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ABSTRACT
Over the past decade, we have moved from a predominantly
desktop based web to a predominantly mobile web, where
users most often access the web from mobile devices such as
smartphones. In addition, we are witnessing a proliferation
of geo-located, textual web content. Motivated in part by
these developments, the research community has been hard
at work enabling the efficient computation of a variety of
query functionality on geo-textual data, yielding a sizable
body of literature on the querying of geo-textual data.

With a focus on different types of keyword-based queries
on geo-textual data, the tutorial also explores topics such as
continuous queries on streaming geo-textual data, queries
that retrieve attractive regions of geo-textual objects, and
queries that extract properties, e.g., topics and top-k fre-
quent words, of the objects in regions. The tutorial is de-
signed to offer an overview of the problems addressed in this
body of literature and offers an overview of pertinent con-
cepts and techniques. In addition, the tutorial suggests open
problems and new research direction.

1. INTRODUCTION
In part due to the proliferation of GPS-equipped mo-

bile devices, notably smartphones, massive volumes of geo-
located, or geo-tagged, text content is becoming available
on the Web. Examples of such content include points of in-
terest (POIs) with descriptive text, geo-tagged micro-blog
posts (e.g., tweets), geo-tagged photos with text tags (e.g.,
as found at Flickr and Instagram), check-ins from location-
based social networks (e.g., FourSquare), geo-tagged news,
and geo-tagged web pages.

We refer to such data as geo-textual, or spatio-textual,
data. As stated, massive volumes of such data are avail-
able. For example, Foursquare hosts over 87 million loca-
tions around the world with over 8 billion check-ins1. Fur-
ther, new geo-textual data is being generated, and the vol-

1https://foursquare.com/about accessed January 2016.
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umes of geo-textual data are expected to grow at an accel-
erated pace as mobile devices continue to proliferate.

Geo-textual data can be divided into (i) streaming geo-
textual data that arrives at a high rate, exemplified by geo-
tagged tweets and (ii) static geo-textual data that is rela-
tively stable, exemplified by collections of POIs.

The development described above also motivates increased
research on the management of geo-textual data in the data
management, data mining, and information retrieval com-
munities. On the one hand, compared with traditional spa-
tial data, the textual component greatly enriches the data.
On the other hand, the spatial component of geo-textual
data also adds a new and semantically rich aspect to tex-
tual data.

The tutorial first covers keyword-based querying of geo-
textual data and then covers related functionality. A brief
overview of the scope of the tutorial follows.

Spatial keyword queries. Many types of spatial database
queries have been revisited for geo-textual data; and key-
word queries have also been revisited in the context of geo-
textual data. The resulting studies give prominence to spa-
tial keyword queries that combine spatial functionality (e.g.,
range and nearest neighbor queries) with keyword queries.
A typical spatial keyword query finds the objects that best
match the location and keywords in the query. To address
different use cases, many types of spatial keyword queries
and accompanying indexing and query processing techniques
have been proposed.

Querying geo-textual streams. Geo-textual data may
arrive at a high rate (e.g., geo-tagged tweets or photos) and
can then be modeled as a data stream. In such streaming
settings, continuous queries are of particular interest. Here,
users may want to be notified when interesting geo-textual
objects arrive. For example, a user may want to be notified
when tweets arrive that contain the term“flu”and are posted
from within 5 km of the user’s home.

Exploratory search and mining. Exploratory search [41]
helps users search, navigate, and discover new facts and has
grown in prominence. Here, querying and browsing are typ-
ically combined to enable investigation and foster learning.
Geo-textual data contains both structured and unstructured
data and can be readily presented on a map. One approach
to enabling exploratory search on geo-textual data is to con-
duct search or mining of geo-textual data in a user-specified
region interactively, such as finding the top-k most frequent
terms in a region. Another approach is to interactively find
regions with particular, user-specified properties.
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In the reminder, we review the topics covered and also cover
future directions.

2. SPATIAL KEYWORD QUERIES
We briefly review different types of spatial keyword queries

and indexing techniques.

2.1 Standard Queries
Standard queries generalize fundamental queries from spa-

tial databases and information retrieval. In spatial databases,
the arguably most fundamental queries are range and k near-
est neighbor queries. In information retrieval, queries may
be Boolean, returning results that contain query keywords,
or ranking-based, returning the k objects that are most simi-
lar to query keywords according to some text similarity func-
tion.

The content that is queried is a set D of objects. An ob-
ject p ∈ D has two attributes: 〈λ, ψ〉, where λ encodes a
geo-location and ψ is a text value. These objects are digital,
are often assumed to be available on the web, and typically
represent a physical, geo-located entity that may be of po-
tential interest to a user. The objects are also called places,
POIs, geo-textual objects, or web objects. Standard queries
return a set or ranked list of objects from D.

We cover several types of standard queries. Let ρ be a
spatial region, λ be a point location, ψ be a set of keywords,
and k be the number of objects to return.

1. A Boolean range query q = 〈ρ, ψ〉 returns all objects
in D that are located in region ρ and that contain all
the keywords in ψ.

2. A Boolean kNN query q = 〈λ, ψ, k〉 returns up to k
objects from D, each of which contains all the keywords
in ψ, ranked in increasing spatial distance from λ.

3. A top-k range query q = 〈ρ, ψ, k〉 returns up to k ob-
jects from D that are located in the query region ρ,
now ranked according to their text relevance to ψ.

4. Finally, a top-k kNN query q = 〈λ, ψ, k〉 retrieves k
objects from D, ranked according to a score that takes
into consideration both spatial proximity and text rel-
evance.

We name the above queries by following the work [4]; the
queries may be named differently in other studies [10,13,19,
21,27,29,43,50,61,65,67].

2.2 Beyond Single Object Result Granularity
In some scenarios, a user’s needs are not met best by a

query result that returns a set or ranked list of geo-textual
objects from D, each of which aims to satisfy the user’s
needs. Instead, the user’s needs may be better satisfied by
an aggregation of several objects that are near each other,
meaning that the possible answers are subsets of D, sets of
subsets of D, or ranked lists of subsets of D.

For example, several objects may combine to collectively
meet the user’s needs, while no individual object meets the
needs well. Consider a query with keywords “hotel, pub,
beach.” Perhaps no nearby single place is a good match
for this combination of keywords. Instead, a group of three
places that are close to each other and are close to the query

location may combine to provide a result that meets the
user’s needs better than any single object.

The m-closest keywords (mCK) query [26,63,64] retrieves
a set of objects with text descriptions that combine to con-
tain a set of m query keywords, while also minimizing the
maximum distance between any two objects in the result
set. Apart from retrieving a set of objects satisfying the
user needs, the mCK query can also be used for geo-tagging
a document or a photo with textual tags.

The collective keyword query [6, 7, 37] further generalizes
the mCK query. A query q takes a location λ and a set of
keywords ψ as arguments. Its search space is all subsets of
the set of objects D, and it returns a set of objects such that
(i) the textual descriptions of the objects collectively cover
ψ, (ii) the result objects are all close to λ, and (iii) the result
objects are close to each other.

The top-k groups query [2, 47] aims to support users who
wish to explore different objects. For example, a user may
want to explore different restaurants before deciding where
to have dinner. Given a query location and query keywords,
the query retrieves a ranked list of k groups, or sets, of ob-
jects that score the best according to a ranking function that
takes into account the diameter of the group, the group’s dis-
tance to the query location, and the relevance of the group’s
objects to the query keywords. Unlike in the collective key-
word query, where result objects combine to be an answer,
each object in a result group is a possible answer.

The keyword-aware route planning query [5, 60] retrieves
a route that covers all query keywords and perhaps satis-
fies a certain constraint (e.g., distance), while optimizing an
objective, e.g., the popularity of the route.

2.3 Other Queries
Generalizations of many other types of spatial queries are

revisited in the context of geo-textual data, including the
following.

1. Moving continuous queries [54, 57–59]. This type of
query enables a mobile user (e.g., a pedestrian or driver)
to be continuously aware of the k geo-textual objects
that best match a query with respect to location and
text relevancy. In addition to static POIs, the objects
may model users that play the role of service providers
and thus offer moving services, with textual descrip-
tions, to other users.

2. Why-not queries [14, 15]. When issuing a top-k NN
query, a user may expect some known object to be
in the result of the query. Should such an object be
missing from the result, a why-not query offers an ex-
planation of why the expected object is missing and
suggests a similar query with revised parameters that
includes the missing object in its result.

3. Reverse kNN queries [18, 38]. Different from a tra-
ditional user, a business may be interested in finding
users or business objects that have a query object in
their lists of top-k objects ranked by a ranking function
that takes both spatial proximity and text relevance
into consideration. This query is called a reverse spa-
tial and textual kNN query.

4. Similarity join queries [3, 22]. Given a set of geo-
textual objects, a distance threshold, and a text simi-
larity threshold, the spatio-textual similarity join query
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finds all pairs of objects such that the distance between
each pair is smaller than the distance threshold and
their text similarity exceeds a threshold.

2.4 Querying in Road Networks
The proposals reviewed above generally assume a Eu-

clidean space setting. Other proposals (e.g., [8, 44, 62]) on
efficiently processing of spatial keyword queries assume a
spatial-network setting and define spatial distance as road
network distance, which is more computationally expensive
to compute than Euclidean distance. A distributed solu-
tion [39] is proposed to process Boolean range queries and
spatial group keyword queries on road networks.

2.5 Indexing Techniques
A common challenge in answering the kinds of spatial key-

word queries covered above is to develop index structures
and algorithms that enable efficient query processing. The
tutorial does not cover algorithms, but it offers a brief cover-
age of indexing techniques for geo-textual data and related
techniques used in open sources/commercial systems.

Existing spatial-keyword indexing techniques usually com-
bine a spatial index and a text index so that both textual
and spatial information can be utilized to prune the search
space when processing spatial keyword queries. The exist-
ing indices can be categorized according to the spatial index
they utilize: (i) R-tree based indices [21,27,29,43,55,56,67];
(ii) grid or quad-tree based indices [20, 34, 50, 61, 65]; and
(iii) space filling curve based indices [16,19]. Using the text
index employed, indexing techniques can also be classified
as inverted file based (e.g., [67]) and signature-file based
(e.g., [29]). In addition, some techniques (e.g., [67]) loosely
combine a spatial and a text index, while other others in-
tegrate them tightly, resulting in hybrid index structures
(e.g., [29]), and yet another approach captures an object’s
spatio-textual part as a compact bit string that can be in-
dexed using a standard index [46] such as a B-tree.

3. QUERYING GEO-TEXTUAL STREAMS
Streaming geo-textual data, exemplified by streams of geo-

tagged microblog posts, is an increasingly available and thus
important type of data that is attracting increasing inter-
est. Most of existing research on querying geo-textual data
streams aims to develop efficient solutions to handling a
large number of spatial-keyword subscription, or continuous,
queries over geo-textual streams. We cover recent studies on
querying geo-textual data streams.

Boolean subscription queries. Several proposals [11,
35, 53] consider Boolean subscription queries over stream-
ing data, where both spatial and keyword conditions serve
as Boolean filters. These proposals adopt slightly different
settings.

For example, the keyword condition in one study [11] sup-
ports both Boolean AND and Boolean OR semantics, while
the other studies [35, 53] focus on Boolean AND. The geo-
textual objects in one study [35] can be associated with re-
gions, while the geo-textual objects in the other studies have
point locations. These proposals present solutions to index-
ing and grouping subscription queries such that a group of
subscriptions can be processed together over the geo-textual
data stream, rather than being processed individually, which
will be computationally expensive. In addition to being able
to efficiently process a large number of subscription queries

over geo-textual data streams where geo-textual objects ar-
rive at a high rate, such solutions should be capable of ef-
ficiently handling the arrival of new subscriptions and the
expiry or discontinuation of existing subscriptions.

Similarity based subscription queries. Instead of em-
ploying Boolean conditions in subscription queries, several
recent studies [12,28] employ similarity notions in subscrip-
tion conditions. In one study [28], a subscription condition
can be defined on the spatial-keyword similarity between an
incoming geo-textual object and a subscription. Thus, if the
similarity exceeds a threshold, the condition is satisfied, and
the object is emitted as a result of the subscription.

In contrast, another study [12] aims at maintaining the
top-k best objects for each subscription over a stream of
geo-textual objects, where the ranking score for each object
is computed by considering text relevance, spatial proximity,
and the freshness of the object. In yet another study [25], a
different type of subscription query is proposed, where the
user of each subscription query moves.

Other queries There exists little work on supporting one-
time queries on geo-textual data streams. A system [40]
is built to support querying geo-textual data within given
spatial and temporal ranges.

4. EXPLORATORY SEARCH AND MINING
We proceed to outline studies on exploring geo-textual

data. We group them into two categories.

Region search. Given a collection of geo-textual objects,
the region search problem is to identify a region, that sat-
isfies a user-specified condition (e.g., involving the size and
shape of the region) and that maximizes some aggregate
score (e.g., a SUM function) of the objects inside it, for user
exploration. Based on a returned result, users may want to
modify the query parameters and issue a new region search
query.

Given a set D of geo-textual objects and a rectangle r of
a given size (length and width), the Maximizing Range Sum
(MaxRS) problem is to find a location for r that maximizes
the sum of the scores of all the objects covered by r. The
problem was first studied in the computational geometry
community. Imai et al. [30] propose an O(n logn) optimal
algorithm, where n is the number of objects in D; Nandy and
Bhattacharya [42] propose a line-sweeping-based algorithm
with the same complexity. An external memory algorithm
for the MaxRS problem has also been proposed [17], as has
an approximate algorithm for the problem [49]. In recent
work [23], the aggregate score functions in the region search
problem are defined to be submodular monotone set func-
tions, rather than SUM as used in MaxRS query. These ex-
isting studies on region search consider a collection of static
geo-textual objects.

The problem of finding a region that does not exceed a
given size and that contains objects with the maximum sum
of scores is also studied in a road network setting [9]. Here,
vertices are created for all geo-textual objects, and weights
are associated with vertices that denote the relevance to
query keywords of an object. A region is a connected sub-
graph, and subgraph size is formalized as the sum of the
lengths of the edges in in the subgraph. The goal is then
to find a qualifying subgraph where the sum of the vertex
weights is maximal.

The above studies do not aim at supporting interactive
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exploration. In contrast, Alexander et al. [31] propose se-
mantic window to study the region search problem for inter-
active data exploration of multidimensional data, in which
a user explores a data space by posing a number of queries
that find rectangular regions of interest.

Region exploration. The problem of region exploration is
to explore and discover properties of user-specified regions.
Based on the returned results, users may interactively spec-
ify different regions and pose a different region exploration
queries. Region exploration over geo-textual data is a rel-
atively new research topic. Given a user-specified region,
one study [48] considers the problem of retrieving the top-
k frequent words over the geo-textual data stream for the
region. Another study considers the problem of selectivity
estimation [52] for a user-specified region. Based on pre-
computed probabilistic topic models for each grid cell, a re-
cent study [66] proposes an approach to efficiently discover
topics for a user-specified region. Additionally, event detec-
tion [1] is performed for a given region over text streams [51].
Feng et al. [24] propose a system called StreamCube de-
signed to enable exploration of events over the spatio-temporal
Twitter stream by clustering hashtags. Sankaranarayanan
et al. [45] develop a news processing system, called Twitter-
Stand, to continuously acquire breaking news from tweets.
In TwitterStand, tweets falling into a specified region are
clustered, and each cluster of tweets is associated with a set
of geographical locations.

5. FUTURE DIRECTIONS
While good progress has already been made, research on

geo-textual data has just begun, and there are many oppor-
tunities for continued research. Here, we discuss some of the
possible directions.

Effective ranking and user evaluation. Numerous sig-
nals are in play when search engines perform ranking of web
pages, such as the quality of a web page, click through, and
diversity. It is natural to consider whether the signals used
for conventional web-page ranking can be useful for the rank-
ing of geo-textual data. Further, geo-textual data contains
new features that can be considered for ranking, such as the
popularity or rating of a POI.

Reliable evaluation of ranking proposals for geo-textual
objects is essential in order to make progress. There is of-
ten no mathematical definition of the right, or best, result.
Rather, the utility of a result is user dependent, and we need
to determine how useful users will find a result. It is thus
challenging to establish a reliable ground truth for the re-
sults of ranking queries, and user evaluation is an important
ingredient when attempting to evaluate the effectiveness of
a proposal for the ranking of geo-textual objects. Being able
to assess how good ranking functions are will enable better
and more complex ranking function [32]. This may in turn
call for new indexing and query processing techniques.

Personalized spatial keyword queries. The existing
work on spatial keyword queries does not consider person-
alization. On the other hand, work on personalized loca-
tion recommendation [36] does not consider spatial keyword
search, but instead aims to understand users’ topical in-
terests and mobility preference from users’ historical geo-
textual data. It is of interest to attempt to bridge this gap,
thus enabling personalized search.

Querying and mining geo-textual data streams. It is

an open problem to effectively and efficiently support con-
tinuous queries on geo-textual streams. For example, in-
stead of receiving individual tweets from a stream, users may
want to be notified in real time of relevant trending events
or even of casual relationships among events. Furthermore,
high velocity geo-textual data streams call for distributed so-
lutions. Additionally, geo-textual data streams can be inte-
grated with static geo-textual data, such as POIs. By bridg-
ing dynamic geo-textual data streams and static geo-textual
data, exciting opportunities for data analytics emerge.

Exploratory search and mining. Being a new topic
for geo-textual data, many research problems remain open
within the scope of this topic. For example, what are inter-
esting exploratory search and mining tasks on geo-textual
data? What factors should be considered in such tasks, e.g.,
diversity [33]? How can the tasks be performed efficiently?
How can interactive exploratory search and mining be per-
formed efficiently?
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