded to the corresponding sharing, as introduced in Section 5.
Higher α, LPC, Identical and Contained values indicate a higher
degree of fairness. Note that Figure 7(a) doesn’t have “Contained”
bars since those sharings have no predicate, and thus the value of
“Contained” is always 1.

The results indicate that Algorithm FAIRCOST achieves much
better fairness compared with the baseline algorithm.
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Figure 8: Running Time for Algorithm FairCosting

Figure 8 shows the average processing time of algorithm FAIR-
COST for each sharing. � and � test various numbers of sharings
per test case, with no predicate (�) or up to 2 predicates per sharing
(�); △ tests various numbers of predicates per sharing (from 0 to
3), with 40-50 sharings per test case. The results indicate that the
processing time has no noticeable increase for later sharings in the
sequence compared to earlier sharings, and that algorithm FAIR-
COST is very efficient in calculating the cost of sharings, although
the processing time increases fast with the number of predicates,
because more predicates leads to a larger number of possible plans,
hence more expensive computation of LPC. Heuristics can be ap-
plied to prune the search space if necessary.

7. CONCLUSIONS AND FUTURE WORK
This paper studies two problems in building a data market that

enables the sharing of dynamic data specified by ad-hoc queries:
how to design an online algorithm for selecting sharing plans, and
how to fairly calculate the cost of each sharing plan. There are a
few interesting future works, for example, whether it is feasible to
change the plan of an existing sharing when a new sharing arrives,
and how it effects the strategies for selecting sharing plans and
costing the sharings; whether it is beneficial to create and maintain
views that do not belong to any existing sharing plan (so that future
sharings may reuse them), rather than reusing only those views cre-
ated by existing sharing plans, and how to determine which views
to create.
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