
Towards Window Analytics over Large-scale Graphs

Qi Fan
NUS Graduate School for Integrative Sciences

and Engineering
National University of Singapore

Singapore
fan.qi@nus.edu.sg

Kian-Lee Tan
Department of Computer Science

School of Computing, NUS
Singapore

tankl@comp.nus.edu.sg

ABSTRACT
In relational DBMS, window functions have been widely used to
facilitate data analytics. Surprisingly, while similar concepts have
been employed for graph analytics, there has been no explicit no-
tions of graph window analytic functions. In this paper, we for-
mally introduce window queries for graph analytics. In such queries,
for each vertex, the analysis is performed on a window of vertices
defined based on the graph structure. In particular, we identify three
instantiations, namely the unified window, the k-hop window and
the topological window. We focus on processing the latter two
window queries and develop two novel indices, Dense Block in-
dex (DBIndex) and Inheritance index (I-Index), to facilitate effi-
cient processing of these two types of windows respectively.

Categories and Subject Descriptors
H.2.4 [Systems]: Query processing; H.2, E.5 [Database]: Opti-
mization

General Terms
Graph Database, Query Processing, Large Network

1. INTRODUCTION
Information networks such as social networks, biological net-

works and phone-call networks are typically modeled as graphs [4]
where the vertices correspond to objects and the edges capture the
relationships between these objects. For instance, in social net-
works, every user is represented by a vertex and the friendship be-
tween two users is reflected by an edge between the vertices. In ad-
dition, a user’s profile can be maintained as the vertex’s attributes.
Such graphs contain a wealth of valuable information which can be
analyzed to discover interesting patterns. With increasingly larger
network sizes, it is becoming significantly challenging to query,
analyze and process these graph data. Therefore, there is an urgent
need to develop effective and efficient mechanisms over graph data
to draw out information from such data resources.

Traditionally, in relational DBMS, window functions have been
commonly used for data analytics [3]. Instead of performing anal-

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full cita-

tion on the first page. Copyrights for components of this work owned by others than

ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-

publish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

SIGMOD’15 PhD Symposium, May 31, 2015, Melbourne, Victoria, Australia.

Copyright c© 2015 ACM 978-1-4503-3529-4/15/05 ...$15.00.

http://dx.doi.org/10.1145/2744680.2744689.

ysis (e.g. ranking, aggregate) over the entire data set, a window
function returns for each input tuple a value derived from applying
the function over a window of neighboring tuples. For instance,
users may be interested in finding each employee’s salary ranking
within the department as shown in Figure 1. In such a window
function, each tuple’s neighbors are the tuples from the same de-
partment. Generally, a tuple’s window is the set of tuples which
are related to it. Thus, performing analytics over a tuple’s window
reflects its personalized evaluation.

Employee ID Department Salary Departmental_
Rank

11 develop 5200 2
7 develop 4200 5
9 develop 4500 4
8 develop 6000 1

10 develop 5200 3
5 personnel 3500 2
2 personnel 3900 1
3 sales 4800 3
1 sales 5000 1
4 sales 4800 2

SELECT Employee ID,
Department, Salary, RANK()
OVER (PARTITION BY
Department ORDER BY Salary) as
Departmental_Rank
FROM empsalary;

Base Table (empsalary)

Window for
tuples
 11,7,9,8,10

Figure 1: Window function in RDBMS. The employee salary table
is partitioned based on department and each employee’s salary is
ranked based on the window query on the right-hand side.

Interestingly, this notion of window turns out to be not uncom-
mon in graph scenario. For instance, in a social network, it is im-
portant to detect a person’s social position and influence among
his/her social community. The “social community” of the person
is essentially his/her window comprising neighbors derived from
his/her friends. Surprisingly, though such a concept of window
functions has been widely used, the notion has not been explicitly
formulated. In this paper, we are motivated to bring window query
from relational table to graph. As compared to relational scenario,
the structure of graph plays an important role in determining relat-
edness of vertices. Thus, based on various metrics of relatedness,
we identified three types of the windows , namely unified, k-hop,
and topological windows. We first demonstrate these window se-
mantics with the following examples:

EXAMPLE 1. (Unified window) In a web graph, web pages are
modeled as vertices and the hyperlinks are the edges. In order to
find the importance of webpages, some measures (e.g. PageRank,
centrality etc.) need to be performed. Usually, the entire web graph
is partitioned based on the webpage category (e.g. news, advertis-
ing, and personal blogs etc.). In such scenarios, collecting vertices
based on attribute is necessary.

EXAMPLE 2. (K-hop window) In a social network (e.g. Linked-
In and Facebook etc.), users are normally modeled as vertices and
connectivity relationships are modeled as edges. In social network

15

scenario, it is of great interest to summarize the most relevant con-
nections to each user such as the neighbors within 2-hops. Some
analytic queries such as summarizing the related connections’ dis-
tribution among different companies, and computing age distribu-
tion of the related friends can be useful. In order to answer these
queries, collecting data from every user’s neighborhoods within 2-
hop is necessary.

EXAMPLE 3. (Topological window) In biological networks (
such as Argocyc, Ecocyc etc.[5]), genes, enzymes and proteins are
vertices and their dependency in a pathway are edges. Because
these networks are directed and acyclic, in order to study the pro-
tein regulating process, one may be interested to find out the statis-
tics of molecules in each protein production pathway. For each
protein, we can traverse the graph to find every other molecule that
is in the upstream of its pathway. Then we can group and count the
number of genes and enzymes among those molecules.

A common feature among these examples is that data aggrega-
tion for each vertex is based on a set of related vertices (which is
the graph window). To illustrate, in E.g. 1, every webpage needs
to gather other pages with the same category, which forms its win-
dow. Similarly, in E.g. 2, every user needs to gather data from its
friends and friends-of-friends. The 2-hop neighbors form its win-
dow. Likewise, in E.g. 3, every protein needs to count the number
of particular type of genes preceding it in the regulating pathway.
For every protein, the set of preceding molecules forms its window.

To support analyses in the above-mentioned examples, we pro-
pose a new type of query, Graph Window Query (GWQ in short),
over a data graph. Unlike the relational window query, we identify
three types of useful graph windows, namely Unified Window Wu,
k-hop Window Wkh and Topological Window Wt. Wu forms a
window for one vertex by looking at the vertices that of the same
type. which represents the attribute relatedness as shown in E.g 1.
Wkh forms a window for one vertex by using its k-hop neighbors,
which demonstrates the structure closeness as shown in E.g. 2. Wt,
on the other hand, forms a window for one vertex by using all its
preceding vertices in a directed acyclic graph. The preceding ver-
tices of one vertex are normally those which structurally influence
the vertex in a network as illustrated in E.g 3.

To the best of our knowledge, existing graph databases or graph
query languages do not directly support our proposed GWQ. There
are two major challenges in processing GWQ. First, we need ef-
ficient schemes to calculate the window of each vertex. Second,
we need efficient solutions to process the aggregation over a large
number of windows that may overlap. This offers opportunities to
share the computation. However, it is non-trivial to address these
two challenges. In this paper, we focus on efficiently processing
k-hop and topological window as they show structural relatedness
and are more challenging than unified window.

2. PROBLEM FORMULATION
We use G = (V,E) to denote a directed/undirected data graph,

where V is its vertex set and E is its edge set. Each node/edge is
associated with a (possibly empty) set of attribute-value pairs.

Figure 2 shows an undirected graph representing a social net-
work. The table shows the values of the five attributes (User, Age,
Gender, Industry, and Number of posts) associated with each ver-
tex. For convenience, each node is labeled with its user attribute
value; and there is one edge between a user X and another user Y
if X and Y are connected in the social network.

Given a data graph G = (V,E), a Graph Window Function
(GWF) over G can be expressed as a quadruple (G,W,Σ, A), where

A

B

C

D

E

F

User Age Gender Industry Posts

A 21 M IT 12

B 26 F IT 15

C 30 F Finance 28

D 22 M Finance 23

E 28 M Power 26

F 23 F Power 14

(a) (b)

Figure 2: Example Social Graph. (a) provides the graph structure;
(b) provides the attributes associated with the vertices of (a).

W (v) denotes a window specification for a vertex v ∈ V that de-
termines the set of vertices in some subgraph of G, Σ denotes an
aggregation function, and A denotes a vertex attribute. The evalua-
tion of a GWF (G,W,Σ, A) on G computes for each vertex v in G,
the aggregation Σ over W (v), which we denote by Σv′∈W (v)v

′.
Then, we formally define the following three useful types of win-

dow specifications(i.e. W s):

DEFINITION 1 (UNIFIED WINDOW). Given a vertex v in a
data graph G, the unified window of v wrt a classifier θ, denoted by
Wu(v, θ) (or Wu(v) when there is no ambiguity) is the set of ver-
tices whose class is the same as v’s. More specifically, Wu(v, θ) =
{t|t ∈ G.V ∩ θ(t) = θ(u)}

Note that if there is no classifier exists, a vertex’s window is
every vertex in the graph. An example query of Wu could be com-
pute the centrality of each female in the female community. Such
a window can be expressed as Wu(v, gender = F). As shown
in Figure 2, Wu(B, gender = F) is {B,C, F}. In fact, ev-
ery member in the same community shares the same window, i.e.
Wu(C) = Wu(B) = Wu(F).

DEFINITION 2 (K-HOP WINDOW). Given a vertex v in a data
graph G, the k-hop window of v, denoted by Wkh(v) (or W (v)
when there is no ambiguity), is the set of neighbors of v in G which
can be reached within k hops. For an undirected graph G, a vertex
u is in Wkh(v) iff there is a α-hop path between u and v where
α � k. For a directed graph G, a vertex u is in Wkh(v) iff there is
a α-hop directed path from v to u 1 where α � k.

Intuitively, a k-hop window selects the neighboring vertices of
a vertex within a k-hop distance. These neighboring vertices typi-
cally represent the most important vertices to a vertex with regard
to their structural relationship in a graph. Thus, k-hop windows
provide meaningful specifications for many applications, such as
customer behavior analysis [1] etc.

As an example, in Figure 2, the 1-hop window of vertex E is
{A,C,E} and the 2-hop window of vertex E is {A,B,C,D,E, F}.

DEFINITION 3 (TOPOLOGICAL WINDOW). Given a vertex v
in a DAG G, the topological window of v, denoted by Wt(v), refers
to the set of ancestor vertices of v in G; i.e., a vertex u is in Wt(v)
iff there is directed path from u to v in G.

There are many directed acyclic graphs (DAGs) in real-world ap-
plications (such as biological networks, citation networks and de-
pendency networks) where topological windows represent mean-
ingful relationships that are of interest. For example, in a citation

1Other variants of k-hop window for directed graphs are possible;
e.g., a vertex u is in Wkh(v) iff there is a α-hop directed path from
u to v where α � k.

16

network where (X,Y) is an edge iff paper X cites paper Y , the
topological window of a paper represents the citation impact of that
paper [2].

As an example, Figure 3 shows a small example of a Pathway
Graph from a biological network. The topological window of E
Wt(E) is {A,B,C,D,E} and Wt(H) is {A,B,D,H}.

G

F

ED

CB

A

H

ID Type

A Enzyme

B Cytokine

C Transporter

D Enzyme

E Enzyme

F Cytokine

G Enzyme

H Transporter

(a) (b)
Figure 3: Example Pathway DAG. (a) provides the DAG structure;
(b) provides the attributes associated with the vertices of (a).

DEFINITION 4 (GRAPH WINDOW QUERY). A graph window
query on a data graph G is of the form GWQ(G,W1,Σ1, A1, · · · ,
Wm,Σm, Am), where m ≥ 1 and each quadruple (G,Wi,Σi, Ai)
is a graph window function on G.

All three types of window could be uniformly presented in a
SQL-like syntax as in Listing 1, where “compute" clause indicates
aggregation functions and “over” clause indicates the window spec-
ification.

COMPUTE Σ1,Σ2...
ON G
OVER W(Wu|Wkh|Wt)

Listing 1: GWQ Syntax

COMPUTE sum(Posts)
ON social-graph
OVER (2-hop)

Listing 2: GWQ for E.g. 2

In this paper, we focus on graph window queries with a sin-
gle window function that is either a k-hop or topological window.
Furthermore, we focus on the attribute-based aggregation with dis-
tributive or algebraic aggregation functions at this stage. In other
words, let W (v) refer to a set of vertices, then aggregation func-
tion Σ operates on the values of attribute A over all the vertices in
W (v). Meanwhile, the aggregation function Σ is distributive or al-
gebraic (e.g., sum, count, average), as these aggregation functions
are widely used in practice. An sample query to answer E.g. 2 is
shown as in Listing 2.

3. OUTLINE OF METHODOLOGY
To boost window queries, we develop two indexed schemes for

Wkh and Wt queries respectively.

3.1 Dense Block Index for K-Hop Window
We first proposed an indexing scheme named dense block in-

dex(DBIndex), which is both space and query efficient. The main
idea of DBIndex is to try to reduce the aggregation cost by iden-
tifying subsets of nodes that are shared by more than one window
so that the aggregation for the shared nodes could be computed
only once instead of multiple times. For example, consider a graph
window query on the social graph in Figure 2 using the 1-hop win-
dow function. We have W (B) = {A,B,D, F} and W (C) =
{A,C,D,E, F} sharing three common nodes A, D, and F . By

A B C D E F

15 1426 5423 4049

Vertex Sum

A 118
B 64
C 103
D 78
E 66
F 55

A B C D E F

A,F,D B FE C,ED A,C

(a)

(b) (c)
Figure 4: Window Query Processing using DBIndex. (a) provides
the DBIndex for 1-hop window query in Figure 1; (b) shows the
partial aggregate results based on the dense block; (c) provides the
final aggregate value of each window.

identifying the set of common nodes S = {A,D, F}, its aggrega-
tion Σv∈Sv.A can be computed only once and then reuse to com-
pute the aggregation for Σv∈W (B)v.A and Σv∈W (C)v.A.

Given a window function W and a graph G = (V,E), we refer
to a non-empty subset B ⊆ V as a block. Moreover, if B contains
at least two nodes and B is contained by at least two different win-
dows (i.e., there exists v1, v2 ∈ V , v1 �= v2, B ⊆ W (v1), and
B ⊆ W (v2)), then B is referred to as a dense block. Thus, in the
last example, {A,D, F} is a dense block.

We say that a window W (X) is covered by a collection of dis-
joint blocks {B1, · · · , Bn} if the set of nodes in the window W (X)
is equal to the union of all nodes in the collection of disjoint blocks;
i.e., W (X) =

⋃n
i=1 Bi and Bi ∩Bj = ∅ if i �= j.

Thus, given a window function W and a graph G = (V,E),
a DBIndex to evaluate W on G consists of three components in
the form of a bipartite graph. The first component is a collection
of nodes (i.e., V); the second component is a collection of blocks;
i.e., B = {B1, · · · , Bn} where each Bi ⊆ V ; and the third com-
ponent is a collection of links from blocks to nodes such that if a
set of blocks B(v) ⊆ B is linked to a node v ∈ V , then W (v)
is covered by B(v). Note that a DBIndex is independent of both
the aggregation function (i.e., Σ) and the attribute to be aggregated
(i.e., A).

Figure 4(a) shows an example of a DBIndex wrt the social graph
in Figure 2 and the 1-hop window function. Note that the index
consists of a total of seven blocks of which three of them are dense
blocks.

3.2 Query Processing using DBIndex
Processing k-hop window query with DBIndex consists of two

steps. First, for each block Bi in the index, we compute the ag-
gregation (denoted by Ti) over all the nodes in Bi; i.e., Ti =
Σv∈Biv.A. Thus, each Ti is a partial aggregate value. Next, for
each window W (v), v ∈ V , the aggregation for the window is
computed by aggregating over all the partial aggregates associated
with the blocks linked to W (v); i.e., if B(v) is the collection of
blocks linked to W (v), then the aggregation for W (v) is given by
ΣBi∈B(v)Ti.

3.3 DBIndex Construction
Constructing DBIndex has two key challenges: First is the time

complexity of the index construction. From above discussion of
query processing, we note that the number of aggregations is de-
termined by both the number of blocks as well as the number of

17

links in the index; the former determines the number of partial ag-
gregates to compute while the latter determines the number of ag-
gregations of the partial aggregate values. Thus, to maximize the
shared aggregation computations, both the number of blocks in the
index as well as the number of blocks covering each window should
be minimized. However, finding the optimal DBIndex is NP-hard2.
Therefore, efficient heuristics are needed to construct the DBIndex.

Second is the space complexity of the index construction. In
order to identify large dense blocks, a straightforward approach is
to first collect the window W (v) for each node v ∈ V and then use
this information to identify large dense blocks. However, this direct
approach incurs a high space complexity of O(|V |2). Therefore, a
more space-efficient approach is needed in order to handle large
graphs.

Our idea to reduce indexing complexity is by clustering vertices
using their window values, and then within each cluster (which is
much smaller than original graph) we discover the dense blocks
among the member vertices. We refer this approach as MinHash
Clustering(MC) heuristic, which works as follows: The vertices in
graph is first clustered based on the MinHash signature of its win-
dows (which can be collected by Breadth First Traversal). For each
cluster, the nodes are grouped based on the window equivalence.
Each grouped nodes is a dense block. Then, every nodes refine
its window information based on the generated dense blocks. An
example of MC heuristic is shown as in Figure 5.

Based on the property of Wkh, we notice that, given a vertexv,
its higher hop window always contains its lower hop window, i.e.
if i ≤ j, then Wih(v) ⊆ Wjh(v). Based on this observation, we
proposed another index construction method Estimated MinHash
Clustering (EMC), which clusters vertices based on its lower hop
window information. Since the lower hop window is easier to gen-
erate, the indexing time for EMC is much shorter than MC algo-
rithm. On the other hand, since the estimation scheme imposes the
performance penalty as lower hop window does fully reflect higher
hop window, the query performance for EMC is affected. However,
as shown in our experiments, the drop on performance is minimal.

A

B

C

D

E

F

Vertex Clusters

Window Information
Generation

Vertex Window List

A A,B,C

B A,B

C A,C

D A,B,C

E A,C

F A,B,C

Window Information

Dense Block Indenti cation

A B C D E F

A,F,D B FC,ED A,CE

Block
Extraction

(a) (b)

(c)(d)

Vertex Window List

A D,E,F

B D,F

C D,E,F

D D

E E

F F

Block Window List

A,D,F A,B,C

B A,B

C,E A,C

Block Window List

A,C D,E,F

B D,F

D D

E E

F F

DBIndex
Equivalent Nodes

Cluster 1 Cluster 2

Cluster 1
Cluster 2

Figure 5: DBIndex Construction over Social Graph in Figure 2. (a)
shows two clusters after MinHash clustering; (b) shows the window
information of involved vertices within each cluster; (c) shows the
dense blocks within each cluster; (d) provides the final DBIndex.

3.4 Inheritance Index for Topological Window
DBIndex is a general index that can support both k-hop as well

as topological window queries. However, the evaluation of a topo-

2Note that a simpler variation of our optimization problem has been
proven to be NP-complete [6].

ID PID WD

A nil nil

B A nil

C A nil

D B nil

E D C

F E nil

G F H

H D nil

(c)
G

F

ED

CB

A

H

(b)

G

F

ED

CB

A

H

(a)
Figure 6: I-Index Construction over the Pathway DAG in Figure 3.
(a) shows the DAG structure; (b) provides the inheritance relation-
ship discovered during the index construction; (c) shows the final
I-Index.

logical window function, Wt, can be further optimized due to its
window containment property. In other words, the window of a de-
scendant vertex completely covers that of its ancestors. That is, In
DAG, if vertex u is the ancestor of vertex v, then Wt(u) ⊂ Wt(v).
For example, in Figure 6 we can see that the window of D, Wt(D)
is {A,B,D} and the window of E, Wt(E) is {A,B,D,C,E}. It
is easy to see that Wt(D) ⊂ Wt(E).

Based on the containment property, given a vertex u and its par-
ent v, since Wt(u) ⊆ Wt(v), there is no need to maintain the full
set of vertices in Wt(v). Instead, we only need to keep the dif-
ference between Wt(v) and Wt(u). For instance, in Figure 6 (a),
instead of maintaining {A,B,D,C} for Wt(E), one can simply
maintain the difference to Wt(D) which is {C}. This is clearly
more space efficient.

Thus, we propose a new structure, called the Inheritance In-
dex, I-Index, to support efficient processing of topological win-
dow queries. In I-Index, each vertex v maintains two informa-
tion: (1)PID: the ID of its closest parent and (2)WD: the difference
in window information with its closest parent. Figure 6(c) shows
the I-index of Figure 6(a), where I-Index is represented in a table
format; the second column is the PID and the third is the WD.

Building an I-Index for a DAG can be done efficiently via a topo-
logical scan. During the scan, each vertex v find its parent with
smallest window cardinality. Then, v pass the window information
Wt(v) to all its children.

With the I-Index, window aggregation can be processed effi-
ciently in topological order. For vertex v, its window aggregation
can be calculated as Σ(Wt(v)) = Σ(Wt(v.PID),Σ(v.WD))
,where Σ is the aggregate function. As the vertex is processed ac-
cording to the topological order, Wt(v.PID) would have already
been calculated before computation of v.

4. PRELIMINARY RESULTS
We have conducted a series of experimental evaluations and gained

some preliminary results. We use 2 real information networks for
k-hop query, which are available at the Stanford SNAP website 3:
Amazon and Stanford-web. The detail description of these datasets
is provided in Table 1. We use the widely used DAGGER [8] to
generate synthetic DAGs for Topological query.

Name Type # of Vertices # of Edges

Amazon undirected 334,863 925,872

Stanford-web directed 281,903 2,312,497

Table 1: Real Data Sets

3http://snap.stanford.edu/snap/index.html

18

We use two non-indexed algorithms as baselines for Wkh and
Wt respectively. The non-indexed algorithms presume no index ex-
ists and process the query from the raw graph. For Wkh query, the
non-indexed algorithm is achieved by bounded breadth first search
on each vertex; While for Wt query, the non-indexed algorithm is
achieved by a topological scan.

4.1 Query Performance on Wkh Window
Figures 7 (a) and (b) present the query time of MC and EMC on

the two datasets respectively as we vary the number of hops from
1 to 4. In the figures, the execution time shown on the y-axis is
in log scale. The results show that the index-based schemes out-
perform the non-index approach by four orders of magnitude. For
instance, for the 4-hop query over the Amazon graph, our algorithm
is 13,000 times faster than the non-index approach. This confirms
that it is necessary to have well-designed index support for efficient
window query processing. By utilizing DBIndex, for these graphs
with millions of edges, every aggregation query can be processed
in just between 30ms to 300ms. In addition, we can see that as
the number of hops increases, the query time decreases. This is
the case because a larger hop count eventually results in a larger
number of dense blocks where more (shared) computation can be
salvaged. Furthermore, we can see that the query time of EMC is
slightly longer than that of MC when the number of hops is large.
This is expected as EMC does not cluster based on the complete
window information. However, the performance gap is quite small
(20ms to 35ms) even for 4-hop queries.

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

 1e+08

1 2 3 4

R
un

ni
ng

 T
im

e(
m

s)
 in

 lo
g

sc
al

e

Hop

Query Performance on Amazon

EMC
MC

Non index

(a) Amazon Graph

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

1 2 3 4

R
un

ni
ng

 T
im

e(
m

s)
 in

 lo
g

sc
al

e

Hop

Query Performance on Stanford-Web

EMC
MC

Non Index

(b) Stanford-web Graph

Figure 7: Query Performance Comparison of MC and EMC

4.2 Query Performance on Wt Window
Impact of Degree. First, we evaluate the impact of degree changes

when we fix the number of vertex as 30k and 60k. We compare
DBIndex with I-Index and a non-indexed algorithm. For query per-
formance, as shown in Figures 8 (a) and (b), the non-index ap-
proach is, on average, 20 times slower than the index-based schemes.
I-Index outperforms DBIndex by 20% to 30%. window.

Impact of Number of Vertices. Next, we study how the perfor-
mance of I-Index is affected when we fix the degree and vary the
number of vertices. Figures 9 (a) and (d) show the query time when

 0

 2000

 4000

 6000

 8000

 10000

 12000

2 6 10 12 15 20

R
un

ni
ng

 T
im

e(
m

s)

Degree

Query Performance Comparison V=30k

Non index
DBIndex

I-Index

(a) Query Performance

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

2 6 10 12 15 20

R
un

ni
ng

 T
im

e(
m

s)

Degree

Query Performance Comparison V=60k

Non index
DBIndex

I-Index

(b) Query Performance

Figure 8: Impact of Degree. (a) is for graph with 30K vertices;
(b)is for graph with 60K vertices.

 0

 100

 200

 300

 400

 500

 600

 50000 100000 150000 200000 250000 300000 350000

Ti
m

e
(m

s)

Vertex

Query Performance d=10

I-Index

(a) Query Performance

 500

 1000

 1500

 2000

 2500

 3000

 50000 100000 150000 200000 250000 300000 350000

Ti
m

e
(m

s)

Vertex

Query Performance d=20

I-Index

(b) Query Performance

Figure 9: Impact of the number of vertices with a fixed degree. (a)
is for graphs with degree 10; (b) is for graphs with degree 20.

we fix the degree to 10 and 20 respectively. As shown, the degree
affects the query processing time - when the degree increases, the
query time increases as well. We also observe that the query time
is increasing linearly when the number of vertices increases. This
shows the I-Index has good scalability.

5. CONCLUSION AND FUTURE WORK
In this paper, we propose a new type of graph analytic query,

Graph Window Query, with three instantiations: uniform window
Wu, k-hop window Wkh and topological window Wt. We develop
the Dense Block Index (DBIndex) to facilitate efficient process-
ing for both types of graph windows. In addition, we propose the
Inheritance Index (I-Index) that improves the performance of Wt

queries. Both indices integrate window aggregation sharing tech-
niques to salvage partial work done, which is both space and query
efficient.

Our current work on window queries forms the basis of my dis-
sertation. We then wish to further address several problems related
to the window queries. First, we aim to extend window function
processing to dynamic graphs, (i.e. graph may incur edge inser-
tions and deletions). Second, we want to include structural aggre-
gations (e.g. centrality, PageRank, and Graph Aggregation [7] etc.)
which would enrich the semantic of graph window queries.

6. REFERENCES
[1] E. J. Briscoe, D. S. Appling, R. L. Mappus, IV, and H. Hayes.

Determining credibility from social network structure. In
ASONAM’13.

[2] J. M. Campanario. Empirical study of journal impact factors
obtained using the classical two-year citation window versus a
five-year citation window. In Scientometrics’11.

[3] Y. Cao, C.-Y. Chan, J. Li, and K.-L. Tan. Optimization of
analytic window functions. In VLDB’12.

[4] C. Chen, X. Yan, F. Zhu, J. Han, and P. S. Yu. Graph olap:
Towards online analytical processing on graphs. In ICDM’08.

[5] I. M. Keseler, J. Collado-Vides, S. Gama-Castro, J. Ingraham,
S. Paley, I. T. Paulsen, M. Peralta-Gil, and P. D. Karp. Ecocyc:
a comprehensive database resource for escherichia coli. In
Nucleic acids research’05.

[6] V. Vassilevska and A. Pinar. Finding nonoverlapping dense
blocks of a sparse matrix. In Lawrence Berkeley National
Laboratory’04.

[7] Z. Wang, Q. Fan, H. Wang, K.-l. Tan, D. Agrawal, and
A. El Abbadi. Pagrol: Parallel graph olap over large-scale
attributed graphs. In ICDE’14.

[8] H. Yildirim, V. Chaoji, and M. J. Zaki. Dagger: A scalable
index for reachability queries in large dynamic graphs. In
arXiv preprint arXiv:1301.0977, 2013.

19

