
The Flatter, the Better

Query Compilation Based on the Flattening Transformation

Alexander Ulrich Torsten Grust
Universität Tübingen
Tübingen, Germany

[alexander.ulrich, torsten.grust]@uni-tuebingen.de

ABSTRACT
We demonstrate the insides and outs of a query compiler
based on the flattening transformation, a translation tech-
nique designed by the programming language community to
derive efficient data-parallel implementations from iterative
programs. Flattening admits the straightforward formula-
tion of intricate query logic—including deeply nested loops
over (possibly ordered) data or the construction of rich data
structures. To demonstrate the level of expressiveness that
can be achieved, we will bring a compiler frontend that ac-
cepts queries embedded into the Haskell programming lan-
guage. Compilation via flattening takes places in a series of
simple steps all of which will be made tangible by the demon-
stration. The final output is a program of lifted primitive
operations which existing query engines can efficiently im-
plement. We provide backends based on PostgreSQL and
VectorWise to make this point—however, most set-oriented
or data-parallel engines could benefit from a flattening-based
query compiler.
Categories and Subject Descriptors: H.2.3 [Database Man-
agement]: Languages—Query languages, Database (persis-
tent) programming languages
General Terms: Languages, Performance
Keywords: Nested data parallelism; flattening; list compre-
hensions

1. 20 YEARS OF FLATTENING
About 20 years ago, the flattening transformation has been

devised to compile the Nesl programming language into the
data-parallel primitives of a vector machine [2]. Today, we
demonstrate how flattening can be reinterpreted to com-
pile expressive query languages into the bulk-oriented prim-
itives of existing database engines. From Nesl, we inherit
(1) its ability to efficiently cope with iteration, even if nested
deeply, (2) its support for nested and ordered data models,
and (3) a functional and compositional semantics.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
SIGMOD’15, May 31–June 4, 2015, Melbourne, Victoria, Australia.
Copyright is held by the owner/author(s). Publication rights licensed to ACM.
ACM 978-1-4503-2758-9/15/05 ...$15.00.
http://dx.doi.org/10.1145/2723372.2735359.

In tandem with established query compilation techniques
that we repeatedly draw on here, flattening enables a prin-
cipled translation that proceeds in small digestible steps—a
welcome advance over rather complex and monolithic ap-
proaches, including our own [7]. Flattening admits rich
user-facing query languages and data models beyond those
offered by recent related efforts (query shredding [4], for ex-
ample, lacks support for ordered data, grouping, or aggre-
gation). To make these points we express the examples in
this paper in a comprehension-based language, Database-
Supported Haskell1, that is deeply embedded into Haskell [11].
The flattening idea is not tied to a particular frontend lan-
guage, however. The core of flattening itself may be de-
scribed by a compact set of transformation rules that trade
nested iteration for a small library of—possibly lifted, see Sec-
tion 3—query engine built-ins. Existing database backends
can efficiently support these lifted built-ins. We will bring
PostgreSQL [12] and Vectorwise [17] for demonstration, but
it is a hypothesis of this work that a variety of database en-
gines and data-parallel execution frameworks (e.g., Strato-
sphere [1]) can be a driven by a flattening-based compiler.
The demonstration features a full-stack implementation of
flattening, from the Haskell frontend to the database back-
end. All intermediary compilation artifacts are made tangi-
ble for the demo audience.

2. LOOPS, LISTS, AND LAYERS
Let us begin with a review of three sample queries, simi-

lar to those the demo audience will experience on site. The
queries are formulated in Haskell, in a style that is idiomatic
for programs that process lists. Flattening can compile
query languages whose expressiveness and data model sup-
port comes close to those of general-purpose programming
languages. We exploit this here to let the border between
programs and queries vanish. (The details of this query
embedding are orthogonal to flattening and have been de-
scribed elsewhere [6].)
No knowledge of Haskell is required to grasp the present

paper. The following should suffice: Principal query con-
struct is the loop (or iteration), expressed in list compre-
hension syntax [e |x <- xs, p], which iterates over the
elements x of list xs. Expression e is evaluated for all x
that pass predicate p (typically, x occurs free in e and p)
to form the result list [3]. We write e :: a to denote that
expression e has type a. Programs use e :: Q a to signal
that they intend expression e to be evaluated by an un-
1http://hackage.haskell.org/package/DSH

1421

trades
id ts day price

ACME 1 10/20/2014 3.0
ACME 2 10/20/2014 4.0
ACME 3 10/20/2014 1.0
ACME 4 10/20/2014 7.0

...
...

...
...

Figure 1: Stock trading data. Rows have Haskell record
type Trade. Fields of a row are accessed using selector func-
tions: price x is 3.0 if x denotes the first row.

1 -- rolling minimum (mins [3,4,1,7] = [3,3,1,1])
2 mins :: Ord a => Q [a] -> Q [a]
3 mins xs =
4 [minimum [y | (y,j) <- #xs, j <= i] | (_,i) <- #xs]
5
6 -- margin =̂ current value - minimum value up to now
7 margins :: (Ord a, Num a) => Q [a] -> Q [a]
8 margins xs = [x - y | (x,y) <- zip xs (mins xs)]
9

10 -- our profit is the maximum margin obtainable
11 profit :: (Ord a, Num a) => Q [a] -> Q a
12 profit xs = maximum (margins xs)
13
14 -- best profit obtainable for stock on given date
15 bestProfit :: Text -> Date -> Q [Trade] -> Q Double
16 bestProfit stock date trades =
17 profit [price t | t <- sortWith ts trades,
18 id t == toQ stock,
19 day t == toQ date]

Figure 2: Best profit obtainable if we buy, then sell stock.
bestProfit "ACME" "10/20/2014" trades yields 6.0.

derlying database system (i.e., not by the regular Haskell
runtime). Database tables are accessed like lists: for exam-
ple, we use trades :: Q [Trade] to obtain the list of rows in
table trades of Figure 1 in primary key order.
A list-based data model. With flattening, order is the de-
fault. Queries operate over lists (or: arrays, vectors) and
use operations that preserve, depend on, or establish the
order of list items.
Consider a trading application where a timestamp is used

to record the price fluctuation of stocks over time (see col-
umn ts of table trades in Figure 1—this scenario is taken
directly from [9]). What is the best possible profit if we buy
and then sell ACME stocks on October 20? At timestamp t,
our margin is ACME’s current price minus its minimum price
at or before t. This margin is what we try to maximize.
The list-based query of Figure 2 implements this strategy
almost literally. Main function bestProfit sorts the trading
data in timestamp order, filters the stock and day of inter-
est, and then calls on auxiliary functions (profit, margins,
and mins) to process the list of stock prices.
Note how function mins computes a rolling minimum (e.g.,

mins [3.0,4.0,1.0,7.0] = [3.0,3.0,1.0,1.0]) and thus
is of general utility (indeed mins will work for lists of any

1 SELECT MAX(margins.price - margins.min)
2 FROM (SELECT t.price, MIN(t.price)
3 OVER (ORDER BY t.ts
4 ROWS BETWEEN UNBOUNDED PRECEDING
5 AND CURRENT ROW)
6 FROM trades AS t
7 WHERE t.id = ’ACME’
8 AND t.day = ’10/20/2014’) AS margins(price,min);

Figure 3: SQL:1999 code generated for the bestProfit query.

customer
c
¯
custkey c

¯
name c

¯
nationkey c

¯
phone c

¯
acctbal c

¯c Customer#01 n 30-555-· · · 5236.89

lineitems
l
¯
orderkey l

¯
partkey l

¯
extendedprice l

¯
discount l

¯o p 3712.08 0.05

nation
n
¯
nationkey n

¯
name n

¯n USA

orders
o
¯
orderkey o

¯
custkey o

¯
orderstatus o

¯
orderdate o

¯o c P 10/20/14

Figure 4: Relevant excerpt of the TPC-H schema with sample
rows. Matching key symbols (c, n, o) indicate relationships.

1 -- average account balance of the customers cs
2 avgBalance :: Q [Customer] -> Q Double
3 avgBalance cs = avg [c_acctbal c | c <- cs, c_acctbal c > 0.0]
4
5 -- the orders of customer c (possibly none)
6 ordersOf :: Q Customer -> Q [Order]
7 ordersOf c = [o | o <- orders, o_custkey o == c_custkey c]
8
9 -- high potentials among the customers cs

10 potentialCustomers :: Q [Customer] -> Q [Customer]
11 potentialCustomers cs =
12 [c | c <- cs, c_acctbal c > avgBalance cs, empty (ordersOf c)]
13
14 -- country code (phone number prefix) for customer c
15 countryCodeOf :: Q Customer -> Q Text
16 countryCodeOf c = subString 2 (c_phone c)
17
18 -- does customer c live in any of the given countries?
19 livesIn :: Q Customer -> [Text] -> Q Bool
20 livesIn c countries = countryCodeOf c ‘elem‘ toQ countries
21
22 -- TPC-H query Q22
23 q22 :: [Text] -> Q [(Text, Integer, Double)]
24 q22 countries =
25 sortWith (\(country, _, _) -> country)
26 [(country, length custs, sum (map c_acctbal custs)) |
27 (country, custs) <- groupWith countryCodeOf pots]
28 where
29 pots = potentialCustomers [c | c <- customers,
30 c ‘livesIn‘ countries]

Figure 5: A Haskell formulation of TPC-H query Q22.

type a as long as its values may be ordered: Ord a). Auxil-
iary functions mins and margins themselves invoke the prim-
itive operation # (to make item order explicit, #[x1,. . .,xn]
= [(x1,1),. . .,(xn,n)]) and zip (to pair the items of lists,
zip [x1,. . .,xn] [y1,. . .,yn] = [(x1,y1),. . .,(xn,yn)]).
Flattening plus subsequent code generation for PostgreSQL

can translate this Haskell query into the SQL:1999 code
of Figure 3. We argue that this generated SQL formulation
is reasonable in that it closely resembles the hand-written
solution to the best profit problem proposed in [9]. The se-
mantics of timestamp ordering, in particular, do not infect
the entire generated code but remain local to the ordered MIN
window aggregate (lines 2 to 5).

Layered queries (primitive, generic, domain-specific). Di-
viding queries into cooperating, tiny (typically single-line)
auxiliary functions can help to (1) formulate complex query
logic and (2) identify reusable, generic query pieces. Once
we adopt this style, well-known scenarios like the TPC-H
database (see the excerpt in Figure 4) and its associated
queries appear in a new light.

1422

domain margins ordersOf revenue . . .

generic mins groupWith sortWith zip concat
map elem reverse take/drop head !!

primitive [·|·] # aggregates (sum, length, or, . . .) ++
sort nub empty simple expressions (+, ==, . . .)

Figure 6: Three layers of query abstractions. Operations in
upper layers are definable in terms of those on lower layers.

1 SELECT substring(c.c_phone, 1, 2), COUNT(*), SUM(c.c_acctbal)
2 FROM customer AS c,
3 (SELECT AVG(c1.c_acctbal)
4 FROM customer AS c1
5 WHERE substring(c1.c_phone, 1, 2) IN (VALUES (’44’),(’49’))
6 AND c1.c_acctbal > 0.0) AS avgBalance(c_acctbal)
7 WHERE substring(c.c_phone, 1, 2) IN (VALUES (’44’,’49’)
8 AND c.c_custkey NOT IN (SELECT o.o_custkey
9 FROM orders AS o)

10 AND c.c_acctbal > avgBalance.c_acctbal
11 GROUP BY substring(c.c_phone, 1, 2)
12 ORDER BY substring(c.c_phone, 1, 2);

Figure 7: PostgreSQL-executable code for q22 ["44","49"].

Given a list of countries, TPC-H query Q22 [16] aims to
identify potential customers: those whose accounts show an
above-average balance but currently have not placed any or-
der. Average account balance or current order placement are
pervasive concepts in the TPC-H application domain which
leads us to define designated functions (see avgBalance and
ordersOf in Figure 5—ordersOf, in particular, embodies
the 1:n relationship between customers and orders). With
these domain-specific functions in place, the core of the
problem becomes a two-liner itself (lines 11 and 12). The
residual query below line 15 filters, groups, and sorts cus-
tomers (by phone country code) to prepare the answer for-
mat that Q22 demands.
More generally, we obtain a multi-layered query language
design (Figure 6) in which a small set of primitives are used
to define generic, domain-agnostic query operations. The
polymorphic types of the functions in this second layer (cf.
the rolling minimum mins) hint at their reusability. Domain-
specific functions in the top layer embody application-level
concepts and can lead to very succinct query formulation
(“one-liners”).
It is particularly desirable to populate the top layers and

keep the set of primitives as small as possible (in AQuery [9],
for example, the equivalent of mins lives at the bottom
layer). Flattening is fully compositional and makes the
required unrestricted composition of query abstractions vi-
able. Users are not bound to query templates of any form
and are not penalized for the introduction or use of ab-
stractions. Figure 7 shows the generated (monolithic) SQL
code—the used abstractions have been compiled away.
Nested data: separation of contents and structure. Query
languages whose data modeling capabilities are on par with
programming languages are the exception rather than the
rule [5]. With its roots in the programming language do-
main, flattening can compile queries that arbitrarily nest
two principal type constructors—tuples (·,·) and lists [·].
Nested data of this kind allows the construction of com-

plex reports: function expectedRevenue (see Figure 8) pairs

1 -- is customer c a resident of nation?
2 hasNationality :: Q Customer -> Text -> Q Bool
3 hasNationality c nation =
4 or [n_name n == toQ nation && n_nationkey n == c_nationkey c |
5 n <- nations]
6
7 -- all orders of customer c with the given status (O, P, C)
8 ordersWithStatus :: Text -> Q Customer -> Q [Order]
9 ordersWithStatus status c =

10 [o | o <- ordersOf c, o_orderstatus o == toQ status]
11
12 -- our revenue for order o
13 revenue :: Q Order -> Q Double
14 revenue o = sum [l_extendedprice l * (1 - l_discount l) |
15 l <- lineitems, l_orderkey l == o_orderkey o]
16
17 -- expected revenues (by customer, with details) in nation
18 expectedRevenue :: Text -> Q [(Text, [(Date, Double)])]
19 expectedRevenue nation =
20 [(c_name c, [(o_orderdate o, revenue o) |
21 o <- ordersWithStatus "P" c]) |
22 c <- customers,
23 c ‘hasNationality‘ nation]

Figure 8: Expected revenue report (produces nested result).

each customer with the list of dates and expected revenues
for her pending orders. True to layering, most of the query
logic has been relocated into domain-specific functions to
control complexity and promote reusability: while auxiliary
function revenue embodies TPC-H’s specific notion of or-
der revenue, function ordersWithStatus builds on ordersOf
(see above) to find all orders in condition status for cus-
tomer c. The overall result type has shape [(·,[(·,·)])].
Efficient support for such nested data structures poses a
challenge for common database backend architectures with
their rigid layout of data (e.g., first normal form relational
tables). Flattening follows a compilation scheme that sep-
arates data contents from any nesting structure. The sepa-
ration and the subsequent re-imprinting of structure are es-
sentially compile-time operations (Section 3). This scheme
turns out to be a good fit for existing database backends
which then can compute contents and structural aspects sep-
arately: the demo audience will understand how a query of
list nesting depth d will yield d backend queries (d = 2 for
the expectedRevenue example above).

3. 10 MINUTES OF FLATTENING
It is the prime purpose of this demonstration to provide a

comprehensible and concise account of the role that flatten-
ing can play in query compilation. Following the compilation
by transformation principle, the surface query syntax is low-
ered towards database-executable form in a series of steps,
each of which yield human-readable and self-contained inter-
mediate output. Here, we sketch the individual steps. The
demo audience should be able to follow a complete walk-
through in about 10 minutes. Figure 9 provides a road map.
1 Desugar and normalize. As a preparatory step, the com-
piler removes domain-specific and generic query abstrac-
tions, replacing them with their primitive equivalents (cf. Fig-
ure 6). The bodies of user-defined functions like margins
or revenue are unfolded at their call sites. (This implies
that these functions must be non-recursive—primitives may
embody recursive computation, however.) A polymorphic
function in the generic layer is replaced by either
• its equivalent primitive comprehension form (refer to Fig-
ure 10) or

1423

Comprehensions

Lifted Operations

Segment Algebra

Flattening

Relational
Encoding

Code Gen

exit

desugar,
normalize

trade iteration
for lifted operations

introduce NF2

representation
simplify,

specialize

1

2 3

4

Figure 9: Compilation stages. Connect alternative backends
at exit to receive the post-flattening input query.

generic primitive
groupWith f xs [(x,[y | y <- xs, f y == x]) |

x <- nub (map f xs)]
zip xs ys [(x,y) | (x,i) <- #xs, (y,j) <- #ys, i == j]

concat xss [x | xs <- xss, x <- xs]
take n xs [x | (x,i) <- #xs, i <= n]

Figure 10: Expressing generic query abstractions in terms of
the primitive layer (excerpt).

• a special-purpose built-in primitive if that is provided by
the underlying query engine (e.g., zip may simply turn
into the built-in zip if the engine features positional join
support [10]).

After these replacements, the query of Figure 8 takes the
form shown in Figure 11, for example.
Desugaring continues with normalizing rewrites that build

on the extensive body of work on the unnesting and op-
timization of calculus-based or comprehension-style query
languages [8, 15]: common comprehension patterns are tra-
ded for built-in operations which embody these patterns.
Notably, this introduces list-based variants of joins, for ex-
ample, nestjoin or semijoin.
2 Flattening: syntactic transformation. All remaining com-
prehensions are in the normal form [e |x <- xs] (single gen-
erator, no predicates). Flattening, originally described by
Blelloch [2] as well as Prins and Palmer [13], addresses the
challenge of nested data parallelism: how to efficiently com-
pile iterative programs of the given normal form if expres-
sion e itself contains iterative constructs. Typical for query-
style programs, all examples in this paper manifest such
nested iteration (up to depth 3, despite their simplicity).
Flattening revolves around the concept of lifted functions

which consume and return—possibly in parallel—entire lists
of items: the lifted variant of f :: a→ b is f1 :: [a]→ [b].
(In the following, we identify f and f0.) This notion of lift-
ing coincides with the bulk-oriented mode of processing in
query engines which are tuned to efficiently apply operations
to entire collections of data items (e.g., tables of rows). Flat-
tening is specified via few syntactic program transformation
rules. The gist is the following rule that expresses the iter-
ated application of f in terms of its lifted variant:

[fn e | x <- xs] 7→ fn + 1 [e | x <- xs] (↑)

1 [(c.c_name,
2 [(o.o_orderdate,
3 sum [l.l_extendedprice * (1.0 - l.l_discount) |
4 l <- table(lineitem),
5 l.l_orderkey == o.o_orderkey]) |
6 o <- table(orders),
7 o.o_custkey == c.c_custkey,
8 o.o_orderstatus == "P"]) |
9 c <- table(customer),

10 or [n.n_name == "USA" && c.c_nationkey == n.n_nationkey |
11 n <- table(nation)]
12]

Figure 11: The query of Figure 8 after domain-specific and
generic abstractions have been unfolded. Comprehensions
and primitives remain.

1 -- scan xs and identify spots (= True) where new maximum reached
2 climb :: Ord a => Q [a] -> Q [Bool]
3 climb xs = [and [y <= x | (y,j) <- #xs, j <= i] | (x,i) <- #xs]
4
5 -- does xs ascend monotonically?
6 monotonic :: Ord a => Q [a] -> Q Bool
7 monotonic xs = and (climb xs)

Figure 12: Function climb xs: identify where xs reaches new
maxima (climb [3,4,1,7] = [True,True,False,True]).

Nested iteration yields liftings of order n > 1. For example,
we obtain [[f y | y <- gx] | x <- xs] 7→ f2(g1 xs) through
two applications of (↑) and the identity [x | x <- xs] ≡ xs.
Since f :: a→ b, consequently f2 :: [[a]]→ [[b]].
To provide a concise account of flattening, we trace the
transformation of the one-liner climb function of Figure 12
(climb, quite similar to mins of Figure 2, and monotonic
test whether the elements of a list grow monotonically).
The transformation trace itself is found in Figure 13. After
desugaring and normalization (step 1), the body of climb
exhibits nested iteration:

[· · · [y <= x | (y,j) <- g] | (x,g) <- · · ·]

The intermediate program after flattening (step 2) features
the characteristic lifted built-ins (here: and1, <=2, and pair
projections like .21 or .12). Explicit iteration has been com-
piled away entirely.
3 Flattening: reducing fn to f1. Flattening becomes practi-
cable with the insight that any lifted built-in fn with n > 2

[and [y <= x | (y,j) <- #xs, j <= i] | (x,i) <- #xs]

= 1 (desugar, normalize)

[and [y <= x | (y,j) <- g] |
((x,i),g) <- nestjoin{ l©.2 <= r©.2} #xs #xs]

= 2 (flatten)

let xg = nestjoin{ l©.2 <= r©.2} #xs #xs
in and1 (xg.21.12 <=2 (dist1 xg.11.11 xg.21))

= 3 (reduce fn to f1)

let xg = nestjoin{ l©.2 <= r©.2} #xs #xs
y = imprint1 xg.21 (forget1 xg.21).11

in and1 (imprint1 y
((forget1 y) <=1 (forget1 (dist1 xg.11.11 xg.21))))

Figure 13: Tracing the flattening of climb (Figure 12). l©/ r©
inside the predicate {· · · } of a built-in operation refer to its
left/right input, .1/.2 access components of a pair.

1424

lifted fn (n > 2, if f1 is a built-in)

built-in
semijoin0,1 nestjoin0,1 restrict0,1 . . .

dist0,1 table forgetn imprintn

sort0,1 simple operators (+0,1, <=0,1, . . .)

Figure 14: The underlying query engine is expected to pro-
vide the operations f0 and f1. Flattening reduces lifted op-
erations fn (with n > 2) to these built-ins.

can be reduced to its variant f1. This reduction (1) tem-
porarily forgets about the n− 1 outer nesting layers of fn’s
list argument xs, (2) applies f1 to the—now presumed flat—
argument, and then (3) imprints the outer list nesting layers
on the result again:

fn xs 7→ imprintn − 1 xs (f1 (forgetn − 1 xs)) ([)

Query engines thus only need to implement the f0 and f1

variants. We have already said that f1 fits well with the
bulk-oriented execution model of these engines—this is ob-
vious for simple operators like f = + or f = <= but extends
to more complex built-ins like semijoin (our discussion of
step 4 below touches on this). Figure 14 summarizes our
expectations of which operations an underlying engine has
to supply.
The efficiency of flattening–generated code hinges on the

operations forgetn and imprintn to have zero run-time
costs for any n > 1. Careful representations of nested data
can provide this behavior (see below).
The end of step 3 marks the point where code genera-

tors for various query engines could be hooked up (cf. the
exit in Figure 9). These engines will find opportunities for
a bulk-oriented or data-parallel evaluation already made ex-
plicit through the lifting superscripts.

4 Relational encoding. Vanilla relational database systems
are viable engines in the above sense. The zero run-time
cost requirement for forgetn and imprintn suggest a data
representation that separates contents from structure: given
such a separation, forgetn xs simply ignores the structure
part of xs temporarily while imprintn xs e applies (the al-
ready existing) structure of xs to e.
One relational representation of nested data that provides

this separation is the trusted NF2 model [14]. Lists of items
are encoded in a ternary seg|pos|item contents table in which
column pos keeps track of item order and column seg indi-
cates the sub-list to which an item belongs. The order of
these sub-lists is held in a separate seg|pos structure table
referencing the contents table. A list nested to depth n
will feature n− 1 structure tables. Figure 15 visualizes how
forgetn/imprintn exploit this NF2-style encoding of data:
during the evaluation of the underlined subexpression of Fig-
ure 13, only <=1 will incur run-time cost.

Relational engines already implement the operators f0 (cf.
Figure 14 again). For operators with atomic arguments and
result (f ∈ {+, <=, . . . }), f1 is readily obtained through pro-
jection (π, mapping). At least two options exist to obtain
lifted variants of bulk-oriented, or algebraic, built-ins f:
(1) extend the engine to provide true data-parallel imple-

mentations of f1—note that all f1 are intrinsically “em-
barrassingly parallel”—or

y
seg pos seg pos item value
1 1 1 1 3.0 [[3.0],

2 2 3.0 [3.0,
1 2 2 3 4.0 4.0],

3 4 3.0 [3.0,
3 5 4.0 4.0,1 3
3 6 1.0 1.0],
4 7 3.0 [3.0,
4 8 4.0 4.0,
4 9 1.0 1.0,1 4
4 10 7.0 7.0]]

dist1 xg.11.11 xg.21

value item pos seg
[[3.0], 3.0 1 1
[4.0, 4.0 2 2
4.0], 4.0 3 2

[1.0, 1.0 4 3
1.0, 1.0 5 3
1.0], 1.0 6 3

[7.0, 7.0 7 4
7.0, 7.0 8 4
7.0, 7.0 9 4
7.0]] 7.0 10 4

forget1 y
seg pos seg pos item value
1 1 1 1 3.0 [3.0,

2 2 3.0 3.0,1 2 2 3 4.0 4.0,
3 4 3.0 3.0,
3 5 4.0 4.0,1 3
3 6 1.0 1.0,
4 7 3.0 3.0,
4 8 4.0 4.0,
4 9 1.0 1.0,1 4
4 10 7.0 7.0]

forget1 (dist1 xg.11.11 xg.21)
value item pos seg
[3.0, 3 1 1
4.0, 7 2 2
4.0, 1 3 2
1.0, 5 4 3
1.0, 5 5 3
1.0, 5 6 3
7.0, 5 7 4
7.0, 5 8 4
7.0, 5 9 4
7.0] 9 10 4

(forget1 y) <=1 forget1 (dist1 xg.11.11 xg.21)
seg pos item value
1 1 true [true,
2 2 true true,
2 3 true true,
3 4 false false,
3 5 false false,
3 6 true true,
4 7 true true,
4 8 true true,
4 9 true true,
4 10 true true]

~

imprint1 y ((forget1 y) <=1 (forget1 (dist1 xg.11.11 xg.21)))
seg pos seg pos item value
1 1 1 1 true [[true],

2 2 true [true,
1 2 2 3 true true],

3 4 false [false,
3 5 false false,1 3
3 6 true true],
4 7 true [true,
4 8 true true,
4 9 true true,1 4
4 10 true true]]

Figure 15: Evaluating the underlined expression in Figure 13.
Operator <=1 at ~ incurs the only run-time cost, forget1

merely ignores (the grayed out) parts of the NF2 encoding.

(2) parameterize the existing built-ins f to acknowledge list
segmentation (column seg): semijoin1{p} then becomes
n{ l©.seg = r©.seg ∧ p} and seg is prepended to the list
of sort criteria in a sort, for example.

The present work features a full implementation of option (2).

4. DEMONSTRATION SETUP
We will bring a demonstration setup that has been de-

signed to facilitate both quick and deep impressions of flat-
tening as a query compilation technique. A set of canned
queries—similar to those discussed in this write-up— helps
to provide an immediate overview of the flattening idea.
The demonstration does not run on rails, though: any

canned query is editable, for example, to explore interesting
edge cases in compilation. New ad hoc queries may be for-
mulated. An interactive read-eval-print loop (REPL) pro-
motes experimentation with queries, gives immediate feed-
back, and thus allows for quick “one-shot”demonstrations.
Figure 16 shows the REPL (bottom of screenshot). Errors
are signaled early: the system implements a static typing
discipline that rejects programs for which no type assign-
ment of the form Q a can be found (these programs would
not be database-executable).
The underlying relational backends, PostgreSQL and Vec-

torwise [17], will be preloaded with

1425

Figure 16: Haskell-embedded queries may be authored ad hoc
and are evaluated in an interactive read-eval-print loop.

(1) toy data sets—that permit to explore query semantics
since results may be checked item-by-item—as well as

(2) larger database instances so that the audience can assess
backend performance once code has been generated.

We include familiar instances (e.g., TPC-H) to ensure that
attendees can easily follow the demonstration.
Going deeper. Along with the compiler implementation it-
self, the demonstration provides dedicated pretty-printers
and visualizers for all intermediary program forms (screen-
shots in Figure 17). The inspection of the query after flat-
tening (but before relational encoding) is of particular in-
terest if new backends are to be connected. A peek at
the code generated for the existing PostgreSQL and Vector-
wise backends—SQL:1999 statements and algebraic plans,
respectively—is provided as well. We hope to illustrate
that a suitable encoding of segmented lists indeed (1) pro-
vides zero-cost implementations of forgetn/imprintn, and
(2) leads to idiomatic relational queries that are not occu-
pied with costly row order management.

5. REFERENCES
[1] A. Alexandrov et al. The Stratosphere Platform for

Big Data Analytics. VLDB Journal, 2014.

[2] G. E. Blelloch and G. W. Sabot. Compiling
Collection-Oriented Languages onto Massively Parallel
Computers. J. Parallel Distrib. Comput., 8(2), 1989.

[3] P. Buneman, L. Libkin, D. Suciu, V. Tannen, and
L. Wong. Comprehension Syntax. ACM SIGMOD
Record, 23(1), 1994.

[4] J. Cheney, S. Lindley, and P. Wadler. Query
Shredding: Efficient Relational Evaluation of Queries
Over Nested Multisets. In Proc. SIGMOD, 2014.

[5] G. Copeland and D. Maier. Making Smalltalk a
Database System. In Proc. SIGMOD, 1984.

[6] G. Giorgidze, T. Grust, T. Schreiber, and J. Weijers.
Haskell Boards the Ferry. In Proc. IFL, 2011.

[7] T. Grust, J. Rittinger, and T. Schreiber.
Avalanche-Safe LINQ Compilation. In Proc. VLDB,
2010.

[8] T. Grust and M. H. Scholl. How to Comprehend
Queries Functionally. J. Intell. Inf. Syst., 12(2-3),
1999.

[9] A. Lerner and D. Shasha. AQuery: Query Language
for Ordered Data, Optimization Techniques, and
Experiments. In Proc. VLDB, 2003.

[10] S. Manegold, P. Boncz, N. Nes, and Martin Kersten.
Cache-Conscious Radix-Decluster Projections. In
Proc. VLDB, 2004.

[11] S. Marlow. Haskell 2010: Language Report, 2010.
haskell.org.

[12] The PostgreSQL Relational Database System.
postgresql.org.

[13] J. F. Prins and D. W. Palmer. Transforming
High-Level Data-Parallel Programs into Vector
Operations. In Proc. PPOPP, 1993.

[14] H.-J. Schek and M. H. Scholl. The Relational Model
with Relation-Valued Attributes. Information
Systems, 2(11), 1986.

[15] H. J. Steenhagen, R. A. de By, and H. M. Blanken.
Translating OSQL Queries into Efficient Set
Expressions. In Proc. EDBT, 1996.

[16] TPC Benchmark H (Rev. 2.17.0), 2013.
tpc.org/tpch.

[17] M. Zukowski, M. van de Wiel, and P. Boncz.
Vectorwise: A Vectorized Analytical DBMS. In Proc.
ICDE, 2012.

(a) Pretty-printed form after flattening and introduction
of forgetn/imprintn (compilation steps 2 and 3).

PROJECT(i1:col12, i2:col18)

UNBOX

AGGRS(sum(col21 * (1.0 - col20)))

NESTJOIN(col4 == col3)

NESTJOIN(col13 == col7)

TABLE(lineitem)PROJECT(i1:col6)

SEMIJOIN(col7 == col3) SELECT(col7 == "P")

SELECT(col2 == "USA")TABLE(customer)

TABLE(nation)

TABLE(orders)

(b) Diagram of plan immediately before code generation.
Two root nodes () represent a result of depth d = 2.

Figure 17: Compilation artifacts are tangible for the demonstration audience (here: program expectedRevenue of Figure 8).

1426

