
QE3D: Interactive Visualization and Exploration of
Complex, Distributed Query Plans

Daniel Scheibli Christian Dinse Alexander Boehm
SAP SE, Walldorf, Germany

firstname.lastname@sap.com

ABSTRACT
QE3D is a novel query plan visualization tool that aims at
providing an intuitive and holistic view of distributed query
plans executed by the SAP HANA database management
system. In this demonstration, we show how its interactive,
three-dimensional plan representation helps to understand
and quickly identify hotspots in complex, real-world scenar-
ios.

Categories and Subject Descriptors
H.2.m [Database Management]: Miscellaneous

Keywords
SQL; SQL query analysis; parallel database; visualization

1. INTRODUCTION
The task of analyzing and tuning the performance of data-

base queries is very common for any database management
system. Consequentially, all major DBMS offer correspond-
ing facilities that assist users and administrators in this pro-
cess. Typically, the SQL-based textual EXPLAIN PLAN func-
tionality is complemented by graphical tools that visualize
the logical and/or physical query execution plans as an op-
erator tree [4, 5, 6, 11]. These tools allow to reason about
important aspects of the execution plan, such as the access
paths and physical operators being used.

In the context of the SAP HANA in-memory database
management system [2], we frequently face the limitations
of these state-of-the-art tools, basically for two reasons:

First, business users (e.g. using SAP’s business suite) have
an increasing demand of running complex, analytical queries
on their transactional data to get real-time insights without
previous data extraction, transformation, or pre-aggregation
[7]. As data is usually distributed across a large number
of tables, the corresponding analytical queries quickly span
dozens or even hundreds of tables [1, 10]. As a consequence,

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
SIGMOD’15, May 31–June 4, 2015, Melbourne, Victoria, Australia.
Copyright is held by the owner/author(s). Publication rights licensed to ACM.
ACM 978-1-4503-2758-9/15/05 ...$15.00.
http://dx.doi.org/10.1145/2723372.2735364.

the query plans become very complex and easily include
thousands of operators.

A second source of complexity is distribution: As the main
memory capacity of a single host system is rather limited
(with a capacity of a few terabytes only) compared to the
size of most Business Warehouse (BW) installations [9], the
HANA database management system is frequently deployed
on a cluster of machines. In such a setup, individual tables
are deployed to corresponding nodes, and large tables (e.g.
the fact tables in BW) are horizontally partitioned over some
or even all the available nodes.

Consequentially, the state-of-the-art tools suffer from the
high number of tables and operators involved. Moreover, the
support for the specific aspects of distributed query execu-
tion such as temporal interleaving of individual host activ-
ity, communication patterns, data volumes transferred and
landscape-global parameters such as network utilization is
usually very limited.

There are several attempts to improve on the state of the
art, e.g. by combining multiple different analysis views such
as plan graphs and (textual) profiler output into a single
tool and allowing users to dynamically navigate query plans
and switch between these perspectives. An example for this
approach is the Stethoscope [3] tool. Interesting contribu-
tions were also made by the Vertica Query Analyzer team
[13] who combined multiple different views (e.g. pie charts
for cardinality estimates, Gantt charts for temporal opera-
tor interleaving) in the context of a single analysis tool, and
added key performance indicators (such as intra-operator
parallelism) to the tree-based operator view itself.

Even with this multitude of visualization options and im-
provements in place, the process of performance analysis for
complex, distributed queries involves looking at various dif-
ferent diagram types in parallel, each of them focusing on a
different aspect of the distributed query plan (e.g. network
communication, physical operator interleaving, host utiliza-
tion, temporal operator interleaving). Specifically, there is
no holistic view to the entire query plan, that combines these
aspects into a comprehensible visualization that enables the
user to get an overview of the general structure and perfor-
mance characteristics of a query.

2. QE3D
The goal of Query Execution 3D (QE3D) is to overcome

the limitations of the state of the art of distributed query
performance analysis tools outlined above. Specifically, it
aims at providing the user with a high-level, intuitive un-
derstanding of key performance aspects of complex queries

877

Figure 1: PlanViz visualizing a plan in graph view

Figure 2: PlanViz visualizing a plan in timeline view Figure 3: PlanViz visualizing the network traffic of a
BW query running on 6 hosts

in order to identify specific starting points for a more de-
tailed query analysis in the traditional tools.

QE3D is a Java application that is based on a stand-alone
architecture. It is installed on a client machine and uses Pro-
cessing [8] for implementing the interactive visualizations.

Users start by opening a XML encoded trace file that con-
tains the collected details about the query execution. The
data are parsed and the initial overview (see Figure 4) is
shown. Now the user can navigate and explore the visu-
alization using mouse and keyboard. Interactions include
zooming, turning and rotating the visualization, accessing
plan operator details or switching between different render-
ing alternatives.

Visualizing query plans, our central approach has been
to come up with visualization approaches that scale. The
graph like representations of plans (see Figure 1) are, as an
example, very powerful in outlining data flows and the re-
lation between operators. However displaying hundreds or
even thousands of operators, as we see in complex queries,
shows this approach to be less effective because graph struc-
ture and wealth of detail become overwhelming. By raising

the level of abstraction and for instance visualizing the ac-
tivity during query processing as a basic line plot, we gain a
visualization that works equally well across the before men-
tioned range of operators.

QE3D is built on this principle. In the following we will
discuss the different components and aspects that comprise
the visualization as shown in Figure 4.

2.1 Visualizing Host Interaction
QE3D is designed for the interactive visualization of dis-

tributed query plans. We assume that there are a number
of database nodes N1, . . . , Nn that are spread across a num-
ber of hosts. During the execution of a distributed query,
the database nodes interact with each other over the net-
work in order to coordinate and to ship intermediate re-
sults. While there are typical communication patterns like
the ones between the coordinating node and the other da-
tabase nodes, it is possible that any node Ni is communi-
cating with any other node Nj . In state-of-the-art tools,
such as HANA’s Plan Visualizer (PlanViz) [11], these com-
munications are typically shown in Sequence Diagram like

878

Figure 4: QE3D Visualizing a BW query running on 6 hosts

structures as shown in Figure 3. However this visualization
is limited, because it is prone to overlapping information,
e.g. when node N1 transfers data to node N3 and at the
same time node N2 is sending data to N4. As a result trans-
fers will intersect and otherwise recognized communication
patterns might be missed.

To overcome this, we start with a ring on which all the
involved database nodes are evenly placed in a circular man-
ner. If there is an interaction between any two nodes, a
connecting line segment is drawn between them. This visu-
alization is known in the network monitoring domain, where
tools like Etherman [12] provide similar representations. Un-
like them, we know the time interval of interest, namely the
total execution time of the query. As a result we extended
the ring to a cylinder where the cylinder height represents
time. We place the cylinder horizontally, such that the query
starts on the left at time 0 and ends on the right hand side at
time ttotal. Now data transfers are drawn at the time when
they take place. Here we provide three different modes of vi-
sualization. As an example, let us assume that node Nsource

is transferring data to Ndest and that the transfer starts at
time tstart and ends at tend. Let us further define that a
point in the cylinder can be represented by the tuple (N, t).

• In the first mode, we draw an arrow from (Nsource, tstart)
to (Ndest, tstart).

• In the second mode, we draw an arrow from (Nsource, tstart)
to (Ndest, tend).

• In the third mode, we draw a rectangular plane where
(Nsource,tstart) and (Ndest, tend) define two opposing
corners of the plane.

Given the duration of a transfer can typically be used as a
proxy for the transferred data volume, we can use the third

mode to easily spot where in the query large data trans-
fers are taking place. The disadvantage however is that the
planes might overlap and even hide each other. Therefore
the second mode is a good compromise as it comes with less
overlap, but still provides visual feedback on the duration
of the data transfer. Here short duration transfers are near
perpendicular to the time axis (similar to the first mode),
while long duration transfers show a more acute angle.

To further improve readability, we indicate the direction
of the transfer by adding a gradient to the line or rectan-
gle. Furher, we ensure that the coordinating node, where
the client connects and where the query starts and ends, is
placed at the cylinders 12 o’clock position.

2.2 Visualizing Host Activity
In addition to visualizing the data traffic between data-

base nodes, QE3D is also visualizing the activity on each
node. This is done by providing a plot area per individ-
ual node and placing it next to the nodes location on the
cylinder. In case of node Ni, the baseline of the plot area is
defined by (Ni, 0) and (Ni, ttotal). Consequently the X axis
of the plot area and the timeline of the cylinder are aligned.
The Y axis of the plot area is facing outward and represents
the KPI data.

Each of the plot areas only show activities for their respec-
tive database node. The default KPI shown is the number of
active operators, which is defined as the number of operators
that are running at a given time. Even though the number
of active operators is a good initial indicator to understand
host activity, the visualization is not limited to this. It is also
possible to add one or multiple additional system level KPIs
like the CPU utilization, memory consumption or similar.

879

Figure 5: QE3D with selector

As an optimization, we segmented the query runtime into
a configurable number of evenly spaced time intervals. For
each time interval the KPI is calculated and the result is
shown. Given the limits in screen resolution this is possible
and it helps us to ensures similar frame rates for visualizing
query plans of different complexities.

2.3 Detail Selection
Once an interesting aspect of the plan has been identified,

it is important to learn more about that particular part. In
some cases it is enough to further zoom into the plan, but
at some point additional operator details are needed.

For this we introduced the selector which is shows as a
disk that can be moved along the time axis (see Figure 5).
Moving the selector is done by dragging a slider at the bot-
tom of the screen. If dragging is done close to the slider at
the bottom of the screen, the movement in time is fast. The
further away the dragging is done, the slower the movement
in time will be. With this interaction pattern it is possible
to do effective millisecond level positioning inside a query
that might run for minutes.

Once a specific point in time has been selected with the
selector, the then active operators are listed with their names
on the left hand side of the screen. To further improve the
mapping of operators to database nodes, they share the same
color with the nodes they are executed on.

Selecting a single operator is done by moving the mouse
over it. This will open the operator details window shown in
Figure 6 that contains information like start and stop times,
resource consumption, payloads, the name of the processed
database objects and other information.

3. DEMONSTRATION
Our demonstration is built on a number of complex, dis-

tributed database queries that we collected from both in-
ternal testing systems and production scenarios deployed
by our customers running the HANA database management
system. First, we quickly recap the state of the art of query
analysis and visualization by showing the query structure
in the existing visual explain facilities that HANA provides
[11]. These include a tree-based plan graph (Figure 1) and
Gantt-charts for temporal operator interleaving (Figure 2)
and network communication (Figure 3). Already for a rather
small cluster with only six active machines, the high com-
plexity of the query plans make these visualization tech-
niques impractical. As a result plan analysis is very tedious.

As a next step, we load the same query plans into the
QE3D tool. We explain the various dimensions that are
visualized by the tool (as discussed in Section 2 in detail)
and show how the individual parts of complex plans (e.g.
semi-join reduction and result assembly) translate into in-
teraction patterns between the hosts that are part of the
ring-based visualization. Next, we explain how both CPU
and network bottlenecks can be easily identified using the
various visualization modes of network communication, and
the node-specific display of parallelism and workload char-
acteristics.

Additionally, we demonstrate the replay functionality that
animates the progression of the query plans in a given speed
(with the original total execution time as default).

The last step of our demonstration is to introduce the
selector feature discussed in Section 2.3. We show how it can
be used to retrieve very fine-granular information from the

880

Figure 6: QE3D with selector and operator details
overlay

complex query plans, such as operator-specific cardinality
information or CPU consumption.

We conclude our demonstration by handing over the con-
trol of the notebooks running the tool to our audience: As
Q3ED provides a very intuitive interface that allows mouse-
based navigation, rotation and zooming within the plan vi-
sualization, the attendees can directly try the tool hands-on
and use it for interactive analysis of complex query plans.
Using this, to the best of our knowledge, never before shown
visualization approach, we are hopeful, that attendees will
be able to identify hotspots and bottlenecks in complex
query plans, they have never seen before, in a matter of
just a few seconds.

4. CONCLUSION
Our demonstration shows QE3D, a novel tool for the visu-

alization and interactive exploration of complex, distributed
query plans executed by the SAP HANA database man-
agement system. In contrast to state-of-the-art tools that
are based on two-dimensional visualization such as operator
trees and Gantt charts, QE3D provides a three-dimensional
view of complex query plans in a distributed environment.
QE3D allows users to get a quick and intuitive understand-
ing of the query-specific aspects of distributed query execu-
tion (such as network communication, plan parallelism and
operator interleaving) and to easily identify bottlenecks.

As the visualization and techniques demonstrated in this
paper are not specific to SAP HANA, we are confident that
similar techniques can also help to improve performance
analysis and supportability for other database management
systems that need to handle complex query workloads.

5. ACKNOWLEDGMENTS
We are grateful to our Business Warehouse and HANA

Performance Analyzer colleagues for their input and feed-
back on the QE3D visualization.

6. REFERENCES
[1] N. Dieu, A. Dragusanu, F. Fabret, F. Llirbat, and

E. Simon. 1,000 tables inside the from. PVLDB,
2(2):1450–1461, 2009.

[2] F. Färber, S. K. Cha, J. Primsch, C. Bornhövd,
S. Sigg, and W. Lehner. SAP HANA database: data
management for modern business applications.
SIGMOD Rec., 40(4):45–51, Jan. 2012.

[3] M. Gawade and M. L. Kersten. Stethoscope: A
platform for interactive visual analysis of query
execution plans. PVLDB, 5(12):1926–1929, 2012.

[4] IBM Corporation. DB2 Version 9 for Linux, UNIX,
and Windows: Visual Explain overview. http:
//publib.boulder.ibm.com/infocenter/db2luw/v9/
topic/com.ibm.db2.udb.admin.doc/doc/c0005135.htm.
Retrieved November 16, 2014.

[5] Microsoft. Displaying Graphical Execution Plans
(SQL Server Management Studio). http:
//msdn.microsoft.com/en-us/library/ms178071.aspx.
Retrieved November 16, 2014.

[6] Oracle Corporation. MySQL Workbench Performance
Tools: Visual Explain Plan.
http://dev.mysql.com/doc/workbench/en//wb-
performance-explain.html. Retrieved November 16,
2014.

[7] H. Plattner. A Common Database Approach for
OLTP and OLAP Using an In-Memory Column
Database. In Proc. SIGMOD, pages 1–2, 2009.

[8] C. Reas and B. Fry. Processing: A Programming
Handbook for Visual Designers and Artists. The MIT
Press, 2007.

[9] SAP SE. SAP EHP1 for SAP NetWeaver Business
Warehouse 7.3, powered by SAP HANA.
http://help.sap.com/nw731bwhana. Retrieved
November 16, 2014.

[10] SAP SE. SAP Fiori for SAP Business Suite.
http://help.sap.com/fiori. Retrieved November 16,
2014.

[11] SAP SE. SAP HANA Troubleshooting and
Performance Analysis Guide: Analyzing SQL
Execution with the Plan Visualizer. http:
//help.sap.com/hana/SAP HANA Troubleshooting
and Performance Analysis Guide en.pdf. Retrieved
November 16, 2014.

[12] M. Schulze, G. Benko, and C. Farrell. Homebrew
network monitoring: A prelude to network
management. Technical report, Curtin University of
Technology, Perth, West Australia, 1993.

[13] A. Simitsis, K. Wilkinson, J. Blais, and J. Walsh.
VQA: vertica query analyzer. In C. E. Dyreson, F. Li,
and M. T. Özsu, editors, International Conference on
Management of Data, SIGMOD 2014, Snowbird, UT,
USA, June 22-27, 2014, pages 701–704. ACM, 2014.

881

