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ABSTRACT
The search for relevant information can be very frustrating for
users who, unintentionally, use inappropriate keywords to express
their needs. Expansion techniques aim at transforming the users’
queries by adding new terms, called expansion features, that better
describe the real users’ intent. We propose Structural Query Ex-
pansion (SQE), a method that relies on relevant structures found in
knowledge bases (KBs) to extract the expansion features as opposed
to the use of semantics. In the particular case of this paper, we use
Wikipedia because it is probably the largest source of up-to-date
information. SQE is capable of achieving more than 150% improve-
ment over non-expanded queries and is able to identify the expan-
sion features in less than 0.2 seconds in the worst-case scenario.
SQE is designed as an orthogonal method that can be combinedwith
other expansion techniques, such as pseudo-relevance feedback.
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1 INTRODUCTION
Typically, users express their needs with queries consisting, usually,
of a set of keywords. However, vocabulary mismatch between the
keywords and the documents to be retrieved entails poor results
that do not satisfy the user needs [12]. Poor results also arise from
the topic inexperience of the users and, consequently, their tendency
to use too general keywords [17].

Query expansion techniques aim at improving the results achieved
by a user’s query by means of introducing new expansion terms,
called expansion features. Expansion features introduce new con-
cepts that are semantically related with the concepts in the user’s
query and that allow overcoming part of the aforementioned prob-
lems. Different families of expansion techniques differ in the way
they acquire the expansion features. One of such families consists
in using knowledge bases (KBs). A KB consists of a set of linked
entries, each of which describes a single concept, forming a graph,
where the nodes represent the entries and the edges the relation-
ships among them.
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Figure 1: Search process with SQE.

We propose Structural Query Expansion (SQE), a new query
expansion strategy that exploits KBs relying exclusively on the
structural relationships of its entries. SQE is tightly linked to the
KB that it exploits. Thus, as shown in Figure 1, it requires an offline
analysis of its structural properties. These are used to define a set
of motifs which allow building the query graphs. We define the
query graph as the subgraph from the KB graph that contains the
query nodes, which are the entries of the KB that represent the
entities in the user’s query, and the expansion nodes, out of which
we extract the expansion features.

Although SQE can be used for any KB, in this paper, we use
Wikipedia because it is the largest up-to-date source of information.
However, its size represents a challenge because the search space in
the Wikipedia graph is very large which creates problems related to
finding efficiently meaningful relationships for the expansion pro-
cess. The KB graph that we build from Wikipedia has two types of
nodes that correspond to the Wikipedia’s articles and categories.
The edges of the graph are theWikipedia hyperlinks, which connect
articles and categories. The query nodes are always articles, since
each Article represents a single topic. In this paper, we present a
structural analysis of Wikipedia and we define a set of structural
motifs that are capable of capturing reliable expansion features.

SQE obtains statistically significant improvements of more than
150% over the non-expanded queries by running in the order of a
few tenths of a second at most. Additionally, as shown in Section 4,
SQE is orthogonal to other expansion techniques. Particularly we
show that combining SQEwith pseudo-relevance feedback achieves
up to 13.68% improvement in the quality of the results.

The contributions of this paper are summarized as follows:

• We propose SQE an expansion strategy that relies on KBs’
structure. We implement it using Wikipedia.

• We propose SQE as orthogonal to existing strategies and
it is executed in sub-second times.

• We test SQE with three different datasets and validate the
results with statistical significance analysis.

2 STRUCTURAL QUERY EXPANSION
SQE consists of i) the structural analysis of the KB graph, ii) the
query graph builder and iii) the query builder.

The structural analysis requires a ground truth that relates a set
of queries with their optimal query graphs. The goal is to analyze
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them to reveal their shared structural characteristics. This is an
offline process that is done once.

The query graph builder materializes the revealed structural
characteristics into a set of structural motifs in a way that, given a
query node, we can infer its query graph. The goal is that the calcu-
lated query graphs have similar structural characteristics as those
in the ground truth. In this paper, to validate our hypothesis, we
have crafted the structural motifs empirically, to avoid introducing
potential errors derived from an automatic algorithm.

SQE builds the expanded query with the user’s query and the
expansion features from the query nodes and the expansion nodes.

2.1 Wikipedia Structure Analysis
The analysis of the Wikipedia structure uses the optimal query
graphs provided in a published ground truth [10] which relates
each of the queries of the Image CLEF benchmark with its optimal
query graph, i.e. the one made of the expansion nodes that allow
achieving the best precision results. Although the ground truth is
built using a particular query set, in Section 4 we show that the
revealed characteristics are consistent for other query sets.

The analysis of the ground truth reveals that most of the expan-
sion nodes of the optimal query graphs are connected to the query
nodes by means of cycles of length 3, 4 and 5. Cycles are defined
as a closed sequence of nodes, either articles or categories, with
at least one edge among each pair of consecutive nodes. Actually,
using the nodes of the cycles as source of expansion features al-
lows achieving a precision of 0.833, 0.624, 0.588 and 0.547 for the
top-1, top-5, top-10 and top-15 results respectively. This results are
comparable to the best results achieved in the Image CLEF 2011
conference [15]. However, results in [15] were achieved combining
textual and visual analysis techniques, using the three languages
in which the metadata of the documents are written (while only
English is used in this case), and exploiting feedback relevance tech-
niques. The specific goal of the structural analysis for Wikipedia
requires understanding which are the characteristics of these cycles
in the optimal query graphs.

Figure 2a shows the average contribution of the cycles depend-
ing on their length. The contribution is a value between 0 and 1
that measures the part of precision that is obtained thanks to the
cycles of a given length with respect to the one achieved by the
whole query graph. We observe that the contribution of the cycles
depending on their lengths is comparable to each other, although,
according to the results, larger cycles seem to contribute more.

Regarding the observed proportion of articles and categories,
Figure 2b shows the ratio of categories per cycle length. Approx-
imately a third of the nodes are categories. Thus, categories play
an important role maintaining the cycles within a single or very
related domain of knowledge.

Finally, Figure 2c shows the average density of extra edges with
respect to the length of the cycles. The density of extra edges is de-
fined as the amount of edges minus the minimum required amount
of edges to create a cycle divided by the maximum amount of pos-
sible edges of the cycle (two consecutive nodes can be connected
by two edges). From Figures 2a and 2c, we can see a correlation
between denser cycles and those that contribute more.

Summarizing the characteristics that let us differentiate good
from bad cycles, we consent that:
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Figure 2: Average (a) contribution (b) category ratio (c) den-
sity of extra edges; of cycles and their length.

• Cycles of length 3, 4 and 5 are to be trusted to reach articles
that are strongly related with the query nodes.

• A third of the nodes of cycles have to be categories.
• The expansion features obtained through the articles of

dense cycles are capable of leading to better results.

2.2 Query Graph Builder
To calculate the query graphs in a way that they have the same
structural characteristics as those in the ground truth, we propose
the motifs depicted in Figures 3a and 3b, which are based on cycles
of length 3 and 4 respectively. The motif depicted in Figure 3a is
called, from now on, triangular motif, whereas the one depicted
in Figure 3b is called square motif. In the figures, square nodes
are categories, and round nodes are articles. Black round nodes are
query nodes, while white ones are expansion nodes, which have
been selected because they are part of a motif.

In the triangular motif, we force the query node to be doubly
linked with the expansion node. That means that the query node
actually links, in Wikipedia, to article (expansion node), and the
article links, reciprocally, to the query node. Moreover, the article
must belong to, at least, the same exact categories as the query node.
In the square motif of Figure 3b, the query node and the new article
must be also doubly linked. However, compared to the triangular
motif, it is just required that at least one of the categories of the
query node is inside one of the categories of the expansion node,
or vice versa. Both patterns are chosen because these cycles fulfill
the edge density and ratio of categories requirements. Note that we
have avoided cycles of length 5 for performance reasons.

SQE consists in, given the query nodes as a starting point, identify
all the nodes of the Wikipedia graph that are part of a motif and
add them to the query graph. At the same time, while the motifs
are being traversed, we build a set of pairs < a, |ma | >, where a is
an article that has appeared among the expansion nodes, and |ma |

is the number of motifs in which it has appeared.
In Figure 4a we show an example of a triangular motif that for

the Image CLEF query #93, “cable cars”. Thanks to the motif, the
article funicular, that is a similar transport system, becomes a part
of the query graph. Similarly, in Figure 4b, for query #73, “graffiti
street art on walls”, the square motif introduces in its query graph
the article Banksy, who is a graffiti artist.

2.2.1 Combining Query Graphs: SQEC . We have designed a
variation of the SQE which consists in combining the set of results
instead of combining the set motifs. SQEC builds n different ex-
panded queries, each using a particular motif configuration, each of
which is used to retrieve the results. Finally, these sets are combined
into a single one. Although in Section 4 we show in detail the proper
configuration to maximize the performance overall analyzed tops,
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(a) Triangular motif. (b) Square motif.

Figure 3: Expansion motifs.
(a) Triangular motif. (b) Square motif.

Figure 4: Expansion motifs in action for Image CLEF.

we anticipate some results: the triangular motif allows achieving
better precision in small tops of results, up to five; while, the square
motif allows achieving precision in large tops of results.

2.3 Query Builder
We first introduce the SQE retrieval model, which is based on a com-
bination of the language modeling [13] and inference network [16].
The query likelihood model that we adopt is a factor between a
multi-word query Q , and a document D represented as a bag of
words as P(Q |D) =

∏
wi ∈Q P(wi |D). The feature function used to

match words (document features),w to a document D is a Dirichlet
smoothed probability: P(w |D) =

t fw,D+µP (w |C)

|D |+µ , which generalizes
to n-grams and unordered term proximity.

We build the expanded query as a three-part combination: i) the
user’s query, ii) the titles of the query nodes, and iii) the titles of the
articles expansion nodes. Titles are taken as a n-gram of consecutive
terms for phrase matching. In the expanded query, the expansion
features are weighted proportionally to the number of motifs in
which they have appeared, i.e. the title of a is weighted proportion-
ally to |ma |. Note that this means that we are also exploiting the
structural properties to build the query.
3 EXPERIMENTAL SETUP
In this section we provide details to reproduce our experiments. Ex-
periments described in this paper are implemented using Indri [14],
an open source search engine.

The entity linker that we use is implemented using Dexter [3],
which is an open source tool that recognizes entities in a given text
and links them with Wikipedia articles, our query nodes. If Dexter
is not able to find any matching entry, we preprocess the text using
Alchemy [18], a tool that identifies entities but does not link them
with Wikipedia. According to our experiments, the combination
of both Dexter and Alchemy achieves more than 80% precision in
identifying and linking the entities.

We have used Image CLEF to design SQE. The collection of re-
sults contains 237,434 images each of which have short descriptions
as metadata, which we use as our target documents. Approximately,
60% of these descriptions contain texts in English. We have used
CHiC 2012 & CHiC 2013 to evaluate SQE. These datasets are
based on cultural heritage retrieval. Both datasets shared the col-
lection of results, which contains 1,107,176 short documents. Each
of the three datasets provides a set of fifty queries (total 150) and
their corresponding valid results.

We use the EnglishWikipedia dump of July 2nd, 2012 as our KB. It
has 9,483,031 articles and 99,675,360 links among articles, 1,320,671

P@5 P@10 P @15 P@20 P@30 P@100 P@200 P@500 P@1000
QLQ 0.136 0.130 0.121 0.112 0.089 0.035 0.018 0.007 0.003
QLE 0.248 0.226 0.220 0.213 0.197 0.125 0.077 0.038 0.020
QLQ&E 0.244 0.220 0.213 0.210 0.195 0.127 0.081 0.040 0.021
SQET 0.456† 0.402† 0.384† 0.349† 0.282† 0.147† 0.0859† 0.040† 0.020†
SQET&S 0.448† 0.414† 0.400† 0.379† 0.315† 0.171† 0.102† 0.048† 0.025†
SQES 0.444† 0.402† 0.387† 0.362† 0.301† 0.164† 0.104† 0.051† 0.027†
SQEU B 0.578 0.519 0.494 0.485 0.382 0.188 0.117 0.054 0.028

Table 1: Comparison of the precision. † indicates statisti-
cally significant improvement.

categories, 3,795,869 links among categories and 41,490,074 links
among articles and categories.

To evaluate the results, we focus on the analysis of the system’s
precision for the default tops in TrecEval. To show the statistical
significance with p<0,05, we have done the paired t-test.

4 EXPERIMENTS
We use the query likelihood (QL) model as state-of-the-art retrieval
baseline and compare our technique (SQE) with the user’s query
(QLQ ), the query entities (QLE ) and the expansion features (QLX ).

4.1 SQE Configuration
First, we analyze SQE and compare the results with the ones achieved
by the used ground truth. Then, we use this analysis to configure
SQEC , described in Section 2.2.1. For this purpose, we use Image-
CLEF because we have its ground truth query graphs. For these
experiments, we select manually the query entities to avoid any
noise that could be introduced due to the errors of the entity linker.
In more detail, we compare QLQ , QLE and QLQ&E (which com-
bines the user’s query and the query entities) with SQE when only
the triangular motif is used, SQET , when only the square motif is
used, SQES and when the combination of both motifs is used to
create query graphs, SQET&S . Also, the ground truth is used to
build and upper bound, SQEU B .

In Table 1, we see that the SQET , SQET&S and SQES improve
significantly the precision achieved by any of the baselines (QLQ ,
QLE and QLQ&E ) for all tested levels of precision. This means
that the achieved improvement is due to the introduction of the
expansion features, and not only due to the query entities. Also,
we see that the results achieved by SQE represent, in the worst-
case scenario (SQES , P@20 - 0.362), the 71.41% of the upper bound
results (SQEU B , P@20 - 0.485). In average, this percentage is 85.86%,
which means that the proposed query expansion strategy is close
to the results achieved by the upper bound. Note that the results
achieved by SQEU B are due the use of ground truth query graphs.
On the other hand, the results achieved by SQE traverse blindly
the whole Wikipedia using the described motifs to create the query
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Figure 5: Percentage improvement over the maximum of
QLQ , QLE and QLQ&E .

graphs. Thus, although these query graphs have the same structural
properties as those in the ground truth, they are not equal.

In Figure 5 we show the percentage improvement of the three
configurations of SQE with respect to the best result achieved by
either QLQ , QLE and QLQ&E . We observe that the improvement
diminishes as the size of the top increases. To understand this
behavior, we need to look at that the average number of correct
documents per query, which is 68.8. Hence, it is difficult to improve
the precision when the amount of retrieved documents is much
larger than the amount of actually valid documents. A deeper analy-
sis of these configurations reveals three different ranges, depending
on the query expansion configuration that achieves the best results.
The first range includes up to P@5, the second range that from
P@5 to P@100 and the third from P@100 to P@1000.
Range P@1-P@5: SQET achieves the best results, which intro-
duces 0,76 expansion features in the query graph per user query.
SQET achieves 83.87% improvement However, since there are just
a few expansion features, the expanded query is not very different
from the user’s query, and the improvement decreases quickly.
Range P@5-P@100: The best results are achieved by SQET&S .
The improvement goes from 83.85% to 34.22%. This configuration
introduces, in average, 20.96 expansion features per query. Combin-
ing expansion features very close to the original query, obtained
via the triangular motif, with other no so close, vis square motifs,
makes this configuration the best for this range in the middle.
Range P@100-P@1000: The configuration that allows achieving
the best results is the SQES whose improvement ranges from 27.99%
to 33.30%. It introduces, in average, 20.48 expansion features per
query. The fact that these expansion features are not so tied to the
original query issued by the user enables to retrieve documents
that were not selected by the other configurations.

Hence, we have configured SQEC combining the results achieved
by the executions of SQET , SQET&S and SQES in a way that the
first five results come from SQET , the next 195 results come from
SQET&S and the rest of the results come from SQES .

4.2 SQE Evaluation
Now we evaluate the variation of SQE described in Section 2.2.1 as
SQEC and configured as described in the previous section. We use
three datasets to test whether the results are consistent among them.
In Figure 6 we show the percentage improvement achieved by SQE
over the best execution for each top using QLQ , QLE and QLQ&E
configurations. Also, we use the percentage improvement of using
only the expansion features (QLX ). Note that SQEC (M) selects

manually the query entities, whereas in SQEC (A) are selected
automatically by the entity linker described in Section 3. In Figure 6,
we see that for the three datasets using the expansion features in
an isolated way is not useful to improve the precision of the system,
but diminishes the quality of the results. That supports the idea
of assembling the expanded query as described in subsection 2.3.
The user’s query, even not being the best way to express the real
intention of the user, due to his/her lack of knowledge and the
vocabulary mismatch, is the only query form in which we are sure
that the system has not introduced any error and hence, it helps to
diminish errors that could be introduced later in the process. The
query entities reinforce the user’s query removing all the signs of
ambiguity from the user’s intent. Finally, the expansion features are
helpful to overcome the classical problems of information retrieval.

We observe that SQE,which is depicted as SQEC (M) and SQEC (A),
improves the results significantly for all datasets. We also observe
that there are differences between selecting the entities manually
or automatically. The manual entity selection is almost an upper
bound of SQE because it isolates the creation of the query graphs
from errors that could be introduced due to the entity linking mod-
ule. Nonetheless, we observe that in the worst-case scenario (Image
CLEF, P@5), the improvement achieved by SQEC (A) represents
81.89% of the result achieved by SQEC (M). As shown in Figure 6c,
there is also a difference between the results achieved by SQEC (M)
and SQEC (A) for the larger tops, while in small tops is impercepti-
ble. It is difficult to explain why in Entity linking is not the focus of
this paper, however, improving the techniques used in our system
would improve the results, making it possible to achieve the results
of selecting manually the entities and the query nodes.

In Tables 2a, 2b and 2c, we show the precision achieved for
the three datasets. In particular, we show the results achieved by
our baselines, the expansion features and SQE. The results show
that both SQEC (M) and SQEC (A) present statistically significant
improvements with respect to the baselines for the three datasets.

Note that combining query graphs allows, in Table 2a, achieves
better results than each of the configurations independently in
their best range, in Table 1 This supports our strategy of combining
the results obtained by different expanded queries to improve the
quality of the results independently the amount of them.

Focusing only in SQEC (A) we also observe differences among
the results. A superficial analysis could induce us to think that it
performs better for Image CLEF because the precision achieved
with this dataset goes from 0.380 (P@5) to 0.029 (P@1000), while
for CHiC 2012 and 2013 it goes from 0.232 to 0.013 and from 0.304
to 0.017 respectively. We could also think this could be due to an
overfitting of SQE for Image CLEF, since it is the training dataset.
However, there are objective facts that explain this behavior. First,
the document collection of Image CLEF consists of 237,434 doc-
uments, while the document collection of the CHiC datasets has
1,107,176. This makes Image CLEF an easier dataset. Moreover, Im-
age CLEF has an average of 68.8 correct results per query, while
CHiC 2012 and CHiC 2013 have 31.32 and 50.6 respectively. In ad-
dition, all the queries in Image CLEF have at least 1 correct result,
while in CHiC 2012 there are 14 queries (out of 50) that do not
have any correct results and in CHiC 2013 there is 1 query without
any correct result. Note that the larger the number of valid results
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Figure 6: Percentage improvement of the query expansions selecting the entities manually SQEC (M) and automatically
SQEC (A) and also of the expansion features isolatedly.

P@5 P@10 P @15 P@20 P_@30 P@100 P@200 P@500 P@1000
QLQ 0.136 0.130 0.121 0.112 0.089 0.035 0.018 0.007 0.003
QLE (M) 0.248 0.226 0.220 0.213 0.197 0.125 0.077 0.038 0.020
QLE (A) 0.156 0.134 0.145 0.147 0.137 0.107 0.069 0.035 0.022
QLQ&E (M) 0.244 0.220 0.213 0.210 0.195 0.127 0.081 0.040 0.021
QLQ&E (A) 0.148 0.124 0.133 0.138 0.133 0.107 0.069 0.035 0.022
QX 0.216 0.172 0.147 0.137 0.129 0.069 0.045 0.023 0.013
SQEC (M) 0.464† 0.432† 0.393† 0.371† 0.313† 0.165† 0.102† 0.050† 0.027†
SQEC (A) 0.380† 0.378† 0.347† 0.321† 0.286† 0.155† 0.100† 0.052† 0.029†

(a) Image CLEF results.

P@5 P@10 P @15 P@20 P_@30 P@100 P@200 P@500 P@1000
QLQ 0.148 0.100 0.084 0.077 0.074 0.034 0.018 0.007 0.004
QLE (M) 0.156 0.118 0.108 0.101 0.093 0.042 0.023 0.010 0.005
QLE (A) 0.100 0.072 0.067 0.061 0.053 0.021 0.011 0.007 0.004
QLQ&E (M) 0.168 0.124 0.113 0.106 0.097 0.044 0.023 0.010 0.005
QLQ&E (A) 0.116 0.086 0.076 0.068 0.057 0.022 0.012 0.007 0.004
QX 0.000 0.000 0.000 0.000 0.007 0.011 0.010 0.006 0.005
SQEC (M) 0.280† 0.230† 0.196† 0.169† 0.141† 0.067† 0.038† 0.020† 0.013†
SQEC (A) 0.232† 0.206† 0.181† 0.168† 0.139† 0.061† 0.035† 0.019† 0.013†

(b) CHiC 2012 results.

P@5 P@10 P @15 P@20 P_@30 P@100 P@200 P@500 P@1000
QLQ 0.160 0.110 0.101 0.092 0.084 0.045 0.028 0.011 0.006
QLE (M) 0.132 0.110 0.119 0.115 0.104 0.054 0.035 0.016 0.009
QLE (A) 0.104 0.078 0.076 0.065 0.058 0.034 0.026 0.015 0.008
QLQ&E (M) 0.132 0.110 0.119 0.119 0.110 0.056 0.036 0.017 0.009
QLQ&E (A) 0.104 0.082 0.080 0.071 0.062 0.035 0.026 0.015 0.008
QX 0.052 0.036 0.035 0.032 0.028 0.015 0.011 0.006 0.004
SQEC (M) 0.308† 0.250† 0.224† 0.203† 0.176† 0.103† 0.062† 0.030 0.020†
SQEC (A) 0.304† 0.250† 0.219† 0.202† 0.172† 0.090† 0.053† 0.026† 0.017†

(c) CHiC 2013 results.

Table 2: Comparison of the precision. † indicates statisti-
cally significant improvement.
for the queries, the easier it is to resolve them. Hence, the highest
precision is achieved for the Image CLEF collection, then comes
CHiC 2013 and finally, CHiC 2012. Moreover, we observe that the
percentage improvement, shown in Figure 6, for the three datasets
is equivalent, and even better for the CHiC 2013 dataset.

4.3 Pseudo-Relevance Feedback comparison
Now we compare SQE with pseudo-relevance feedback (PRF), a
state-of-the-art expansion model which extract the expansion fea-
tures from the top documents retrieved by the query. We use PRF
as an adaptation of Lavrenko’s relevance model [8]. In this model,
the original query Q is used to retrieve a ranked list of documents
D ordered by P(Q |D) and sort their concepts by P(w |Q) to keep top
n concepts, which are the expansion features. Then it combines the
original query with the expansion features. The relevance model,
P(w |Q), is computed as: P(w |Q) =

∑
D (P (w |D)P (Q |D)P (D)

P (Q )
.

P@5 %G P@10 %G P@15 %G P@20 %G P@30 %G
PRFQ 0.000 -100 0.000 -100 0.000 -100 0.001 -99.11 0.000 -99.22
PRFE 0.004 -97.44 0.004 -91.01 0.004 -97.25 0.003 -97.96 0.002 -98.54
PRFQ&E 0.004 -97.30 0.002 -98.39 0.003 -97.98 0.003 -97.83 0.003 -97.96
SQEC /
PRF 0.432 +13.68 0.370 -2.12 0.348 +0.39 0.323 +0.62 0.289 +1.15

(a) Image CLEF results.

P@5 %G P@10 %G P@15 %G P@20 %G P@30 %G
PRFQ 0.000 -100 0.002 -98.00 0.001 -98.45 0.001 -98.70 0.000 -99.22
PRFE 0.000 -100 0.008 -88.89 0.004 -92.05 0.005 -91.80 0.005 -98.54
PRFQ&E 0.000 -100 0.004 -95.35 0.003 -96.45 0.002 -97.06 0.001 -97.96
SQEC /
PRF 0.244 +5.17 0.218 +5.83 0.193 +6.60 0.173 +2.98 0.145 +3.85

(b) CHiC 2012 results.

P@5 %G P@10 %G P@15 %G P@20 %G P@30 %G
PRFQ 0.000 -100 0.004 -96.36 0.004 -96.05 0.003 -96.74 0.003 -96.07
PRFE 0.000 -100 0.008 -89.74 0.007 -91.18 0.008 -87.69 0.007 -88.45
PRFQ&E 0.004 -96.15 0.006 -92.68 0.005 -93.38 0.006 -91.55 0.005 -91.45
SQEC /
PRF 0.288 -5.26 0.264 +5.60 0.237 +8.52 0.220 +8.91 0.193 +12.39

(c) CHiC 2013 results.
Table 3: Precision achieved using PRF. “%G” stands for per-
centage gain with respect to precision in Table 2.

For the three datasets, in Table 3 we show the results achieved
using PRF with the user’s query (PRFQ ), with the query entities
(PRFE ) and both (PRFQ&E ). We also show the percentage gain with
respect to theQLQ ,QLE andQLQ&E in Table 2. These results show
that PRF is not particular useful to improve the precision in any
of the analyzed tops. On the contrary, PRF seems to worsen the
results. Although PRF has proven to be a useful expansion model
allowing to achieve relevant improvements for many queries, it
does not allow identifying good expansion features for the tested
datasets. Also, we show, for the three datasets, the results achieved
by combining SQE with PRF. In this case SQE is used to generate
a query, then this query is used by PRF as previously described
to reformulate the query and retrieve the documents. We observe
that in most of the analyzed tops the combination of PRF with SQE
allows improving the results shown previously in Table 2.

Note that although PRF techniques do not improve the results
of non-expanded queries of our datasets, it uses and benefits from
the SQE expansion. Actually, SQE is designed to be orthogonal to
many other techniques some of them reviewed in Section 5.

4.4 SQE Performance
We used an Intel Xeon CPU E5-2609 with 128GB of RAM. We have
not used any technique, such as indexing or exploiting parallelism,
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Image CLEF CHiC 2012 CHiC 2013
SQET 47.06 74.09 51.80
SQET&S 94.12 178.20 119.84
SQES 52.42 105.94 69.18
Total Time 1373.38 8907.76 5361.34

Table 4: Execution times in milliseconds.

to speed up the process. In Table 4 we show the time spent gen-
erating the query graphs by means of using the described motifs:
the triangular, the square and the combination of both. Note that
the total query expansion time is negligible compared with the
whole process. In the worst-case scenario, which is the Image CLEF
dataset, the time spent building the three query graphs represents
14% of the total, while in the two other datasets this only repre-
sents 4%. Also, the maximum amount of time spent building the
query graphs, 358.23 for the CHiC 2012 collection, is not burden
for real-time systems. This time would probably be easily reduced
by parallelizing the expansion process.

5 RELATEDWORK
Wikipedia has become a frequently used source of expansion fea-
tures Egozi et al. [5] use it to rewrite the queries by using PRF. This
technique depends on the quality of the pseudo-relevance feedback
expansion, which is very poor in our query set unless we previously
expand the queries. In [2], the expansion features are extracted out
of the most important terms of the Wikipedia articles and are calcu-
lated with classical TF-IDF. Wikipedia is also used to derive search
support tools. For instance, in [11], Wikipedia is used to build a
map of concepts, then, users’ queries are mapped onto those con-
cepts, which make it easier for the search engine to resolve them.
In [6], the authors show that anchor texts are similar to real queries
regarding to term distribution and length, therefore they can be a
source of expansion features. This approach is interesting for us
because we could use the anchor texts of the expansion nodes as an-
other source of expansion features. Also, in [7], they build a virtual
query log, that can be used to reformulate the queries. However, to
the best of our knowledge, few techniques explore the structure of
the KB, and those that do it, limit its use to the link level, ignoring
more complex, and according to our results, relevant structures.
For example, in [1], the authors propose a query expansion method
for blog recommendation. Their method is based on the analysis of
links. The anchor text of the most important twenty links is used
to expand the query which results in a significant improvement in
terms of precision. Such an approach could be used in our work to
rate the importance of the links, and then, include the strength of
connections in the motifs. Also, in [4], the authors contribute to
the field with a relevant work consisting in exploiting the entities
as source of expansion features. The authors propose a framework
which builds a model in which the entities of documents and queries
are central for the retrieval process. This approach is interesting,
and we would like to explore it further. In contrast to previous
works, in this paper we do not focus on analyzing the content of
the KB, or ranking the links among articles using other techniques.
In [9], the authors presented a proof of concept in which they used
the network structure of a KB. Although they achieved good results,
they borrow a metric for community detection in social networks
and hence, they do not exploit the particular KBs structures.

6 CONCLUSIONS AND FUTUREWORK
We have proposed SQE as a query expansion technique that relies
on the underlying network structures of KBs. SQE is a three-steps
process. First, analyzes the KB structure to reveal relevant charac-
teristics. Second, it materializes these characteristics into a set of
motifs, which are used to relate the user’s queries with a set of se-
mantically connected entries from the KB with no need of semantic
analysis. Third, it builds the expanded query with the original query
and the expansion features extracted from the relevant entries.

From the analysis ofWikipedia, we have defined 2 different types
of motifs: the triangular motif and the square motif. To evaluate
SQE we have used three different datasets, Image CLEF, CHiC 2012
and CHiC 2013. The results achieved by SQE are consistent for
the three datasets, thus that SQE is not overfitted for a particular
one. From the results, we see that the triangular motif is useful to
improve the results of small tops up to 83.87%, a combination of
the triangular and the square motifs improve the result in between
small and large tops up to 33.30%, while using the square motif
exclusively improves the results of large tops up to 83.85%. Also,
we have presented a way of combining several query graphs to
improve the most no matter the top to be optimized.

We have succeeded in identifying the propermotifs forWikipedia,
however there are many KBs and probably each has its own rel-
evant structures. We need to expand our understanding of KBs,
and study what other motifs may be relevant for other KBs besides
Wikipedia. For that purpose, we are already working on a learning
algorithm that is capable of identifying such motifs automatically.
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