
Adaptive Logging: Optimizing Logging and Recovery
Costs in Distributed In-memory Databases

Chang Yao‡ Divyakant Agrawal] Gang Chen§ Beng Chin Ooi‡ Sai Wu§
‡National University of Singapore]University of California at Santa Barbara §Zhejiang University

‡{yaochang,ooibc}@comp.nus.edu.sg]agrawal@cs.ucsb.edu §{cg,wusai}@zju.edu.cn

ABSTRACT
By maintaining the data in main memory, in-memory databases
dramatically reduce the I/O cost of transaction processing. How-
ever, for recovery purposes, in-memory systems still need to flush
the log to disk, which incurs a substantial number of I/Os. Re-
cently, command logging has been proposed to replace the tradi-
tional data log (e.g., ARIES logging) in in-memory databases. In-
stead of recording how the tuples are updated, command logging
only tracks the transactions that are being executed, thereby effec-
tively reducing the size of the log and improving the performance.
However, when a failure occurs, all the transactions in the log after
the last checkpoint must be redone sequentially and this signifi-
cantly increases the cost of recovery.

In this paper, we first extend the command logging technique to a
distributed system, where all the nodes can perform their recovery
in parallel. We show that in a distributed system, the only bottle-
neck of recovery caused by command logging is the synchroniza-
tion process that attempts to resolve the data dependency among
the transactions. We then propose an adaptive logging approach
by combining data logging and command logging. The percentage
of data logging versus command logging becomes a tuning knob
between the performance of transaction processing and recovery
to meet different OLTP requirements, and a model is proposed to
guide such tuning. Our experimental study compares the perfor-
mance of our proposed adaptive logging, ARIES-style data logging
and command logging on top of H-Store. The results show that
adaptive logging can achieve a 10x boost for recovery and a trans-
action throughput that is comparable to that of command logging.

1. INTRODUCTION
While in-memory databases have been studied since the 80s, re-

cent advances in hardware technology have re-generated interest in
hosting the entirety of the database in memory in order to provide
faster OLTP and real-time analytics. Simply replacing the storage
layer of a traditional disk-based database with memory does not
satisfy the real-time performance requirements because of the re-
tention of the complex components from traditional database sys-
tems, such as the buffer manager, latching, locking and logging [12,

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
SIGMOD’16 June 26 - July 01, 2016, San Francisco, CA, USA
c© 2016 Copyright held by the owner/author(s).

ACM ISBN 978-1-4503-3531-7/16/06.

DOI: http://dx.doi.org/10.1145/2882903.2915208

Figure 1: Example of logging techniques

38, 42]. This calls for re-examination and re-design of many core
system components [20,41]. In this paper, we focus on logging and
recovery efficiency in distributed in-memory databases.

Recovery is an indispensable and expensive process of database
systems that ensures updates made by committed transactions be-
fore any system crash are reflected in the database after recovery,
while updates made by uncommitted transactions are ignored. In
an OLTP system, logging for the purpose of recovery affects the
system throughput, and recovery affects the system availability and
hence its overall throughput. Therefore, efficient logging and re-
covery are important to the overall performance of an OLTP sys-
tem. While node failures are infrequent, an increasingly large num-
ber of compute nodes in a distributed system inevitably leads to an
increase in the probability of node failures [30, 32, 36]. Conse-
quently, increasing number of failed nodes results in higher failure
costs as more recoveries are needed. Therefore, providing an effec-
tive failure recovery strategy is as imperative as efficient logging
for distributed database systems.

The most widely used logging method in conventional databases
is the write-ahead log (e.g., ARIES log [23]). The idea is to record
how tuples are being updated by the transactions, and we refer to
it as the data log in our discussion. Let us consider Figure 1 as an
example. There are two nodes processing four concurrent transac-
tions, t1 to t4. All the transactions follow the same format:

f(x, y) : y = 2x

So t1 = f(A,B), indicating that t1 reads the value of A and then
updatesB as 2A. Since different transactions may modify the same
value, a locking mechanism is required. Based on their timestamps,
the correct serialized order of the transactions is t1, t2, t3 and t4.
Let v(X) denote the value of parameter X . The ARIES data log of
the four transactions are listed as in Table 1.
ARIES log records how the data are modified by the transactions,

and supports efficient recovery using the log data when a failure
occurs. However, the recovery process of in-memory databases is

1119

http://dx.doi.org/10.1145/2882903.2915208
rodkin
Typewritten Text
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike International 4.0 License.

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://creativecommons.org/licenses/by-nc-sa/4.0/

Table 1: ARIES log

timestamp transaction ID parameter old value new value
100001 t1 B v(B) 2v(A)
100002 t2 G v(G) 2v(C)
100003 t3 B v(B) 2v(D)
100004 t4 D v(D) 2v(G)

sightly different from that of their disk-based analog. It first loads
the database snapshot recorded in the last checkpoint and then re-
plays all the committed transactions in ARIES log. For uncommit-
ted transactions, no roll-backs are required as the corresponding
updates are not persistent onto disk yet.
ARIES log is a “heavy-weight” logging method, as it incurs high

overhead. In conventional databases, where I/Os for processing
transactions dominate the performance, the logging overhead is
a small fraction of the overall cost. However, in an in-memory
database where all the transactions are processed in memory, log-
ging cost dominates the overall cost.

To reduce the logging overhead, a command logging approach
[22] is proposed to only record the transaction information with
which transaction can be fully replayed during failure recovery. In
H-Store [16], each command log records the ID of the correspond-
ing transaction and the stored procedure that has been applied to
update the database along with the input parameters. As an exam-
ple, the command logging records for Figure 1 are simplified in
Table 2.

Table 2: Command log

transaction ID timestamp stored procedure pointer parameters
1 100001 p A, B
2 100002 p C, G
3 100003 p D, B
4 100004 p G, D

Since all four transactions follow the same routine, we only keep
a pointer p to the details of stored procedure: f(x, y) : y = 2x.
For recovery purposes, we also need to maintain the parameters for
each transaction, so that the system can re-execute all the transac-
tions from the last checkpoint when a failure happens. Compared
with ARIES-style log, a command log is much more compact and
hence reduces the I/O cost for materializing it onto disk. It has
been shown that command logging can significantly increase the
throughput of transaction processing in in-memory databases [22].
However, the improvement is achieved at the expense of much
longer recovery time after a failure since transactions have to be
re-executed to recreate the database state.

When there is a node failure, all the transactions have to be re-
played in the command logging method, while ARIES-style log-
ging simply recovers the value of each column. Throughout the
paper, we use "attribute" to refer a column defined in the schema
and "attribute value" to denote the value of a tuple in a specific col-
umn. For example, to fully redo transaction t1, command logging
needs to read the value ofA and update the value ofB, whereas for
ARIES logging, we just need to set B’s value as 2v(A) as recorded
in the log file. More importantly, command logging does not sup-
port parallel recovery in a distributed system. In command log-
ging [22], command logs of different nodes are merged at the mas-
ter node during recovery. To guarantee the correctness of recov-
ery, transactions must be reprocessed in a serialized order based on
their timestamps. For example, even in a cluster consisting of two
nodes, the transactions have to be replayed one by one due to their
possible contentions. In the previous example, transaction t3 and

t4 cannot be concurrently processed by node 1 and 2 respectively,
because both transactions need to lock the value of D. There is no
such limitation in the ARIES-style logging that actually partitions
the log data into different nodes. In Table 1, log records of t1, t3
and t4 are stored in node 1, while the record of t2 is maintained by
node 2. Both nodes can start their recovery process concurrently
and independently. All contentions can be resolved locally by each
node.

In command logging, a single-node failure will trigger a com-
plete recovery process because we do not know which parts of the
updates are lost. For example, if node 2 in Figure 1 fails, both
node 1 and node 2 need to roll back and replay transaction t1
to t4. Suppose an in-memory database is hosted over hundreds
of nodes [1, 3, 26], where failures cannot be assumed as excep-
tions, command logging could adversely affect the overall system
throughput. If ARIES-style log is applied instead, each node main-
tains all data updates in its local log file. Therefore, we only need
to recover the failed node using its own log data and no global re-
covery is required. In summary, command logging reduces the I/O
cost of processing transactions, but incurs a much higher cost for
recovery than ARIES-style logging, especially in a distributed en-
vironment. To this end, we propose a new logging scheme that
achieves a comparable performance as command logging for pro-
cessing transactions, while enabling a much more efficient recov-
ery. Our logging approach also allows the users to tune the param-
eters to achieve a preferable trade-off between transaction process-
ing and recovery.

In this paper, we first propose a distributed version of command
logging. In the recovery process, before redoing the transactions,
we first generate the dependency graph by scanning the log data.
Transactions that read or write the same tuple will be linked to-
gether. A transaction can be reprocessed only after all its dependent
transactions have been committed. On the other hand, the transac-
tions that do not have dependency relationship can be concurrently
processed. Based on this principle, we organize the transactions
into different processing groups. Transactions inside a group have
dependency relationship, while transactions of different groups can
be processed concurrently.

While the distributed version of command logging effectively
exploits the parallelism among the nodes to speed up recovery,
some processing groups could be rather large, causing a few trans-
actions to block the processing of many others. We subsequently
propose an adaptive logging approach that adaptively makes use
of the command logging and ARIES-style logging. Specifically,
we identify the bottlenecks dynamically based on a cost model and
resolve them using ARIES logging. We materialize the transac-
tions identified as bottlenecks in ARIES log so that transactions de-
pending on them can be recovered more efficiently. In an extreme
case, if all the transactions are identified as bottlenecks, our method
spends the same I/O cost as the ARIES logging. However, this will
definitely increase the cost of transaction processing. Therefore,
our adaptive logging method selectively creates ARIES logs using
a cost model based on a given budget. The budget is used as a pa-
rameter in adaptive logging for users to tune the trade-off between
transaction processing and recovery.

It is indeed very challenging to classify the transactions into the
ones that may cause bottleneck and those that will not, because
we have to make a real-time decision on adopting either command
logging or ARIES logging. During transaction processing, we do
not know the impending distribution of transactions, and even if the
dependency graph of impending transactions is known beforehand,
the optimization problem of log creation remains to be NP-hard.
Hence, we propose both offline and online heuristic approaches to

1120

derive approximate solutions, by estimating the importance of each
transaction based on the access patterns of existing transactions.
The offline approach provides the ideal logging plan and is used
mainly for comparison in our performance study, while our system
uses the online approach.

Finally, we implement our two proposed methods, namely dis-
tributed command logging and adaptive logging, on top of H-Store
[16] and compare them with ARIES logging and command log-
ging. Experimental results show that adaptive logging can achieve
a comparable performance for transaction processing as command
logging, while it performs 10x faster than command logging for
recovery in a distributed system.

The remainder of the paper is organized as follows. We present
our distributed command logging method in Section 2 and the new
adaptive logging method in Section 3. The experimental results are
presented in Section 4 and we review some related work in Section
5. The paper is concluded in Section 6.

2. DISTRIBUTED COMMAND LOGGING
As described earlier, command logging only records the trans-

action ID, stored procedure and its input parameters [22]. Once
failure occurs, the database can restore the last snapshot and redo
all the transactions in the command log to re-establish the database
state. Command logging operates at a much coarser granularity and
writes much fewer bytes per transaction than ARIES-style logging.
However, the major concern of command logging is its recovery
performance.

In H-Store [16] and its commercial successor, VoltDB1, com-
mand logs of different nodes are shuffled to the master node that
merges them based on the timestamp order. Since command log-
ging does not record how the data are manipulated in each page,
all the transactions must be redone sequentially, incurring a high
recovery overhead. An alternative solution is to maintain mul-
tiple replicas, so that data on the failed nodes can be recovered
from other replicas. However, the drawback of such an approach
is twofold. First, maintaining the consistency among replicas in-
curs a high synchronization overhead and as a consequence slows
down the transaction processing. Second, given a limited amount
of memory, it is too expensive to maintain replicas in memory, es-
pecially when processing large scale dataset. This is confirmed by a
performance study of a replication-based technique in Appendix C.
In this paper, we shall therefore focus on the log-based approaches.

Even with command logging, it is unnecessary to replay all com-
mitted transactions by examining the correlations among transac-
tions. Our intuition is to design a distributed command logging
method that enables all nodes to start their recovery in parallel and
replay only the necessary transactions.

We first define the correctness of recovery in our system. Sup-
pose the data are partitioned toN cluster nodes. Let T be the set of
transactions since the last checkpoint. For a transaction ti ∈ T , if
ti reads or writes a tuple on node nx ∈ N , nx is marked as a par-
ticipant of ti. Specifically, we use f(ti) to denote all those nodes
involved in ti and use f−1(nx) to represent all the transactions in
which nx has participated. In a distributed system, each transac-
tion has a coordinator, typically the node that minimizes the data
transfer for processing the transaction. The coordinator schedules
the data accesses and monitors how its transaction is processed.
Hence, the command log entry is usually created in the coordina-
tor [22]. We use θ(ti) to denote ti’s coordinator. Obviously, we
have θ(ti) ∈ f(ti).

Given two transactions ti, tj ∈ T , we define an order function

1http://voltdb.com/

checkpoint

time

node 1 node 2

t1

t2

t3

t6

t7

t4

t5

txn submission
time

commit
time

stored procedure parameters

1 1 2 f1(p1): p1=p1+1 x1

2 2 4 f2(p1,p2): p1=p1-1, p2=p1+2 x1,x3

3 3 4 f3(p1): p1=2*p1 x4

4 4 5 f4(p1): p1=log(p1) x3

5 4 5 f5(p1, p2): p1=2*p2 x4, x5

6 5 6 f5(p1, p2): p1=2*p2 x6, x1

7 6 7 f1(p1): p1=p1+1 x6

Figure 2: A running example

≺ as: ti ≺ tj , only if ti is committed before tj . When a node nx
fails, a set of transactions f−1(nx) need to be redone. But these
transactions may compete for the same tuple with other transac-
tions. Let s(ti) and c(ti) denote the submission time and commit
time of a transaction ti respectively.

DEFINITION 1. Transaction Competition
Transaction ti competes with transaction tj , if the two conditions

below are satisfied.

1. s(tj) < s(ti) < c(tj).

2. ti and tj read or write the same tuple.

Accordingly, transaction competition is defined as a unidirec-
tional relationship: ti competes with tj , and tj may compete with
the others that may modify the same set of tuples and commit be-
fore it. We further let �(ti) be the set of all the transactions that ti
competes with, and define function g for transaction set Tj as:

g(Tj) =
⋃
∀ti∈Tj

�(ti)

To recover the database from nx’s failure, an initial recovery set
T x0 = f−1(nx) is created and set T xi+1 = T xi ∪ g(T xi). As the
number of committed transactions is limited, there exists a mini-
mum number L such that when j ≥ L, T xj+1 = T xj , and there are
no other transactions accessing the same set of tuples since the last
checkpoint. We call T xL the complete recovery set for nx.

Next, we define the correctness of recovery in the distributed
system as:

DEFINITION 2. Correctness of Recovery
When node nx fails, all the transactions in its complete recovery

set need to be redone by strictly following their commit order, i.e.,
if ti ≺ tj , then ti must be reprocessed before tj .

To recover from a node’s failure, our approach needs to retrieve
its complete recovery set. For this purpose, it builds a dependency
graph.

2.1 Dependency Graph
Dependency graph is defined as a directed acyclic graph G =

(V,E), where each vertex in V is a transaction ti, containing the
information about its timestamps (c(ti) and s(ti)) and coordinator
θ(ti). ti has an edge to tj , if and only if

1. ti ∈ �(tj)

2. ∀tm ∈ �(tj), c(tm) < c(ti)

For a specific order of transaction processing, there is one unique
dependency graph as shown in the following theorem.

1121

THEOREM 1. Given a transaction set T = {t0, ..., tk}, where
c(ti) < c(ti+1), there exists a unique dependency graph for T .

PROOF. Since the vertices represent transactions, we always have
the same set of vertices for the same set of transactions. We only
need to prove that the edges are also unique. Based on the defini-
tion, edge eij exists, only if there exists one set of tuples that are
accessed by tj and updated by ti and no other transactions that have
been committed between ti and tj would update the same set of tu-
ples. Therefore, edge eij is a unique edge between ti and tj .

A running example that illustrates the idea is shown in Figure 2.
There are seven transactions since the last checkpoint, aligned based
on their coordinators: node 1 and node 2. The transaction IDs, sub-
mission times, commit times, stored procedures and parameters are
also shown in the table. Based on the definition, transaction t2 com-
petes with transaction t1, as both of them update x1. Transaction t4
competes with transaction t2 on x3. The complete recovery set for
t4 is {t1, t2, t4}. Note that although t4 does not access the attribute
that t1 updates, t1 is still in t4’s recovery set because of the transi-
tive dependency among t1, t2 and t4. After having constructed the
dependency graph and generating the recovery set, the failed node
can then be recovered adaptively. For example, to recover node 1,
we do not have to reprocess transactions t3 and t5.

2.2 Processing Group
In order to generate the complete recovery set efficiently, we or-

ganize transactions as processing groups. Algorithm 1 and 2 il-
lustrate how the groups are generated from a dependency graph.
In Algorithm 1, we start from the root vertex that represents the
checkpoint to iterate over all the vertices in the graph. The neigh-
bors of the root vertex are transactions that do not compete with
the others. We create one processing group for each of them (line
3-7). AddGroup is a recursive function that explores all reachable
vertices and adds them into the group. One transaction may exist
in multiple groups if more than one transactions compete with it.

Two indexes are built for each processing group. One is an
inverted index that supports efficient retrieval of the participating
groups of a given transaction. The other index creates a backward
link from each transaction to the transactions it competes with. Us-
ing these two indexes, it is efficient to generate the complete recov-
ery set for a specific transaction.

Algorithm 1 CreateGroup(DependencyGraph G)

1: Set S = ∅
2: Vertex v = G.getRoot()
3: while v.hasMoreEdge() do
4: Vertex v0 = v.getEdge().endVertex()
5: Group g = new Group()
6: AddGroup(g, v0)
7: S.add(g)
8: return S

2.3 Algorithm for Distributed Command Log-
ging

When a failure on node nx is detected, the system stops the trans-
action processing and starts the recovery process. One new node is
started to reprocess all the transactions in nx’s complete recovery
set. Since some transactions are distributed transactions involving
multiple nodes, the recovery algorithm runs as a distributed pro-
cess.

Algorithm 3 shows the basic idea of recovery. First, it retrieves
all the transactions that do not compete with the others since the

Algorithm 2 AddGroup(Group g, Vertex v)

1: g.add(v)
2: while v.hasMoreEdge() do
3: Vertex v0 = v.getEdge().endVertex()
4: AddGroup(g, v0)

last checkpoint (line 3). These transactions can be processed in
parallel. Therefore, they would be forwarded to the corresponding
coordinators for processing. At each coordinator, Algorithm 4 is
invoked to process a specific transaction t. t first waits until all the
transactions in�(t) are processed. Then it would be processed and
all its neighbor transactions are retrieved by following the links in
the dependency graph. If t’s neighbor transactions are also in the
recovery set, ParallelRecovery function would be invoked recur-
sively to process them.

THEOREM 2. Distributed command logging algorithm guaran-
tees the correctness of the recovery.

PROOF. In Algorithm 3, if two transactions ti and tj are in the
same processing group and c(ti) < c(tj), ti must be processed be-
fore tj , as we follow the links of dependency graph. The complete
recovery set of tj is the subset of the union of all the processing
groups that tj joins. Therefore, we will redo all the transactions in
the recovery set for a specific transaction as in Algorithm 3.

As an example, suppose node 1 fails in Figure 2. The recovery
set is {t1, t2, t4, t6, t7}. t1 on node 2 is the only transaction that
can run without waiting for the other transactions. It will be redone
first. Note that although node 2 does not fail, t1 still needs to be re-
processed, because it affects the correctness when reprocessing the
committed transactions on node 1. After t1 and t2 commit, the new
node that replaces node 1 will reprocess t4. Simultaneously, node 2
will process t6 in order to recover t7. The example shows that com-
pared with the original command logging method, our distributed
command logging has the following two advantages:

1. Only the involved transactions need to be reprocessed. There-
fore, the recovery processing cost is reduced.

2. Different processing nodes can perform the recovery process
concurrently, leveraging the parallelism to speed up the re-
covery.

Algorithm 3 Recover(Node nx, DependencyGraph G)

1: Set ST = getAllTransactions(nx)
2: CompleteRecoverySet S=getRecoverySet(G,ST)
3: Set SR = getRootTransactions(S)
4: for Transaction t ∈ SR do
5: Node n = t.getCoordinator()
6: ParallelRecovery(n, ST , t)

2.4 Footprint of Transactions
To reduce the overhead of transaction processing, a dependency

graph is built offline. Before a recovery process starts, the depen-
dency graph is built by scanning the logs. For this purpose, we
introduce a light weight write ahead footprint log for the transac-
tions. Once a transaction is committed, we record the transaction
ID and the involved tuple IDs as its footprint log.

Figure 3 illustrates the structure of footprint log and ARIES log.
ARIES log maintains the detailed information about a transaction,
including partition ID, table name, modified column, original value

1122

Algorithm 4 ParallelRecovery(Node nx, Set ST,
Transaction t)

1: while wait(�(t)) do
2: sleep(timethreshold)
3: if t has not been processed then
4: process(t)
5: Set St = g.getDescendant(t)
6: for ∀ti ∈ St ∩ ST do
7: Node ni = t.getCoordinator()
8: ParallelRecovery(ni, ST , ti)

checksum LSN record type insert/update/delete transaction id partition id

tablename primary key modified column list before image after image

(a) ARIES Log

checksum table IDtransaction id tuple ID

table ID tuple ID

...

(b) Footprint Log

Figure 3: ARIES log versus footprint log

and updated value, based on which we can correctly redo a trans-
action. On the contrary, a footprint log only records IDs of those
tuples that are read or updated by a transaction. It consumes less
storage space than ARIES log (on average, each record in ARIES
log and footprint log require 3KB and 450B respectively on the
TPC-C benchmark). The objective of maintaining footprint log is
not for recovering the lost transactions, but for building the depen-
dency graph.

3. ADAPTIVE LOGGING
The bottleneck of distributed command logging is caused by the

dependencies among the transactions. To ensure consistency [5],
transaction t is blocked until all the transactions in �(t) have been
processed. In an ideal case, where no transactions compete for the
same tuple, the maximal parallelism can be achieved by recovering
all transactions in parallel. Otherwise, transactions that compete
with each other must be synchronized, which significantly slows
down the recovery process. If the dependencies among the trans-
actions are fully or partially resolved, the cost of recovery could be
effectively reduced.

3.1 The Key Concept
As noted in the introduction, ARIES log allows each node to re-

cover independently. If node nx fails, all the updates since the last
checkpoint would be redone by scanning its log. Recovery with
ARIES log does not need to take transaction dependency into ac-
count, because the log completely records how a transaction modi-
fies the data. Hence, the intuition of our adaptive logging approach
is to combine command logging and ARIES logging. For trans-
actions that are highly dependent on the others, ARIES logs are
created to speed up their reprocessing during the recovery. For
other transactions, command logging is applied to reduce the log-
ging overhead at runtime.

For the example shown in Figure 2, if ARIES log has been cre-
ated for t7, there is no need to reprocess t6 during the recovery of
node 1. Moreover, if ARIES log has been created for t2, the re-
covery process just needs to redo t2 and then t4 rather than starting
from t1. For the recovery of node 1, only three transactions, namely
{t2, t4, t7}, need to be re-executed. To determine whether a trans-

action depends on the results of other transactions, we need a new
relationship in addition to the transaction competition to describe
the causal consistency [5].

DEFINITION 3. Time-Dependent Transaction
Given two transaction ti and tj , tj is ti’s time-dependent trans-

action, if and only if

1. c(ti) > c(tj)

2. tj updates an attribute ax of tuple r that is accessed by ti

3. there is no other transaction with commit time between c(ti)
and c(tj) that also updates r.ax

Let ⊗(ti) denote all the time-dependent transactions of ti. For
transactions in ⊗(ti), their time-dependent transactions can also
be found recursively, denoted as ⊗2(ti) = ⊗(⊗(ti)). This pro-
cess continues until it finds the minimal x satisfying ⊗x(ti) =
⊗x+1(ti). ⊗x(ti) represents all the transactions that must run be-
fore ti to guarantee the causal consistency. In a special case, if
transaction ti does not compete with the others, it does not have
time-dependent transactions (namely, ⊗(ti) = ∅) either. ⊗x(ti) is
a subset of the complete recovery set of ti. Instead of redoing all
the transactions in the complete recovery set, ti can be recovered
correctly by only reprocessing the transactions in ⊗x(ti).

If some transactions in ⊗x(ti) are adaptively selected to create
ARIES logs, the recovery cost of ti can be effectively reduced. In
other words, if ARIES log is created for transaction tj ∈ ⊗x(ti),
⊗(tj) = ∅ and ⊗x(tj) = ∅, because tj can now be recovered by
simply loading its ARIES log since it does not depend on the results
of the other transactions.

More specifically, let A = {a0, a1, ..., am} denote the attributes
that ti needs to access. These attributes may come from different
tuples. Let ⊗(ti.ax) represent the time-dependent transactions of
ti that have updated ax. Therefore, ⊗(ti) = ⊗(ti.a0) ∪ ... ∪
⊗(ti.am). To formalize the usage of ARIES log in reducing the
recovery cost, we introduce the following lemmas.

LEMMA 1. If an ARIES log has been created for tj ∈ ⊗(ti),
transactions tl in ⊗x−1(tj) can be discarded from ⊗x(ti), if

@tm ∈ ⊗(ti), tm = tl ∨ tl ∈ ⊗x−1(tm)

PROOF. The lemma states that all the time-dependent transac-
tions of tj can be discarded, if they are not time-dependent transac-
tions of the other transactions in⊗(ti), which is obviously true.

The above lemma can be further extended for an arbitrary trans-
action in ⊗x(ti).

LEMMA 2. Suppose an ARIES log has been created for trans-
action tj ∈ ⊗x(ti) that updates attribute set Ā. Transaction tl ∈
⊗x(tj) can be discarded, if

@ax ∈ (A− Ā), tl ∈ ⊗x(ti.ax)

PROOF. Since tj updates Ā, all the transactions in ⊗x(tj) that
only update attribute values in Ā can be discarded without violating
the correctness of causal consistency.

Lemma 2 shows that the time-dependent transactions of tj are
not necessary in the recovery process, if they are not time-dependent
transactions of any attribute in (A− Ā). Recovery of the values of
attribute set Ā for ti can start from tj’s ARIES log by redoing tj ,
and then all the transactions with timestamps falling in the range
(c(tj), c(ti)) that also update Ā. To simplify the presentation for
the time being, we use φ(tj , ti, tj .Ā) to denote these transactions.

1123

Finally, we summarize our observations as the following theo-
rem, based on which we design our adaptive logging and the corre-
sponding recovery algorithm.

THEOREM 3. Suppose ARIES logs have been created for trans-
action set Ta, to recover ti, it is sufficient to redo all the transac-
tions in the following set.⋃

∀ax∈(A−
⋃

∀tj∈Ta
tj .Ā)

⊗x(ti.ax) ∪
⋃
∀tj∈Ta

φ(tj , ti, tj .Ā)

PROOF. ti can be recovered correctly by redoing all its time-
dependent transactions from the latest checkpoint. Based on Lemma 1
and Lemma 2, the number of redoing transactions can be reduced
by creating ARIES logs. The first term of the formula represents
all the transactions that are required to recover attribute values in
(A−

⋃
∀tj∈Ta tj .Ā), while the second term denotes all those trans-

actions that we need to recover from ARIES logs following the
timestamp order.

3.2 Logging Strategy
By combining ARIES logging and command logging into a hy-

brid logging approach, the recovery cost can be effectively reduced.
Users should first specify an I/O budget Bi/o according to their re-
quirements. With a given I/O budget Bi/o, our adaptive approach
selects the transactions for ARIES logging to maximize the recov-
ery performance. This decision of which type of logs to create
for each transaction has to be made during transaction process-
ing. However, since the distribution future of transactions cannot
be known in advance, it is impossible to generate an optimal se-
lection. In fact, even if we know all the future transactions, the
optimization problem is still NP-hard.

Letwaries(tj) andwcmd(tj) denote the I/O costs of ARIES log-
ging and command logging for transaction tj respectively. We use
raries(tj) and rcmd(tj) to represent the recovery cost of tj regard-
ing to the ARIES logging and command logging respectively. If an
ARIES log is created for transaction tj that is a time-dependent
transaction of ti, the recovery cost is reduced by:

∆(tj , ti) =
∑

∀tx∈⊗x(ti)

rcmd(tx)−
∑

∀tx∈φ(tj ,ti,tj .Ā)

rcmd(tx)−raries(tj)

(1)
If ARIES logs are created for more than one transactions in⊗x(ti),

∆(tj , ti) should be updated accordingly. Let Ta ⊂ ⊗x(ti) be the
set of transactions with ARIES logs. We define an attribute set:

p(Ta, tj) =
⋃

∀tx∈T ∧c(tx)>c(tj)

tx.Ā

p(Ta, tj) represent the attributes that are updated after tj by the
transactions with ARIES logs. Therefore, ∆(tj , ti) is adjusted as

∆(tj , ti, Ta) =
∑

∀tx∈⊗x(ti)−Ta

rcmd(tx)− raries(tj)−

∑
∀tx∈φ(tj ,ti,tj .Ā−p(Ta,tj))

rcmd(tx) (2)

DEFINITION 4. Optimization Problem of Logging Strategy
For transaction ti, find a transaction set Ta to create ARIES logs

so that:

maximize
∑
∀tj∈Ta

∆(tj , ti, Ta) s.t.
∑
∀tj∈Ta

waries(tj) ≤ Bi/o

We note that the single transaction optimization problem is anal-
ogous to the 0-1 knapsack problem, while the more general case is
similar to the multi-objective knapsack problem. It becomes more
complicated when function ∆ is also determined by the correla-
tions of transactions. We therefore design both offline and online
heuristic methods to derive approximate solutions.

3.2.1 Offline Algorithm
We first introduce our offline algorithm designed for the ideal

case, where the impending distribution of transactions is known.
The offline algorithm is only used to demonstrate the basic idea of
adaptive logging, while our system employs its online variant. T
is used to represent all the transactions from the last checkpoint to
the point of failure.

For each transaction ti ∈ T , the benefit of creating ARIES log is
computed as:

b(ti) =
∑

∀tj∈T ∧c(ti)<c(tj)

∆(ti, tj , Ta)× 1

waries(ti)

Initially, Ta = ∅.
The transactions are sorted based on their benefit values. The

one with the maximal benefit is selected and added to Ta. All the
transactions update their benefits accordingly based on Equation 2.
This process continues until∑

∀tj∈Ta

waries(tj) ≤ Bi/o

Algorithm 5 outlines the basic idea of the offline algorithm.

Algorithm 5 Offline(TransactionSet T)
1: Set Ta = ∅, Map benefits;
2: for ∀ti ∈ T do
3: benefits[ti] = computeBenefit(ti)
4: while getTotalCost(Ta)< Bi/o do
5: sort(benefits)
6: Ta.add(benefits.keys().first())
7: return Ta

Since Algorithm 5 needs to re-sort all the transactions after each
update to Ta, the complexity of the algorithm is O(l2), where l is
the number of transactions. In practice, full sorting can be avoided
in most of the cases, because ∆(ti, tj , Ta) should be recalculated
only if both ti and tj update a value of the same attribute.

3.2.2 Online Algorithm
Our online algorithm is similar to the offline algorithm, except

that it must choose either ARIES logging or command logging in
real-time. Since the distribution of future transactions is unknown,
we use a histogram to approximate the distribution. In particular,
for all the attributes A = (a0, ..., ak) involved in transactions, the
number of transactions that read or write a specific attribute value
is recorded. The histogram is used to estimate the probability of
accessing an attribute ai, denoted as P (ai). Note that attributes in
A may come from the same tuple or different tuples. For tuple v0

and v1, if both v0.ai and v1.ai appear in A, they will be recorded
as two different attributes.

In the previous discussion, we use φ(tj , ti, tj .Ā) to denote the
transactions that commit between tj and ti and also update some
attributes in tj .Ā. We are now ready to rewrite it as:

φ(tj , ti, tj .Ā) =
⋃

∀ai∈tj .Ā

φ(tj , ti, ai)

1124

Similarly, let S = tj .Ā − p(Ta, tj). The third term in Equation 2
can be computed as:∑
∀tx∈φ(tj ,ti,S)

rcmd(tx) =
∑
∀ax∈S

(
∑

∀tx∈φ(tj ,ti,ax)

rcmd(tx))

During the processing of transaction tj , the number of the fu-
ture transactions that are affected by the results of tj and the cost
of recovering a future transaction using command log are both un-
known. Therefore, we use a constant Rcmd to denote the average
recovery cost of command logging. Then the above Equation can
be simplified as:∑

∀tx∈φ(tj ,ti,S)

rcmd(tx) =
∑
∀ax∈S

(P (ax)Rcmd) (3)

The first term in Equation 2 estimates the cost of recovering tj’s
time-dependent transactions using command logging. It can be
efficiently computed in real-time if we maintain the dependency
graph. Therefore, by combining Equation 2 and Equation 3, the
benefit b(ti) of a specific transaction can be estimated during on-
line processing. Supposing ARIES logs already have been created
for the transactions in Ta, the benefit should be updated based on
Equation 2.

The last problem is how to define a threshold γ to trigger the
creation of ARIES log for a transaction when its benefit is greater
than the threshold. Let us consider an ideal case. Suppose the node
fails while processing ti and an ARIES log for ti has been created.
This log achieves the maximal benefit that can be estimated as:

bopti = (NRcmd
∑
∀ax∈A

P (ax)−Raries)× 1

W aries

where N denotes the number of transactions committed before ti,
and Raries and W aries are the average recovery cost and I/O cost
of an ARIES log respectively.

Suppose the occurrence of failure arbitrarily follows a Poisson
distribution with parameter λ. That is, the expected average failure
time is λ. Let ρ(λ) be the number of committed transactions before
the failure. So the possibly maximal benefit is:

bopt = (ρ(λ)Rcmd
∑
∀ax∈A

P (ax)−Raries)× 1

W aries

We define our threshold as γ = αbopt, where α is a tunable param-
eter.

Given an I/O budget, approximately
Bi/o

Waries ARIES log records
can be created. As failures may happen randomly at anytime, the
log should be evenly distributed over the timeline. More specifi-
cally, the cumulative distribution function of the Poisson distribu-
tion is

P (fail_time < k) = e−λ
bkc∑
i=0

λi

i!

Hence, at the k-th second, we can maximally create

quota(k) = P (fail_time < k)
Bi/o
W aries

ARIES log records. At runtime, the system should check whether it
still has the quota for ARIES log. If not, no more ARIES logs will
be created.

Finally, the idea of online adaptive logging scheme is summa-
rized in Algorithm 6.

Algorithm 6 Online(Transaction ti, int usedQuota)

1: int q = getQuota(s(ti))- usedQuota
2: if q > 0 then
3: Benefit b=computeBenefit(t)
4: if b > τ then
5: usedQuota++
6: createAriesLog(ti)
7: else
8: createCommandLog(ti)

Table : Order

Tuple : 10001

price t1 timestamp R t3 timestamp W

number t2 timestamp R

Tuple : 10023

price t2 timestamp W

discount t3 timestamp W t5 timestamp W

Table : Part

...

Tuple : 83103

type t8 timestamp R

...

Figure 4: In-memory index

3.3 In-Memory Index
To help compute the benefit of each transaction, an in-memory

inverted index is created in our master server. Figure 4 shows the
structure of the index. The index entries are organized by table ID
and tuple ID. For each specific tuple, we record the transactions that
read or write its attributes. As an example, in Figure 4, transaction
t2 reads the number of tuple 10001 and updates the price of tuple
10023.

By using the index, the time-dependent transactions of a trans-
action can be efficiently retrieved. For transaction t5, let A5 be the
attributes that it accesses. The recovery process searches the index
to retrieve all the transactions that update any attribute in A5 be-
fore t5. In Figure 4, because the discount value of tuple 10023 is
updated by t5, we check its list and find that t3 updates the same
value before t5. Therefore, t3 is a time-dependent transaction of t5.
In fact, the index can also be employed to recover the dependency
graph of transactions.

When a transaction is submitted to the system, its information
is inserted into the in-memory index. We maintain the index in
memory for the following reasons.

1. The index construction should not slow down the transaction
processing.

2. The index is small as it only records the necessary informa-
tion for causal consistency.

3. If the master server fails and the index is lost, system can re-
tain the correctness of transaction processing unaffected, but
the performance may be affected. We evaluate such perfor-
mance impact in Appendix E.1.

Since the in-memory index is used mainly for estimation pur-
pose, it is unnecessary to enforce the index in the master node to be
strictly consistent. Therefore, in our current implementation, each
processing node caches its in-memory index which is synchronized
with that in the master node periodically. We provide more detailed
discussion in Appendix D.5.

1125

 10000

 15000

 20000

 25000

 30000

 10 15 20 25 30 35 40

T
h
ro

u
g
h
p
u
t
(t

xn
/s

e
c)

Client rate (K txn/sec)

No logging
Command
ARIES
Adapt-100%
Dis-Command

(a) Throughput without distributed transactions

1000

10000

20000

30000

5% 10% 15% 20% 25% 30% 35% 40% 45% 50%

T
h
ro

u
g
h
p
u
t
(t

xn
/s

e
c)

Percentage of distributed transactions

No logging
Command
ARIES
Adapt-100%
Dis-Command

(b) Throughput with distributed transactions (with log scale on y-axis)

Figure 5: Throughput evaluation on the TPC-C benchmark

 10000

 20000

 30000

 40000

 50000

 60000

 70000

 80000

 90000

 10 20 30 40 50 60 70 80 90 100

T
h
ro

u
g
h
p
u
t
(t

xn
/s

e
c)

Client rate (K txn/sec)

No logging
Command
ARIES
Adapt-100%
Dis-Command

(a) Throughput without distributed transactions

 1000

 10000

 100000

5% 10% 15% 20% 25% 30% 35% 40% 45% 50%

T
h
ro

u
g
h
p
u
t
(t

xn
/s

e
c)

Percentage of distributed transactions

No logging
Command
ARIES
Adapt-100%
Dis-Command

(b) Throughput with distributed transactions (with log scale on y-axis)

Figure 6: Throughput evaluation on the Smallbank benchmark

4. EXPERIMENTAL EVALUATION
In this section, we conduct a runtime cost analysis of our pro-

posed adaptive logging, and compare its query processing and re-
covery performance against two existing logging methods. Since
both traditional ARIES logging and command logging are already
supported by H-Store, for consistency, we implement our distributed
command logging and adaptive logging methods on top of H-Store
as well. For ease of explanation, we adopt the following notations
to represent the methods used in the experiments.

• ARIES – ARIES logging.

• Command – command logging proposed in [22].

• Dis-Command – distributed command logging method pro-
posed in Section 2.

• Adapt-x – adaptive logging method proposed in Section 3.
The x indicates the percentage of distributed transactions for
which ARIES logs are created. There are two special cases.
For x = 0%, adaptive logging is the same as distributed com-
mand logging. For x = 100%, adaptive logging adopts a sim-
ple strategy: ARIES logging for all distributed transactions
and command logging for all single-node transactions.

All the experiments are conducted on an in-house cluster of 17
nodes. The head node is a powerful server equipped with an In-
tel(R) Xeon(R) 2.2 GHz 24-core CPU and 64 GB RAM. The com-
pute nodes are blades, each with an Intel(R) Xeon(R) 1.8 GHz 4-
core CPU and 8 GB RAM. H-Store is deployed on a cluster of 16
compute nodes with the database being partitioned evenly. Each
node runs a transaction site. As a default setting, only eight sites
in H-Store are used in all the experiments, except in the scalabil-
ity experiment (and the replication experiment in Appendix C). We
use the TPC-C benchmark2 and the Smallbank benchmark [6], with
2http://www.tpc.org/tpcc/

100 clients running concurrently in the head node and each submit-
ting its transaction requests one by one.

4.1 Throughput
We first compare the costs of different logging methods at run-

time. For the TPC-C benchmark, we use the number of New-Order
transactions processed per second as the metric to evaluate the im-
pact of different logging methods on the system throughput. To
study the behavior of different logging methods, we adopt two
workloads: one contains local transactions only, and the other con-
tains the mix of local and distributed transactions.

Figure 5a and Figure 6a show the throughput with different log-
ging methods when only local transactions are involved. The client
rate is defined as the total number of transactions submitted by
all the clients per second. It varies from 10,000 transactions per
second to 40,000 (resp. 100,000) transactions per second with the
TPC-C (resp. SmallBank) workload in Figure 5a (resp. Figure 6a).
When the client rate is low (e.g., 10,000 transaction per second),
the system is not saturated and all the incoming transactions can
be completed within a bounded waiting time. Although different
logging methods incur different I/O costs, all the logging meth-
ods show a fairly similar performance due to the fact that I/O is
not being the bottleneck. However, as the client rate increases,
the system with ARIES logging saturates at around the input rate
of 20,000 transactions per second for the TPC-C benchmark and
around 60,000 transactions per second for the Smallbank bench-
mark. The other three methods, namely adaptive logging, dis-
tributed logging and command logging, reach the saturation point
at around 30,000 transactions per second and 90,000 transactions
per second on the TPC-C benchmark and the Smallbank bench-
mark respectively, which are slightly lower than the ideal case (rep-
resented as the no logging method). The throughput of distributed
command logging is slightly lower than that of command logging.
This is primarily due to the overhead of footprint log used in dis-
tributed command logging.

1126

 0

 20

 40

 60

 80

 100

 120

 140

 15 20 25 30 35 40

L
a
te

n
cy

 (
m

s)

Client rate (K txn/sec)

No logging
Command
ARIES
Adapt-100%
Dis-Command

(a) Latency without distributed transactions

100

1000

2000

3000

5% 10% 15% 20% 25% 30% 35% 40% 45% 50%

L
a
te

n
cy

 (
m

s)

Percentage of distributed transactions

No logging
Command
ARIES
Adapt-100%
Dis-Command

(b) Latency with distributed transactions (with log scale on y-axis)

Figure 7: Latency evaluation on the TPC-C benchmark

Figure 5b and Figure 6b show the throughput variation (with log
scale on y-axis) when distributed transactions are involved. We
saturate the system by setting the client rate to 30,000 and 90,000
transactions per second for the TPC-C benchmark and the Small-
bank benchmark respectively. Meanwhile, we vary the percentage
of distributed transactions from 0% to 50% so that the system per-
formance is affected by both network communications and logging.
To process distributed transactions, multiple sites have to cooper-
ate with each other, and as a result, the coordination cost rises with
the increased amount of participating sites. To guarantee the cor-
rectness at the commit phase of distributed transaction processing,
all the methods adopt the two-phase commit protocol implemented
in H-Store. Unlike the pure local transaction processing as shown
in Figure 5a and Figure 6a, the main bottleneck of distributed pro-
cessing gradually shifts from logging to network communication.
Compared with a local transaction, a distributed transaction incurs
additional network overhead and this reduces the effect of the log-
ging cost.

As shown in Figure 5b, when the percentage of distributed trans-
actions is less than 30%, the throughput of the three other logging
strategies are still 1.4x higher than ARIES logging. In this exper-
iment, the threshold x of adaptive logging is set to 100%, where
the ARIES logs are created for all the distributed transactions. This
is for evaluating the throughput in the worst case when adaptive
logging is adopted.

As a matter of design, command logging is more suitable for
local transactions with multiple updates, while ARIES logging is
preferred for distributed transaction with few updates [22]. How-
ever, since the workload may change over time, neither command
logging nor ARIES logging can fully satisfy all the access patterns.
In contrast, our proposed adaptive logging can adapt to the dy-
namic change of the workload properties (e.g., distribution of the
local/distributed transactions).

4.2 Latency
The average latency of different logging methods is expected to

increase along the increment of client rate. Figure 7a shows that the
latency of distributed command logging is slightly higher than that
of command logging. However, it still performs much better than
ARIES logging. Like other OLTP systems, H-Store first buffers the
incoming transactions in a transaction queue, and then its transac-
tion engine dequeues and processes them in order. H-Store adopts
the single-threaded transaction processing mechanism, where each
thread is responsible for a distinct partition so that no concurrency
control needs to be enforced for the local transactions within the
partition. When the system becomes saturated, newly arrived trans-
actions need to wait in the queue, leading to the increment of la-
tency.

Typically, before a transaction commits at the server side, all its
log entries have to be flushed to disk; after it commits, the server
sends the response information back to the client. Similarly, our
proposed distributed command logging materializes the command
log entries and footprint log before a transaction commits. Once a
transaction completes, it compresses the footprint log, which con-
tributes to a slight delay in response. However, the penalty be-
comes negligible over a large number of distributed transactions as
the network overhead dominates the cost. This is confirmed by the
results shown in Figure 7b (with log scale on y-axis), that with an
increasing number of distributed transactions, the impact on latency
contributed by logging becomes secondary.

4.3 Recovery
In the next set of experiments, we evaluate the recovery perfor-

mance with respect to different logging methods. We simulate two
scenarios of failures. In the first scenario, we run the system for
one minute and then shut down an arbitrary site to trigger the re-
covery process. In the second scenario, each site processes at least
30,000 transactions before a random site is purposely terminated so
that the recovery algorithm can be invoked. In both scenarios, we
measure the time span for recovering the failed site.

The recovery times of all methods except ARIES logging are af-
fected by two factors, namely the number of committed transac-
tions and the percentage of distributed transactions. Figure 8 and
Figure 9 show the recovery times of the four logging methods. In-
tuitively, the recovery time is proportional to the number of transac-
tions that must be reprocessed upon a failure. For the first scenario
of failure and its corresponding results shown in Figure 8a and Fig-
ure 9a, we observe that as the percentage of distributed transactions
increases, fewer transactions are completed within a given unit of
time. The reduction in the number of distributed transactions per
fixed unit of time provides an offset to the more expensive recovery
of distributed transactions. Consequently, as shown in Figure 8a
and Figure 9a, the percentage of distributed transactions does not
adversely affect the recovery time. For the second scenario of fail-
ure, we require all sites to complete at least 30,000 transactions
each, and its results are shown in Figure 8b and Figure 9b. We
observe that a higher recovery cost is incurred when there is an
increase in the percentage of distributed transactions.

In both scenarios, ARIES logging shows the best recovery per-
formance and is not affected by the percentage of distributed trans-
actions, whereas command logging is always the worst performer.
Our distributed command logging significantly reduces the recov-
ery overhead of command logging, achieving a 5x improvement.
The adaptive logging further improves the performance by tuning
the trade-off between the recovery cost and the transaction process-
ing cost. We provide the detailed analysis as follows.

1127

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

0% 5% 10% 15% 20% 25

R
e
co

ve
ry

 t
im

e
 (

s)

Percentage of distributed transactions

ARIES
Adapt-100%
Adapt-60%
Adapt-40%
Dis-Command
Command

(a) 1 minute after the last checkpoint

 0

 100

 200

 300

 400

 500

 600

 700

0% 5% 10% 15% 20% 25%

R
e
co

ve
ry

 t
im

e
 (

s)

Percentage of distributed transactions

ARIES
Adapt-100%
Adapt-60%
Adapt-40%
Dis-Command
Command

(b) After 30,000 transactions committed at each site

Figure 8: Recovery evaluation on the TPC-C benchmark

 0

 50

 100

 150

 200

 250

 300

 350

 400

0% 5% 10% 15% 20% 25%

R
e
co

ve
ry

 t
im

e
 (

s)

Percentage of distributed transactions

ARIES
Adapt-100%
Adapt-60%
Adapt-40%
Dis-Command
Command

(a) 1 minute after the last checkpoint

 0

 100

 200

 300

 400

 500

0% 5% 10% 15% 20% 25%

R
e
co

ve
ry

 t
im

e
 (

s)

Percentage of distributed transactions

ARIES
Adapt-100%
Adapt-60%
Adapt-40%
Dis-Command
Command

(b) After 30,000 transactions committed at each site

Figure 9: Recovery evaluation on the Smallbank benchmark

Table 3: Number of reprocessed transactions during recovery after 30,000 transactions committed at each site

Percentage of Total number of committed Command Dis-Command Adapt-40% Adapt-60% Adapt-100%distributed transactions transactions before failure
0% 240031 240031 30015 30201 30087 30076
5% 239321 239321 35642 33742 32483 29290

10% 240597 240597 39285 36054 34880 30674
15% 240392 240392 42979 39687 37496 32201
20% 239853 239853 48132 43808 40912 33994
25% 240197 240197 57026 50465 46095 35617

ARIES logging supports independent parallel recovery, since each
ARIES log entry contains one tuple’s data image before and after
each operation. Intuitively, the recovery time of ARIES logging
should be less than the time interval between the checkpointing and
the failure time, since read operations and transaction logics are not
required to be redone during the recovery. As ARIES logging is not
affected by the percentage of distributed transactions and the work-
load skew, its recovery time is therefore proportional to the number
of committed transactions.

Command logging incurs a much higher overhead during a re-
covery that involves distributed transactions (even for a small pro-
portion, e.g., 5%). This is reflected in Figure 10 , which shows the
recovery time of command logging with one failed site after each
site has at least 30,000 committed transactions since the last check-
point. If no distributed transactions are involved, command log-
ging can reach the recovery performance similar to the other meth-
ods, because transaction dependencies can be resolved within each
site. Otherwise, the overhead of synchronization during recovery
severely affects the recovery performance of command logging.

Distributed command logging, as illustrated in Figure 8a and
Figure 9a, effectively reduces the recovery time that is required by
command logging. The results in Figure 8b and Figure 9b fur-
ther show that the performance of distributed command logging is
less sensitive to the percentage of distributed transactions compared
with command logging. However, distributed command logging

 0

 100

 200

 300

 400

 500

 600

 700

0 5 10 15 20 25

R
e
c
o
v
e
ry

 t
im

e
 (

s
)

Percentage of distributed transactions

Command
Command without synchronization

Figure 10: Synchronization cost of command logging
on TPC-C benchmark

incurs the cost of scanning the footprint logs for building the de-
pendency graph. For a one-minute TPC-C workload, the time for
building the dependency graph increases from 2s to 5s when the
percentage of distributed transactions increases from 5% to 25%.
Nevertheless, when the total recovery cost is taken into considera-
tion, the time spent on the dependency graph construction is rela-
tively small.

Adaptive logging selectively creates ARIES logs and command
logs. To reduce the I/O overhead of adaptive logging, we set a
threshold Bi/o in our online algorithm. As a result, at most N =
Bi/o

Waries ARIES logs can be created. In this experiment, we use a

1128

dynamic threshold, by setting N as x percentage of the total num-
ber of distributed transactions. In Figure 8 and 9, x is set as 40%,
60% or 100% to tune the recovery cost and transaction processing
cost. The results show that the recovery performance of adaptive
logging is much better than command logging in all the settings. It
only performs slightly worse than ARIES logging. As x increases,
more ARIES logs are created by adaptive logging, resulting in the
reduction of recovery time. In the extreme case, when x = 100%,
ARIES log is created for every distributed transaction. As a conse-
quence, all dependencies of distributed transactions during recov-
ery can be resolved using ARIES logs, and each site can process its
recovery independently.

Figure 11 shows the recovery performance of adaptive logging
(Adapt-x) with different x values. When x = 100%, the recovery
times are almost the same for all distributions, regardless of the
percentage of distributed transactions. This is because all the de-
pendencies have been resolved using ARIES log. On the contrary,
adaptive logging degrades to distributed command logging when x
= 0%. In this case, more distributed transactions result in higher
recovery cost.

Table 3 shows the number of transactions that are reprocessed
during the recovery in Figure 8b. Compared with command log-
ging and distributed command logging (Adapt-0%), adaptive log-
ging methods significantly reduce the number of transactions that
need to be reprocessed.

 0

 20

 40

 60

 80

 100

 120

 140

0% 5% 10% 15% 20% 25%

R
e
co

ve
ry

 t
im

e
 (

s)

Percentage of distributed transactions

Adapt-0%
Adapt-20%
Adapt-40%
Adapt-60%
Adapt-80%
Adapt-100%

Figure 11: Recovery performance of Adapt-x on the
TPC-C benchmark

4.4 Overall Performance
When commodity servers are used in a large number, failures are

no longer an exception [39]. Therefore, the system must be able to
recover efficiently when a failure occurs and provide a good over-
all performance. In this set of experiments, we measure the overall
performance of different methods. In particular, we run the system
for three hours and intentionally shut down a node chosen at ran-
dom with a predefined failure rate. The system iteratively processes
transactions and performs recovery, and creates a checkpoint every
10 minutes. Then, the total throughput of the entire system is mea-
sured as the average number of transactions processed per second
over the three hours period.

Figure 12 shows the effects of failure interval on the throughput
over three different distributions of distributed transactions. ARIES
logging is superior to the other methods when the failure rate is
very high (e.g., one failure per 5 minutes). When the failure rate
is low, distributed command logging exhibits the best performance,
because it is just slightly slower than command logging for transac-
tion processing, but recovers much faster than command logging.
As the failure interval drops, Adapt-100% cannot provide a com-
parable performance to command logging, because Adapt-100%
creates an ARIES log for every distributed transaction, which is too
costly in transaction processing.

4.5 Scalability
In this experiment, we evaluate the scalability of the logging

methods. The percentage of distributed transactions is set to 10%,
which are uniformly distributed among all the sites. Each site pro-
cesses at least 30,000 transactions before we randomly terminate
one site and the other sites will detect it as a failed site. It can be
observed from Figure 13 that command logging does not scale. Its
recovery time is positively correlated to the number of sites, be-
cause all the sites need to reprocess their committed transactions
from the last checkpoint. The recovery cost of distributed com-
mand logging, which starts with a lower base compared with com-
mand logging, increases by about 50% when the number of sites is
increased from 2 to 16. This is because the processing groups are
larger when there are more sites involved.

The other logging methods show a scalable recovery performance.
Adaptive logging selectively creates ARIES logs to break the de-
pendency relations among the compute nodes. Therefore, the num-
ber of transactions required to be reprocessed is greatly reduced
during recovery.

4.6 Cost Analysis
To study the overhead of different methods, we conduct a cost

analysis using the TPC-C workload, where 5% of the generated
transactions are distributed transactions. In both Figure 14 and Fig-
ure 15, the cost is presented as the percentage of CPU cycles.

Figure 14 shows the cost at runtime. The results show that the
overhead of thread blocking due to distributed transactions is the
major cost in all the logging methods. For adaptive logging, on-
line decisions can be made even when the partition is blocked by
distributed transactions. So the cost of online decisions does not
add much burden to the system. Similarly, footprint logging only
contributes a small cost to distributed command logging and adap-
tive logging. The logging and footprint costs of adaptive logging
slightly increase when adaptive logging uses more data logs to
break dependency links. As expected, compared with the other
methods, ARIES logging takes more time to construct and write
the logs.

We next analyze the recovery cost of different logging methods.
Figure 15 shows that command logging spends the most amount
of time in performing synchronization during recovery. With adap-
tive logging, the composition of command logs and data logs could
be controlled. The synchronization process is reduced as Adapt-
x increases its x value from 0% to 100%. The clever use of data
logs in breaking dependency links among distributed transactions
at runtime reduces the synchronization cost during recovery. More
importantly, adaptive logging is able to exploit the strengths of both
ARIES and command logging to cater to different workloads.

5. RELATED WORK
ARIES logging [23] is widely adopted for recovery in traditional

disk-based database systems. As a fine-grained logging strategy,
ARIES logging needs to construct log records for each modified
tuple. Similar techniques are applied to in-memory database sys-
tems [9, 13, 14, 43].

To reduce the overhead of logging, [34] proposed to reduce the
log size by only recording the incoming statements. In [22], the
authors argue that for in-memory systems, since the whole database
is maintained in memory, the overhead of ARIES logging can be a
bottleneck. Consequently, they proposed a different kind of coarse-
grained logging strategy called command logging. It only records
the transaction identifier and parameters instead of concrete tuple
modification information.

1129

 0

 5000

 10000

 15000

 20000

 0 10 20 30 40 50

O
v
e

ra
ll
 t

h
ro

u
g

h
p

u
t

(t
x
n

s
/s

e
c
)

Failure interval (minutes)

ARIES
Command
Dis-Command
Adapt-100%

(a) Overall throughput with 5% distributed
transactions

 0

 2000

 4000

 6000

 8000

 10000

 0 10 20 30 40 50

O
v
e

ra
ll
 t

h
ro

u
g

h
p

u
t

(t
x
n

s
/s

e
c
)

Failure interval (minutes)

ARIES
Command
Dis-Command
Adapt-100%

(b) Overall throughput with 10% distributed
transactions

 0

 1000

 2000

 3000

 4000

 5000

 6000

 0 10 20 30 40 50

O
v
e

ra
ll
 t

h
ro

u
g

h
p

u
t

(t
x
n

s
/s

e
c
)

Failure interval (minutes)

ARIES
Command
Dis-Command
Adapt-100%

(c) Overall throughput with 20% distributed
transactions

Figure 12: Overall performance evaluation on the TPC-C benchmark

 0

 50

 100

 150

 200

 250

 300

 350

 400

 2 4 6 8 10 12 14 16

R
e

c
o

v
e

ry
 t

im
e

 (
s
)

Number of nodes

ARIES
Command
Dis-Command
Adapt-40%
Adapt-60%
Adapt-100%

Figure 13: Scalability of logging methods on
recovery for the TPC-C becnmark with 10% of

distributed transactions

 0

 20

 40

 60

 80

 100

ARIES Command Dis-Command Adapt-40% Adapt-60% Adapt-100%

C
P

U
 c

y
c
le

s
 (

%
)

real work
logging
footprint

blocking
online decision

Figure 14: Runtime cost analysis on the
TPC-C benchmark

 0

 20

 40

 60

 80

 100

ARIES Command Dis-Command Adapt-40% Adapt-60% Adapt-100%

C
P

U
 c

y
c
le

s
 (

%
)

rebooting
logs loading
real work

synchronization
dependency graph construction

Figure 15: Cost analysis during recovery on
the TPC-C benchmark

ARIES log records contain the before and after images (i.e., old
and new values) of tuples. Dewitt et al [8] proposed to reduce the
log size by writing only the new values to log files. However, log
records without old values cannot enable the undo operation. So
it needs large enough stable memory which can hold the complete
log records for active transactions. They also proposed to write log
records in batches to optimize the disk I/O performance. Similar
techniques such as group commit [11] have also been explored in
modern database systems.

Asynchronous commit strategy [2] allows transactions to com-
plete without waiting for the log writing to finish. This strategy can
reduce the overhead of log flush to some extent. However, it sac-
rifices the durability guarantee, since the states of the committed
transactions may lose when failures happen.

Lomet et al [21] proposed a logical logging strategy. The re-
covery phase of ARIES logging combines physiological redo and
logical undo. This extends ARIES to work in a logical setting, and
the idea has been used to make ARIES logging more suitable for
in-memory database system. Systems such as [16, 17] adopt this
logical strategy.

If non-volatile RAM is available, database systems [4,10,19,25,
29, 40] can use it to reduce the runtime overhead and speedup the
recovery. With non-volatile RAM, recovery algorithms proposed
by Lehman and Carey [18] could be applied.

There have been many research efforts [7, 8, 31, 33, 34, 43] de-
voted to efficient checkpointing for in-memory database systems.
Recent works such as [7,43] focus on fast checkpointing to support
efficient recovery. Usually the checkpointing techniques need to
collaborate with the logging techniques and complement each other
to actualize a reliable recovery process. Salem et al [35] surveyed
many checkpointing techniques, which cover both inconsistent and
consistent checkpointing with different logging strategies.

Johnson et al [15] identified logging-related impediments to database
system scalability. The overhead of log related locking/latching
contention decreases the performance of the database systems, since
each transaction needs to hold the locks while waiting for its log to
be materialized. Works such as [15, 27, 28] attempted to make log-
ging more efficient by reducing the effects of locking contention.

RAMCloud [24], a key-value store for large-scale applications,
replicates node’s memory across nearby disks. It supports very fast
recovery by carefully reconstructing the failed data from the sur-
vival nodes. However, RAMCloud does not support transactional
operations that involve multiple keys. Moreover, the replication-
based techniques are orthogonal to adaptive logging.

6. CONCLUSION
In the context of in-memory databases, command logging [22]

shows a much better performance than ARIES logging [23] (a.k.a.
write-ahead logging) for transaction processing. However, the trade-
off is that command logging can significantly increase the recovery
time in the case of a failure. The reason is that command logging
redoes all the transactions in the log since the last checkpoint in
a serial order. To address this problem, we first extend command
logging to a distributed setting and enable all the nodes to perform
their recovery in parallel. We identify the transactions involved in
the failed node by analyzing the dependency relations and only redo
the necessary transactions to reduce the recovery cost. We find that
the recovery bottleneck of command logging is the synchronization
process for resolving data dependency. Consequently, we design a
novel adaptive logging method to achieve an optimized trade-off
between the runtime performance of transaction processing and the
recovery performance upon failures. Our experiments on H-Store
show that adaptive logging can achieve a 10x boost for recovery
while its runtime throughput is comparable to command logging.

1130

Acknowledgments
We would like to thank Qian Lin for his suggestions that help im-
proved the paper. We also thank the reviewers for their valuable
comments. This work was in part supported by the National Re-
search Foundation, Prime Minister’s Office, Singapore under its
Competitive Research Programme (CRP Award No. NRF-CRP8-
2011-08). Gang Chen and Sai Wu’s work was partially supported
by the National Basic Research Program of China 973 (No. 2015CB-
352400).

APPENDIX
A. REFERENCES
[1] MemSQL. http://www.memsql.com.
[2] Postgresql 8.3.23 documentation,chapter 28. reliability and

the write-ahead log. http://www.postgresql.org/docs/8.3/
static/wal-async-commit.html. Accessed: 2015-6-06.

[3] SAP HANA Wrings Performance from New Intel Xeons.
http://www.enterprisetech.com/2014/02/19/sap-hana-
wrings-performance-new-intel-xeons/.

[4] J. Arulraj, A. Pavlo, and S. R. Dulloor. Let’s talk about
storage & recovery methods for non-volatile memory
database systems. In SIGMOD, pages 707–722. ACM, 2015.

[5] P. Bailis, A. Ghodsi, J. M. Hellerstein, and I. Stoica. Bolt-on
causal consistency. In SIGMOD, pages 761–772, 2013.

[6] M. J. Cahill, U. Röhm, and A. D. Fekete. Serializable
isolation for snapshot databases. In TODS, 34(4):20, 2009.

[7] T. Cao, M. A. V. Salles, B. Sowell, Y. Yue, A. J. Demers,
J. Gehrke, and W. M. White. Fast checkpoint recovery
algorithms for frequently consistent applications. In
SIGMOD, pages 265–276, 2011.

[8] D. J. DeWitt, R. H. Katz, F. Olken, L. D. Shapiro,
M. Stonebraker, and D. A. Wood. Implementation techniques
for main memory database systems. In SIGMOD, pages 1–8,
1984.

[9] M. H. Eich. Main memory database recovery. In Proceedings
of 1986 ACM Fall joint computer conference, pages
1226–1232. IEEE Computer Society Press, 1986.

[10] R. Fang, H.-I. Hsiao, B. He, C. Mohan, and Y. Wang. High
performance database logging using storage class memory.
In ICDE, pages 1221–1231. IEEE, 2011.

[11] R. B. Hagmann. Reimplementing the cedar file system using
logging and group commit. In SOSP, pages 155–162, 1987.

[12] S. Harizopoulos, D. J. Abadi, S. Madden, and
M. Stonebraker. OLTP through the looking glass, and what
we found there. In SIGMOD, pages 981–992, 2008.

[13] H. V. Jagadish, D. F. Lieuwen, R. Rastogi, A. Silberschatz,
and S. Sudarshan. Dalí: A high performance main memory
storage manager. In VLDB, pages 48–59, 1994.

[14] H. V. Jagadish, A. Silberschatz, and S. Sudarshan.
Recovering from main-memory lapses. In VLDB, pages
391–404, 1993.

[15] R. Johnson, I. Pandis, R. Stoica, M. Athanassoulis, and
A. Ailamaki. Aether: A scalable approach to logging. In
PVLDB, 3(1):681–692, 2010.

[16] R. Kallman, H. Kimura, J. Natkins, A. Pavlo, A. Rasin, S. B.
Zdonik, E. P. C. Jones, S. Madden, M. Stonebraker,
Y. Zhang, J. Hugg, and D. J. Abadi. H-store: a
high-performance, distributed main memory transaction
processing system. In PVLDB, 1(2):1496–1499, 2008.

[17] A. Kemper and T. Neumann. Hyper: A hybrid oltp&olap

main memory database system based on virtual memory
snapshots. In ICDE, pages 195–206, 2011.

[18] T. J. Lehman and M. J. Carey. A recovery algorithm for A
high-performance memory-resident database system. In
SIGMOD, pages 104–117, 1987.

[19] X. Li and M. H. Eich. Post-crash log processing for fuzzy
checkpointing main memory databases. In ICDE, pages
117–124. IEEE, 1993.

[20] Q. Lin, P. Chang, G. Chen, B. C. Ooi, K.-L. Tan, and
Z. Wang. Towards a non-2pc transaction management in
distributed database systems. In SIGMOD. ACM, 2016.

[21] D. B. Lomet, K. Tzoumas, and M. J. Zwilling. Implementing
performance competitive logical recovery. In PVLDB,
4(7):430–439, 2011.

[22] N. Malviya, A. Weisberg, S. Madden, and M. Stonebraker.
Rethinking main memory OLTP recovery. In ICDE, pages
604–615, 2014.

[23] C. Mohan, D. J. Haderle, B. G. Lindsay, H. Pirahesh, and
P. M. Schwarz. ARIES: A transaction recovery method
supporting fine-granularity locking and partial rollbacks
using write-ahead logging. In TODS, 17(1):94–162, 1992.

[24] D. Ongaro, S. M. Rumble, R. Stutsman, J. K. Ousterhout,
and M. Rosenblum. Fast crash recovery in ramcloud. In
SOSP, pages 29–41, 2011.

[25] I. Oukid, W. Lehner, T. Kissinger, T. Willhalm, and
P. Bumbulis. Instant recovery for main-memory databases. In
CIDR, 2015.

[26] J. Ousterhout, P. Agrawal, D. Erickson, C. Kozyrakis,
J. Leverich, D. Mazières, S. Mitra, A. Narayanan,
D. Ongaro, G. Parulkar, et al. The case for ramcloud. In
Communications of the ACM, 54(7):121–130, 2011.

[27] I. Pandis, R. Johnson, N. Hardavellas, and A. Ailamaki.
Data-oriented transaction execution. In PVLDB,
3(1):928–939, 2010.

[28] I. Pandis, P. Tözün, R. Johnson, and A. Ailamaki. PLP: page
latch-free shared-everything OLTP. In PVLDB,
4(10):610–621, 2011.

[29] S. Pelley, T. F. Wenisch, B. T. Gold, and B. Bridge. Storage
management in the nvram era. In PVLDB, 7(2):121–132,
2013.

[30] E. Pinheiro, W.-D. Weber, and L. A. Barroso. Failure trends
in a large disk drive population. In FAST, pages 17–23, 2007.

[31] C. Pu. On-the-fly, incremental, consistent reading of entire
databases. In Algorithmica, 1(1-4):271–287, 1986.

[32] F. Roos and S. Lindah. Distribution system component
failure rates and repair times–an overview. In NORDAC.
Citeseer, 2004.

[33] D. J. Rosenkrantz. Dynamic database dumping. In SIGMOD,
pages 3–8, 1978.

[34] K. Salem and H. Garcia-Molina. Checkpointing
memory-resident databases. In ICDE, pages 452–462, 1989.

[35] K. Salem and H. Garcia-Molina. System M: A transaction
processing testbed for memory resident data. In TKDE,
2(1):161–172, 1990.

[36] B. Schroeder, G. Gibson, et al. A large-scale study of failures
in high-performance computing systems. In TDSC,
7(4):337–350, 2010.

[37] M. Stonebraker, D. J. Abadi, A. Batkin, X. Chen,
M. Cherniack, M. Ferreira, E. Lau, A. Lin, S. Madden,
E. O’Neil, et al. C-store: a column-oriented dbms. In VLDB,
pages 553–564, 2005.

[38] K.-L. Tan, Q. Cai, B. C. Ooi, W.-F. Wong, C. Yao, and

1131

http://www.memsql.com
http://www.postgresql.org/docs/8.3/static/wal-async-commit.html
http://www.postgresql.org/docs/8.3/static/wal-async-commit.html
http://www.enterprisetech.com/2014/02/19/sap-hana-wrings-performance-new-intel-xeons/
http://www.enterprisetech.com/2014/02/19/sap-hana-wrings-performance-new-intel-xeons/

H. Zhang. In-memory databases: Challenges and
opportunities from software and hardware perspectives. In
ACM SIGMOD Record, 44(2):35–40, 2015.

[39] K. V. Vishwanath and N. Nagappan. Characterizing cloud
computing hardware reliability. In SoCC, pages 193–204.
ACM, 2010.

[40] T. Wang and R. Johnson. Scalable logging through emerging
non-volatile memory. In PVLDB, 7(10):865–876, 2014.

[41] C. Yao, D. Agrawal, P. Chang, G. Chen, B. C. Ooi, W.-F.
Wong, and M. Zhang. Exploiting single-threaded model in
multi-core systems. arXiv preprint arXiv:1503.03642, 2015.

[42] H. Zhang, G. Chen, B. C. Ooi, K. Tan, and M. Zhang.
In-memory big data management and processing: A survey.
In TKDE, 27(7):1920–1948, 2015.

[43] W. Zheng, S. Tu, E. Kohler, and B. Liskov. Fast databases
with fast durability and recovery through multicore
parallelism. In OSDI, pages 465–477, Oct. 2014.

B. IMPLEMENTATION
Our distributed command logging and adaptive logging are im-

plemented on top of H-Store [16] , a distributed in-memory database
system, which supports the basic ARIES logging and command log-
ging.

Recovery time of an in-memory database is proportional to the
number of transactions recorded in the log since the last check-
point. To reduce recovery overhead, in-memory database systems
typically perform periodical checkpointing to create a snapshot in
disk. Consequently, log records before the snapshot can be dis-
carded. In our implementation, the checkpointing thread runs con-
currently with the transaction processing threads, and flushes only
the “dirty tuples” (i.e., tuples that have been updated since the last
checkpoint) to disk. The interval of checkpointing is set to 180
seconds.

For command logging, we added one bit in its log record to
indicate whether it is a distributed transaction or not. When re-
covering using command logging, we must synchronize the recov-
ery process to guarantee the causal consistency. This is imple-
mented differently in H-Store. In the single-thread architecture,
a distributed transaction is intentionally blocked until all its time-
dependent transactions commit, while in the single-site case, the
transaction could be directly sent to the corresponding coordinator
site which helps to synchronize the processing.

To build the dependency graph, our distributed command log-
ging creates a small footprint log for each transaction, which is
saved as a separate log file at each site. The footprint log is a
light-weight write-ahead log which must be flushed to disk before a
transaction commits. During the recovery process, one transaction
may participate in multiple processing groups. However, as indi-
cated in Algorithm 4, each transaction is recovered at most once.
No redundant work is performed, and the write sets of transactions
involved in multiple groups are buffered to avoid duplicated execu-
tion.

Adaptive logging makes an online decision between distributed
command logging and ARIES logging. To this end, we imple-
mented a Decision Manager at the transaction processing engine.
The decision manager collects the statistics about transactions and
maintains their dependencies. For each incoming transaction, the
decision manager returns a decision to the engine which adaptively
invokes different logging methods.

To further improve the performance of transaction processing in
H-Store, we incorporate the following optimizations in our imple-
mentation.

1. Group commits: transactions need to flush their logs to disk
before committing. Group commit batches several such flush
requests together to achieve a higher I/O performance. It can
also reduce the logging overhead for each transaction.

2. Dirty Column Tracking: ARIES logging records the modi-
fied tuples’ old image and new image in its log records. Ob-
viously, for tables with wide rows, it is costly to record the
whole tuple. Only saving the data of those modified columns
can effectively reduce the size of ARIES log. The same strat-
egy is also adopted in our adaptive logging method.

3. Compression: it is a common technique to reduce the log
size. In our implementation, the footprint log is compressed
as follows. We collect the footprint log of each transaction
in the form of (txnId, tableName, tupleId). The informa-
tion about table name and tuple ID will be duplicated in many
records. So after one transaction commits, we aggregate its
footprint log as (txnId, tableName, tupleId1, ..., tupleIdn).
This simple operation can efficiently reduce the size of the
footprint log.

4. Checkpoints: we use the checkpointing component of H-Store
to do a non-blocking transaction-consistent checkpointing.

C. EFFECTS OF K-SAFETY
K-safety [37] is a replication-based technique that is often used

to provide high availability and fault tolerance in the database clus-
ter. However, it always incurs high synchronization overhead to
achieve strong consistency. While this is orthogonal to the focus of
the paper, it may be used to enhance logging approaches. There-
fore, we conduct an experiment to study the effects of replication.

Since H-Store does not provide the K-safety feature, we measure
the effects of K-safety using H-Store’s commercial version VoltDB
with the TPC-C benchmark. Figure 16 shows the results with dif-
ferent numbers of replicas. In the experiment, the cluster consists
of 8 nodes and each node maintains 3 sites. We find that when
K=1 (i.e., one replica is used), the throughput degrades by 46%
and latency increases by 63% compared to the one without repli-
cas. When K=7 (i.e., system could provide availability even there
is only one healthy node remaining), the throughput degrades by
82.6% and the latency increases by 483%. In summary, system’s
performance degrades significantly when replication is enabled.

In terms of availability, K-safety shows good performance. How-
ever, it still depends on logs to recover when more than K nodes fail
simultaneously. We conducted experiments to measure the avail-
ability in Appendix E.2 and Appendix E.3.

D. RUNTIME ANALYSIS
In this set of experiments, we conduct a cost analysis of the on-

line algorithm and the in-memory index in our proposed adaptive
logging.

D.1 Online Algorithm Cost of Adaptive Log-
ging

In Figure 17, we analyze the computation cost of every minute
by showing the percentage of time taken for making online deci-
sions and processing transactions. Overheads of the online algo-
rithm increase when the system runs for a longer time, because
more transaction information is being maintained in the in-memory
index. However, we observe that it takes only 5 seconds to execute
the online algorithm in the 8th minute, and the main bulk of the
time is still spent on transaction processing. In practice, the on-
line decision cost would not grow in an unlimited manner as it is

1132

 0

 10000

 20000

 30000

 40000

 50000

 60000

0 1 2 3 5 7

T
hr

ou
gh

pu
t (

tx
n/

se
c)

K-safety value

(a) Throughput evaluation

 0

 50

 100

 150

 200

 250

0 1 2 3 5 7

La
te

nc
y

(m
s)

K-safety value

(b) Latency evaluation

Figure 16: Effects of K-safety on the TPC-C benchmark

 0

 10

 20

 30

 40

 50

 60

1 2 4 6 8

T
im

e
 (

s
)

Running time from the last checkpoint (minutes)

Other time Online decision time

Figure 17: Cost of online decision algorithm on
the TPC-C benchmark

bounded by the checkpointing interval. Since the online decision is
made before the execution of a transaction, we could multitask the
computation of online decisions while the transaction is waiting in
the transaction queue to further reduce the latency.

D.2 Online Algorithm vs Offline Algorithm
The offline algorithm assumes that the distribution of transac-

tions is known upfront, and such information can be used to gen-
erate an optimal logging strategy for performance comparison pur-
poses. The offline algorithm can be considered as the ideal case, but
it is not realistic in real implementation. For the online algorithm,
we exploit historical statistics to predict the distribution of future
transactions so that the system can dynamically make a decision on
a logging plan.

We compare the performance of the online and offline algorithms
in Figure 18. In this experiment, we disabled the checkpoints. For
the offline algorithm, we ran the same workload twice. For the first
run, we recorded the transaction distribution information, which is
used as priori knowledge in the second run. As shown in Figure 18,
the throughput of the online algorithm slightly decreases when the
system runs for a longer time, since more information is maintained
in the in-memory index, causing the overhead of logging selection
to increase. It degrades about 6.24% at the 8th minute after about
3.8 million transactions are processed. In practice, the online deci-
sion cost will not keep growing as it is bounded by the checkpoint-
ing interval.

 5000

 5500

 6000

 6500

 7000

 7500

 8000

 8500

 9000

 0 1 2 3 4 5 6 7 8

Th
ro

ug
hp

ut
 (t

xn
s/

se
c)

Time (minutes)

offline aglorithm online algorithm

Figure 18: Comparison between online and offline algorithms on the
TPC-C benchmark

D.3 Accuracy of the Online Algorithm
In Figure 19, we evaluate the accuracy of online algorithm by

comparing with the ideal offline algorithm and a random algorithm.
The result of the offline algorithm which assumes that it knows all
the transactions is used as the ground truth in the comparison. For
the random algorithm, if system still has I/O budget, it chooses the
ARIES log or command log at random; otherwise, it sticks to com-
mand logging. The approximate estimation of our online algorithm

is able to produce logging plans that are similar to those produced
by the offline algorithm. If the I/O budget can only support build-
ing ARIES logs for 20% distributed transactions, the approximate
online algorithm achieves 80% prediction accuracy.

0%

20%

40%

60%

80%

100%

0% 20% 40% 60% 80% 100%

M
od

el
 a

cc
ur

ac
y

Percentage of distributed transactions that use ARIES log

Adaptive selection
Random selection

Figure 19: Accuracy of different selection models on the TPC-C
benchmark

D.4 Effects of Transaction Pattern
We next conduct experiments on the TPC-C benchmark to eval-

uate the effects of transaction pattern on our logging selection algo-
rithm. After the system becomes saturated, we change the hot item
set at the 10th minute. In Figure 20, we measure the accuracy of our
online algorithm as well as the random algorithm. As expected, the
accuracy of the proposed online algorithm drops significantly when
the transaction pattern changes dramatically, since it uses a wrong
(old) statistical distribution. In our implementation, adaptive log-
ging updates the statistical distribution every minute. As can be
observed, the online algorithm continues to provide a good predic-
tion as soon as it is able to use the new statistical distribution (after
the update).

D.5 Effects of the In-memory Index
The main purpose of the in-memory index is for estimating the

cost/benefit of using either the ARIES log or the command log.

 0

 20

 40

 60

 80

 100

 0 5 10 15 20 25 30

Transaction pattern changes

Update the transaction distribution

Ac
cu

ra
cy

 (%
)

Time (minutes)

Adapt-60% Random

Figure 20: Effects of transaction pattern

1133

Asynchronous update of the in-memory index is used to reduce
the maintenance overhead. Indexes of a batch of transactions are
cached locally and periodically synchronized with the master node.
Since the in-memory index is used mainly for estimation, it is un-
necessary to require the index in the master node to be strictly con-
sistent (eventual consistency is sufficient).

We have also conducted experiments on the TPC-C benchmark
to show the benefits of asynchronous update by comparing the two
strategies: asynchronous update and synchronous update. Syn-
chronous update requires the transaction to update the in-memory
index in the master node before it commits. For asynchronous up-
date, transaction only updates the cached indexes in the process-
ing nodes. The processing nodes will synchronize the indexes in
the master node periodically. As shown in Figure 21, synchronous
update is very costly and dramatically affects the performance of
transaction processing. Further, synchronous update only leads to
a marginal improvement in the recovery process. This observa-
tion confirms that the asynchronous approach is a more efficient
approach.

1000

10000

20000

30000

5% 10% 15% 20% 25% 30% 35% 40% 45% 50%

T
h

ro
u

g
h

p
u

t
(t

xn
/s

e
c)

Percentage of distributed transactions

Adapt-60%
Adapt-60% sync

(a) Throughput at runtime

 0

 20

 40

 60

 80

 100

 120

0% 5% 10% 15% 20% 25%

R
e

co
ve

ry
 t

im
e

 (
s)

Percentage of distributed transactions

Adapt-60%
Adapt-60% sync

(b) Recovery time when 30,000
transactions commit at each site

Figure 21: Effects of asynchronous update on in-memory index

E. RECOVERY ANALYSIS
We conduct a set of experiments to evaluate the system perfor-

mance in different failure scenarios.

E.1 Master-Node Failure
The master node maintains the in-memory index which is used

to help estimate the cost/benefit of using the ARIES log and com-
mand log. If the master fails and the in-memory index is lost,
adaptive logging always sticks to command logging, because our
adaptive logging model enforces a constraint such that ARIES log
will not be preferred unless the benefit of building the ARIES log
is larger than a predefined threshold. If the in-memory index is
absent, it is hard to retrieve transaction’s time-dependent transac-
tions, all ARIES logs are estimated to be not beneficial enough. To
address the issue, our system caches the in-memory index in each
processing node. It can be updated in an asynchronous manner. In
the event when the master node fails, the system can still switch
between the two logging approaches.

As discussed in Appendix D.5, the in-memory index is updated
in an asynchronous manner. As shown in Figure 22, when the mas-
ter node fails, the transaction coordinator can still apply the adap-
tive approach to select a logging strategy using its local copy of
in-memory index. The throughput slightly increases because there
is no communication between the master and slave nodes. After a
new master node is elected, all nodes will synchronize their local
indexes with the new master node, which incurs high communica-
tion cost and leads to the throughput drop. The index synchroniza-
tion only lasts for a few seconds. After the index in the master node

is synchronized and the system is fully recovered, the throughout
increases until it becomes steady.

 7000

 7500

 8000

 8500

 9000

0 1 2 3 4 5

Master node fails

Synchronize in-memory indexes to recover the master nodeTh
ro

ug
hp

ut
 (t

xn
s/

se
c)

Time (minutes)

Adapt-60%

Figure 22: Throughput evaluation on TPC-C benchmark when the master
node fails

E.2 Single-Node Failure
In Figure 23, we simulate a single-node failure by randomly

selecting a node and killing its running processes. Systems with
ARIES logging and command logging have to halt (the through-
put drops to zero) until the failed node is fully recovered. On the
contrary, system with K-safety can continue the transaction pro-
cessing. Its throughput even slightly increases, since the number
of replicas that needs to be synchronized decreases. System with
adaptive logging can process new transactions and do the recov-
ery simultaneously. As discussed in Section 2.4, the system first
constructs the dependency graphs based on the lightweight foot-
print log. With the dependency graphs, the database in the failed
node can be recovered on demand while the surviving nodes con-
tinue with the processing. The throughput gradually increases as
the database in the failed node is being recovered.

 0

 2000

 4000

 6000

 8000

 10000

 0 2 4 6 8 10

Failure happens

Th
ro

ug
hp

ut
 (t

xn
s/

se
c)

Time (minutes)

ARIES Command Dis-command K-safety=3 Adapt-60%

Figure 23: Throughput evaluation on the TPC-C benchmark when a
single node fails

E.3 Entire-Cluster Failure
Figure 24 shows the results when the entire cluster fails. Unlike

the case of a single-node failure, system with K-safety cannot retain
system availability and durability if the entire cluster fails. Thus,
it still has to rely on logs to perform the recovery (e.g., command
logging is enabled for K-safety in this experiment).

 0

 2000

 4000

 6000

 8000

 10000

 0 2 4 6 8 10

Failure happens

Th
ro

ug
hp

ut
 (t

xn
s/

se
c)

Time (minutes)

ARIES Command Dis-command K-safety=3 Adapt-60%

Figure 24: Throughput evaluation the TPC-C benchmark when the entire
cluster fails

1134

	Introduction
	Distributed Command Logging
	Dependency Graph
	Processing Group
	Algorithm for Distributed Command Logging
	Footprint of Transactions

	Adaptive Logging
	The Key Concept
	Logging Strategy
	Offline Algorithm
	Online Algorithm

	In-Memory Index

	Experimental Evaluation
	Throughput
	Latency
	Recovery
	Overall Performance
	Scalability
	Cost Analysis

	Related Work
	Conclusion
	References
	Implementation
	Effects of K-safety
	Runtime Analysis
	Online Algorithm Cost of Adaptive Logging
	Online Algorithm vs Offline Algorithm
	Accuracy of the Online Algorithm
	Effects of Transaction Pattern
	Effects of the In-memory Index

	Recovery Analysis
	Master-Node Failure
	Single-Node Failure
	Entire-Cluster Failure

