
DunceCap: Compiling Worst-Case Optimal Query Plans

[Extended Abstract]

Adam Perelman
∗

Stanford University
adamperelman@cs.stanford.edu

Christopher Ré
†

Stanford University
chrismre@cs.stanford.edu

ABSTRACT
Modern data analytics workloads frequently involve complex
join queries where the pairwise-join-based algorithms used
by most RDBMS engines are suboptimal. In this study, we
explore two algorithms that are asymptotically faster than
pairwise algorithms for a large class of queries. The first
is Yannakakis’ classical algorithm for acyclic queries. The
second is a more recent algorithm which works for any query
and which is optimal with respect to the worst-case size
of the output. We introduce a query compiler, DunceCap,
which uses these two algorithms and variations on them to
produce optimal query plans, and find that these plans can
outperform standard RDBMS algorithms as well as simple
worst-case optimal algorithms by an order of magnitude on
a variety of queries.

1. INTRODUCTION
Traditional RDBMS join algorithms are based on pair-

wise joins. Modern OLAP and graph processing workloads,
however, typically involve complex queries, often with many
large tables and sometimes with cycles in the query graph,
where traditional pairwise algorithms are suboptimal and
more efficient techniques are needed[1].

Theoreticians have developed several algorithms that are
asymptotically superior to any pairwise plan for a variety of
queries. In this section, we introduce two such algorithms.
The first is Yannakakis’ classical algorithm for acyclic queries[5].
The second is a worst-case optimal algorithm recently intro-
duced by Ngo, Porat, Ré, and Rudra (henceforth NPRR)
which can be used for any query, whether cyclic or acyclic[3].

∗This author is grateful to Susan Tu for many collaborations
on this project, to Chris Aberger and Andres Nötzli for im-
plementation advice, and to Rohan Puttagunta and Manas
Joglekar for valuable insights into join theory.
†We gratefully acknowledge support from a National Science
Foundation CAREER Award under No. IIS-1353606.

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage, and that copies bear this notice and the full ci-
tation on the first page. Copyrights for third-party components of this work must be
honored. For all other uses, contact the owner/author(s). Copyright is held by the
author/owner(s).
SIGMOD’15, May 31–June 4, 2015, Melbourne, Victoria, Australia.
ACM 978-1-4503-2758-9/15/05.
http://dx.doi.org/10.1145/2723372.2764945.

1.1 Yannakakis’ Algorithm
For a given join query Q = R1 ./ · · · ./ Rn, we define

its hypergraph representation as F = (V,E), where V is
the set of attributes in the query V =

⋃
Ri, and E is the

set of relations E = {Ri}. We define a query as acyclic
if and only if its hypergraph representation is acyclic. If a
query Q is acyclic, then there exists a full reducer for Q,
which is a sequence of pairwise semi-joins such that after
execution of this semi-join plan, all relations Ri ∈ Q are
both pairwise consistent and globally consistent. That is,
none of the relations have dangling tuples: tuples that do
not correspond to any tuple in the query result. Based on
this insight, Yannakakis’ algorithm works as follows: first,
we run a full reducer. Then, we compute the output via a
sequence of pairwise joins. At each step, every tuple in the
intermediate result corresponds to at least one tuple in the
final output, so the run-time of this algorithm is linear in
the size of the input and the output[5].

However, this algorithm only works for acyclic queries.
For cyclic queries, we can extend Yannakakis as follows:
first, we compute the minimum-width tree decomposition
for the query; this is a standard technique to modify al-
gorithms for acyclic graphs so that they can run on cyclic
graphs. Within each bag of the hypertree decomposition,
we use a traditional pairwise plan to compute the join of
the relations in the bag. Once all the within-bag joins are
complete, we are left with a tree of relations, which we join
via Yannakakis’ classical algorithm.

1.2 Worst-Case Optimal Join Algorithm
More recently, NPRR introduced a new algorithm that

is guaranteed to run in time proportional to the worst-case
size of the output, regardless of whether the query is cyclic
or acyclic. Rather than using relational algebra operations
as its building blocks, the NPRR algorithm reduces any join
query to a sequence of set-theoretic operations, in particular
set intersections and set unions[3].

2. QUERY COMPILER
Our query compiler, DunceCap, takes as input a list of

relations over which to perform a natural join. It then com-
piles the query into a C++ query plan which executes either
Yannakakis, NPRR, or a HybridJoin algorithm.

Our HybridJoin algorithm is very similar to Yannakakis’
algorithm. However, after computing the minimum-width
hypertree decomposition for a query, HybridJoin uses NPRR
instead of a pairwise plan to compute the join of the relations

2075



Query Relational Algebra Expression
Triangle (K3) R(A,B) ./ S(B,C) ./ T (A,C)

4-clique (K4)
R(A,B) ./ S(B,C) ./ T (C,D)
./ U(A,D) ./ V (A,C) ./ W (B,D)

Lollipop (L3,1)
R(A,B) ./ S(B,C) ./ T (C,A)
./ U(A,D)

Lollipop (L4,1)
R(A,B) ./ S(B,C) ./ T (C,D) ./ U(D,A)
./ V (A,C) ./ W (B,D) ./ X(A,E)

Table 1: Common graph-pattern queries.

Dataset Algorithm Query
K3 K4 L3,1 L4,1

Facebook
Yannakakis 0.159 10.6 0.65 148.6
NPRR 0.086 2.51 18.2 54.7
HybridJoin 0.086 2.51 0.354 12.7
LogicBlox 0.52 4.13 11.4 241.5

Arxiv GR-GC
Yannakakis 0.032 0.259 0.075 1.34
NPRR 0.027 0.120 0.087 0.715
HybridJoin 0.027 0.120 0.054 0.363
LogicBlox 0.49 0.55 0.73 2.14

Table 2: Runtime (in seconds) of each count query.
LogicBlox, a commercial system that implements
a worst-case optimal algorithm, uses 48 cores; all
other algorithms are single-threaded.

within each bag. Once the within-bag joins are complete, we
compute the output via Yannakakis’ algorithm.

3. EXPERIMENTS
We ran the common graph-pattern queries described in

Table 1 on two real-world graph datasets from the Stan-
ford Network Analysis Project (SNAP): the Arxiv GR-GC
dataset (5242 nodes, 14496 edges) and the Facebook dataset
(4039 nodes, 88234 edges)[2].

3.1 Algorithm Comparison
Running times are listed in Table 2. For all queries except

L3,1, the NPRR algorithm is faster than the Yannakakis al-
gorithm, implying that the cost of pairwise within-bag joins
in the Yannakakis algorithm outweighs the lack of a full
reducer in the NPRR algorithm. For the L3,1 query, the
opposite is true. However, for all queries, the HybridJoin
algorithm achieves the best running time, implying that it
effectively combines Yannakakis and NPRR.

We compare our running times with LogicBlox, the only
commercial system which implements a worst-case optimal
join algorithm[4]. The comparison is not perfect: LogicBlox
is implemented in Java instead of C++, and incurs overhead
for fault tolerance, task distribution, and so on. On the other
hand, while the LogicBlox implementation uses all 48 cores
on our machine, DunceCap use a single thread. By pro-
filing our algorithms on different queries, we estimate that
for long-running queries, differences in overhead account for
a factor of about 2 in our runtime improvement over Log-
icBlox, and algorithmic differences account for a factor of
about 10, although these vary depending on the query.

3.2 Attribute Ordering and NPRR
The order in which NPRR performs the set intersections

for each attribute in a query depends on the global attribute
ordering chosen by the algorithm. The theoretical worst-
case optimal bound on the algorithm holds regardless of

Query Attribute Order Dataset
Facebook Arxiv GR-GC

L3,1
A,B,C,D 1.817 0.087
D,A,B,C 25.64 0.495

L4,1
A,B,C,D,E 54.68 0.715
E,A,B,C,D 1358.0 6.729

Table 3: Runtime (in seconds) of NPRR on lollipop
queries given each global attribute ordering.

the attribute ordering. However, our results show that in
practice, the choice of ordering can change runtime by over
an order of magnitude. Whereas Table 2 assumes runtimes
given the optimal attribute ordering, Table 3 shows the run-
time for NPRR given two example attribute orderings (the
orderings use the attribute names defined in Table 1).

In our experiments, the best attribute ordering for a query
corresponds to its minimum-width hypertree decomposition.
In particular, given the best attribute ordering for a lol-
lipop query, NPRR begins by computing intersections for
attributes that would have been placed in the same bag by
a minimum-width hypertree decomposition. It does not con-
sider the remaining attribute from the other bag until the
very end of the algorithm. By staying within a single bag of
the decomposition for as long as possible, this strategy keeps
intermediate results relatively small. In contrast, the worst
attribute orderings cause NPRR to begin with attributes
that are from different bags of the decomposition, leading
to larger intermediate results. Thus, the hypertree decom-
position of a query is helpful for determining the optimal
attribute ordering.

4. CONCLUSION AND FUTURE WORK
In this study, we compared the performance of Yannakakis’

algorithm, a worst-case optimal algorithm, and a hybrid al-
gorithm, finding that the hybrid algorithm effectively com-
bines the best runtime characteristics of both Yannakakis
and NPRR. This algorithmic refinement causes our query
plans to outperform a commercial system that implements
a worst-case optimal algorithm by an order of magnitude.

We see several promising directions for future work. First,
we hope to incorporate work on fast set-intersections via
SIMD algorithms into our query engine[1]. Second, a bet-
ter understanding of these join algorithms requires an ex-
ploration of how each can be parallelized. Third, recent re-
search has begun to explore “beyond worst-case” algorithms,
which are instance-optimal rather than schema-optimal. There
is potential for significant advances to be made by explor-
ing the tradeoffs between our algorithms and these beyond-
worst case algorithms.

5. REFERENCES
[1] C. R. Aberger, A. Nötzli, K. Olukotun, and C. Ré.

EmptyHeaded: Boolean Algebra Based Graph Processing,
Mar. 2015.

[2] J. Leskovec and A. Krevl. Snap datasets: Stanford large
network dataset collection, June 2014.

[3] H. Q. Ngo, E. Porat, C. Ré, and A. Rudra. Worst-case
optimal join algorithms: [extended abstract]. In PODS ’12,
pages 37–48, New York, NY, USA, 2012. ACM.

[4] T. L. Veldhuizen. Leapfrog triejoin: a worst-case optimal
join algorithm. CoRR, abs/1210.0481, 2012.

[5] M. Yannakakis. Algorithms for acyclic database schemes.
VLDB ’81, pages 82–94. VLDB Endowment, 1981.

2076




