
ASGraph: A Mutable Multi-Versioned Graph Container with
High Analytical Performance

Michael Haubenschild†⋆

michael.m.haubenschild@oracle.com

Manuel Then⋆

then@in.tum.de

Sungpack Hong†

sungpack.hong@oracle.com

Hassan Chafi†
hassan.chafi@oracle.com

†Oracle Labs ⋆Technical University of Munich

ABSTRACT

In the last years researchers and industry have become interested in
the analysis of graphs to gain insights into social networks, road net-
works, and other data that is naturally organized as a set of connected
entities. Many of these graphs are very large, some containing hun-
dreds of billions of edges. Usually, graphs are stored in static or
immutable representations. We propose ASGraph. ASGraph is a
graph container that supports updates and multi-versioning while
still providing high analytical performance in the order of magni-
tude of the predominant CSR. ASGraph stores temporal graphs with
arbitrarily fine granularity. Additionally, it can optimize its internal
layout for analytical queries at specific snapshots. We show that it
has moderate runtime overhead between 7% - 98% for PageRank
compared to CSR. Meanwhile it outperforms CSR both in runtime
and memory consumption in scenarios where a graph is repeatedly
updated between analysis. We designed ASGraph to support an
update stream that can be applied concurrently to all analytical oper-
ations without blocking. In contrast to existing solutions for storing
versioned graphs, its performance is independent of the number of
stored snapshots.

CCS Concepts

•Information systems → Graph-based database models; Tem-

poral data; Data structures; Data streams; •Mathematics of

computing → Graph algorithms; •Networks → Online social net-
works;

1. INTRODUCTION
Graph analytics has become more and more popular over the last

couple of years. Graphs are used to represent social networks, road
maps, physical simulations as well as biomedical applications such
as DNA splicing. The graphs encountered in these domains can
become very large, e.g. a recent Facebook graph contains over 1.3
billion vertices representing users and well over 400 billion edges
representing their friendships, likes, posts, etc.[5]. To analyze these
large graphs one needs a data structure to physically store the graph

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

GRADES 2016, June 24 2016, Redwood Shores, CA, USA

© 2016 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ISBN 978-1-4503-4780-8/16/06. . . $15.00

DOI: http://dx.doi.org/10.1145/2960414.2960422

0

x: 1.0

1

x: 3.0

2

x: 4.2

y:7

y:22

y:19
y:8

y:1

(a) Visual Representation

0

0

1

1

3

2

5

-

1 1 2 0 1

node directory

edge array

1.0 3.0 4.2x:

7 19 22 8 1y:

(b) Corresponding CSR.

Figure 1: Small sample graph with three nodes, a floating point
node property x and an integer edge property y

topology as well as associated properties of both vertices and edges.
Furthermore, it should exploit modern hardware trends, e.g. paral-
lel execution units and caches. Also, with today’s servers having
multiple terabytes of main memory, it is possible even for large
graphs to fit in the main memory of a single machine. While most
analysis today still focuses on static graphs, we predict that in the
future there will be demand to gain insights on temporal graphs
as most networks are not static[9]. People join a social network
and new connections both between them as well as between the
old members are established while some are removed again. Only
an abstraction that models this fact can represent the underlying
real-world application accurately. In the past the general trend when
handling large amounts of data has been to use separate systems
that are either optimized for updates or analytics. As a consequence,
data analysts never operated on live data. But relational databases
recently proved that both OLTP and OLAP on the same data can be
a reality when the workload fits in main memory[8]. We promote
the same approach for graph structured data by presenting a data
structure that can handle updates efficiently while still providing
high analytical performance. The state-of-the-art representation for
in-memory graph analysis is the Compressed Sparse Row (CSR) for-
mat. Figure 1 shows the visual representation (1a) of a sample graph
and the corresponding CSR (1b). The node directory stores offsets
into one large edge array. For each node, the number of neighbors
for a node n can be calculated as nodeDir[n+1]-nodeDir[n].

All edges are stored densely in memory. When iterating over
all neighbors of all nodes—a common task in graph algorithms—
memory accesses are sequential in both the node directory and the
edge array. This is a beneficial memory access pattern because it can
easily be predicted and automatically prefetched by the CPU, thus,
nearly all memory accesses hit the cache. In cases where nodes
are accessed in a non-sequential order such as in a breadth-first

search, CSR does not show cache-friendly behavior, but so will no
other data structure. This is an inherent problem of graph analysis
that comes down to efficient graph partitioning and is not further
covered here. As for most data structures, there are trade-offs that
need to be considered. For CSR the antagonistic goals are read-
optimized performance and update friendliness. It provides very
good performance for static graphs but inherently does not support
efficient updates. While single neighbors could theoretically be
exchanged in the edge array, arbitrary insertions or deletions are
not possible. A common solution for this is to gather a number
of updates in a delta store and apply them all in one batch[13].
However, this is still by no means optimal. The eventual update of
the CSR requires copying the whole edge array, which takes O(n)
time in the number of edges. Even if this operation is spread over
multiple updates, it is still very expensive for large graphs. Other
desired features such as support for streaming or versioning likewise
cannot be implemented in CSR.

Our proposed data structure ASGraph (Analytical Snapshot Graph)
solves this challenge by breaking up the edge list of CSR into mul-
tiple chunks which support efficient mutation and employing an
append-only scheme for updates. We combine these two well-
known concepts with a novel createSnapshot operation that
rearranges the edge list fragments for high analytical performance
while concurrent updates can still be applied without blocking.
Among other things, this allows for the following scenario: An
initial graph is loaded into memory. Then, a PageRank is calculated
on it. Simultaneously, updates are applied to the graph. When the
user wishes to include the latest changes, they can request a new
consistent snapshot and start the next query. Note that creating this
snapshot naively would involve building up a whole new CSR from
the old one and the delta, while for ASGraph this is an efficient
operation that can naturally be parallelized.

In the following, we compare existing approaches for graph con-
tainers which all support a different subset of our desired features
in Section 2. Then we go into the high level design choices of AS-
Graph in Section 3, followed by implementation details (Section 4)
and an evaluation (Section 5). We conclude our work with directions
for future work in Section 6.

2. RELATED WORK
STINGER[6] is a mutable graph container that can handle stream-

ing updates which can be inserted in parallel. It uses fixed-size
chained buckets to store edges. STINGER does not provide the
concepts of consistent snapshots or multi-versioning. In fact, due to
its loosely synchronized parallel updates that only maintain physical
consistency of the data structure, a query might see the graph in a
state that never existed. STINGER tightly integrates the concept of
different edge types as each bucket contains only edges of one type.
STINGER has a higher memory footprint than our approach as it
stores more additional information for each edge such as an edge
weight, a creation and a modification timestamp.
LLAMA[11] is a recent effort to extend CSR with version support.
It provides consistent views on the graph and allows concurrent
access to multiple snapshots. The graph including all snapshots can
be stored to disk. Single updates are first buffered in a changeset
and periodically applied as a new snapshot. The major drawback
is that LLAMA’s performance is deteriorating with the number of
existing snapshots. More specifically, the access to newer snapshots
gets more expensive. This is particularly severe as the most recent
snapshot is usually queried most often. Therefore, an expensive
compaction is regularly necessary. It merges old snapshots and
basically comes down to applying a delta to a CSR as described
above. Snapshot boundaries must be known at graph creation time.

Also, too many snapshots push up memory consumption since a
vertex indirection array is forked for each of them.

3. DESIGN CHOICES
Our goal is to design a graph container that provides analytical

performance close to CSR while offering additional functionality.
We want to be able to apply a continuous stream of updates to the
graph which, for example, comes from an RDBMS or from a sensor
network. The problem of synchronization is thereby reduced to a
single update writer, which enables us to run it completely lock-free
as we show later. Our intention is not to propose a whole new graph
analytics platform, but one low-level building block of a hypothetic
future system that allows for efficient temporal analysis of graphs.
In contrast to LLAMA, we want to provide higher analytical perfor-
mance while sacrificing the possibility to run queries on multiple
snapshots in parallel. The reason for this choice is that we found
that creating CSRs for a series of snapshots and running a PageRank
sequentially on all of them is still faster than running a PageRank
on each LLAMA snapshot in parallel. Furthermore, our graph algo-
rithms are already parallelized, so inter-query parallelization most
likely will not give better utilization, but rather hurts performance
because of worse cache locality and TLB use since we encountered
that most of the common graph algorithms we ran are not CPU-
bound but limited by memory.
Note that we explicitly support node delete operations, which
STINGER and LLAMA lack to do. We do not incorporate the con-
cept of different edge types in the graph representation as STINGER
does. If a user wants to distinguish between different edge types
they can use an edge property in ASGraph.

4. ASGRAPH
Our approach is coarsely based on the physical layout of STINGER

[6]. We use fixed-size buckets that can store a certain number of
entries and which are chained in a single-linked list if a bucket
overflows. There are four kinds of operations: node inserts (NINS),
node deletions (NDEL), edge insertions (EINS) and edge deletions
(EDEL). An operation consists of the triple

operation := (destination, timestamp, opType)

Note that we do not store the source of an edge explicitly, since a
chain of buckets contains only operations with the same source node.
New operations are always appended, since we need to preserve all
information in order to create a snapshot at an arbitrary point in time.
When a bucket is full, we allocate a new bucket and add it at the end
of the chain. Using this append-only scheme and atomic primitives,
we support multiple concurrent update operations even for the same
source node in a lock-free manner. Figure 2 shows how the graph
from Figure 1 is stored as an ASGraph. The bucket size of two is
only used for illustration purposes. In our tests we found a bucket
size of 12 to provide a good trade-off between a) memory overhead
from unused slots and b) runtime overhead introduced by iterating
over the list of buckets. Each bucket contains several header fields
(see Figure 3). There is a pointer to the next bucket in the list and
two counters currentSlot and endOfSnapshot which store
the current number of slots used in the bucket and the last valid
entry of the currently materialized snapshot. The latter is explained
in more detail in Section 4.1. The rest of the bucket stores the edge
destinations, timestamps and operation types. Physically, they are
stored in a columnar manner. This allows for good cache utilization
and thereby fast scans over neighbors during analytics.

In our implementation we combined two instances of ASGraph
together, one storing the outgoing edges and one storing the incom-

0

node directory

1

2

(-,t0,NINS)
(1,t0,EINS)

(-,t0,NINS)
(1,t0,EINS)

(2,t0,EINS)

(-,t0,NINS)
(0,t0,EINS)

(1,t0,EINS)

Figure 2: Overview of ASGraph with bucketSize=2. For the
initial graph, we assume all timestamps are zero.

0 15 31

next

curSlot endOfSnap PADDING

Header

to[0]
...

to[x-1]

Traversal Data

timestamp[0]

...

timestamp[x-1]

type[0] type[1] type[2] type[3]

...

type[x-4] type[x-3] type[x-2] type[x-1]

Transactional
Data

Figure 3: Physical memory layout of one bucket with x entries

ing edges. For some algorithms and undirected graphs the latter can
be omitted, cutting the memory consumption in half.

4.1 Snapshot Creation
When a user requests to create a snapshot at a given timestamp t,

for every node in the node directory the edge entries are reordered
in a way that provides optimal performance for scans. We logically
partition all entries in two categories. For all valid edges in the
snapshot we put the corresponding EINS entry in the first partition.
All other entries, particularly the NINS,NDEL and EDEL as well as the
EINS entries that have a later timestamp or have been removed by
EDEL are put in the second partition. The partitions are separated by
a special [EOS] marker. Analytical queries never read past it. Con-
cretely, a call to createSnapshot(t) performs the following
steps for each neighbor list:

1. Scan through all operations and copy EINS operations to a
list CAND, all other operations to another list REST. When
an EDEL entry with a timestamp t′ ≤ t is encountered, set
DELETIONS[dest] = t

′ where DEL is a map from node-ids to
timestamps (Lines 6-11).1

2. Iterate over each entry e in CAND. If DEL[e.to] >

e.timestamp, this edge is already deleted at t and is moved
to REST.

3. Rewrite the bucket entries with the concatenated lists CAND
and REST. Put a [EOS] marker after the entries from CAND.

1Since this process never changes the relative order of edge deletion
entries, after the scan the map will contain the highest deletion
timestamp for that node.

0

1

2

(-,t0,NINS)
(1,t0,EINS)

(2,t7,EINS)

(-,t0,NINS)
(1,t0,EINS)

(2,t0,EINS)
(1,t4,EDEL)

(-,t0,NINS)
(0,t0,EINS)

(1,t0,EINS)

(a) Before any snapshot was ever applied, timestamps in each bucket are in
increasing order. Analytics is not possible until the first snapshot is created

0

1

2

(1,t0,EINS)[EOS]

(-,t0,NINS)
(2,t7,EINS)

(2,t0,EINS)[EOS]

(-,t0,NINS)
(1,t4,EDEL)
(1,t0,EINS)

(0,t0,EINS)
(1,t0,EINS)[EOS]

(-,t0,NINS)

(b) After the reordering, only operations up to the [EOS] marker can be seen
by analytics.

Figure 4: Snapshot creation in ASGraph for timestamp t5.

During these steps a flag keeps track if the node is deleted at t. If
so, steps 2 and 3 are skipped and a node deletion marker [ND] is
put at the beginning of the first bucket in the chain. Note that steps
1 and 2 operate on temporary data structures while step 3 never
writes operations to memory that is touched by the update stream.
Thus, snapshot creation can run concurrently while operations are
applied to ASGraph. We exploit parallelism in the snapshot creation
phase by processing multiple entries in the node directory at once.
An additional flag per node tracks if there have been changes since
the last call to createSnapshot which enables us to skip these
nodes. The complete procedure is shown (without the node deletion
logic) in Listing 1.

1 for n : nodes

2 var CAND := List[operation] //edge candidates

3 var REST := List[operation] //remaining operations

4 var DEL := Map[nodeId->timestamp]

5 for op : n.operations

6 if(op.type == EINS && op.timestamp <= t)

7 CAND.append(op)

8 else

9 REST.append(op)

10 if(op.type == EDEL)

11 DEL[op.to] = op.timestamp

12 for c : CAND

13 if(c.timestamp <= DEL[c.to])

14 //move c to REST

15 var tmp = CAND.remove(c)

16 REST.append(tmp)

17 //OPTIONALLY: sort CAND at this point

18 //Replace bucket content with reordered operations

19 n.operations <- concat(CAND,[EOS],REST)

Listing 1: The createSnapshot(t) method

To illustrate snapshot creation with an example, we first apply the
following two operations to our example graph: The edge from
node 1 to itself is removed at t4 and an edge from node 0 to 2 is
inserted at t7. This gives us the ASGraph shown in Figure 4a. Call-
ing createSnapshot(t5) transforms it to the state shown in
Figure 4b which now can be used to run analytical queries.

An alternative to this approach would be to materialize valid neigh-
bors on-the-fly during each neighbor iteration. However, since most
algorithms iterate multiple times over a neighbor list and more than
one analysis might run on a snapshot this is potentially slower. How-
ever, slow path access is possible as outlined at the end of the next
section.

4.2 Analytics
Analytical algorithms access ASGraph through a simple API. It is
very similar to that of CSR and is oblivious to the temporal character
of the stored graph as it always sees a consistent view of the graph
at a certain timestamp. There are the usual operations to get the
total number of nodes and edges for the current snapshot, getting
the number of outgoing edges for an individual node and getting
the neighbors of a node. The last one is where algorithms usually
spend most of their time and thus it needs special attention. While
CSR supports random access to all neighbors of a node, ASGraph
cannot implement this efficiently, because for each access it needs
to traverse the whole bucket list. We found however that most
algorithms do not need random access. Thus, we implemented an
iterateNeighbors() method that takes a callback which is called
for each neighbor. Note that due to the columnar layout of the
bucket entries this iterator never needs to load memory into cache
that contains the timestamps or opTypes. Furthermore, we can
prefetch the next bucket in the chain before processing the current
one. Both techniques combined bring us close to the cache efficiency
of CSR which is crucial for ASGraph’s performance.
For point queries it might be too expensive to create a snapshot for
the whole graph in order to access only a few buckets lists. Therefore
we propose a slow path that materializes valid neighbors on-the-
fly in temporary data structures. This also allows fully concurrent
analyses of different snapshots with the restriction that only one
of them can be accessed with high performance. We leave the
investigation of the slow path for future work.

4.3 Node Array
In our current implementation we use a fixed-size array of bucket
pointers, one for each node. This has the drawback that at creation
time of the ASGraph data structure, the user has to specify the
maximum number of nodes that can be stored. In many scenarios
the growth rate of the graph can be estimated, thus allowing to
choose a proper upper bound of nodes for the required timeframe.
However if this cannot be anticipated, ASGraph can be extended
to use a dynamic array that can grow. For large graphs one might
not want to copy the whole array on resizing, so an alternative is
to use an extendable array, either with fixed-size or exponentially
growing segments. This introduces the cost of an additional level of
indirection for each node access which results in additional cache
misses. However since the first level indirection array is generally
small, it should fit into the cache of modern CPUs.

4.4 Properties
ASGraph supports mutable node and edge properties. While for
immutable graphs both can be implemented as arrays, in our multi-
versioned use case they behave differently, as described below. Our
basic approach for both is the same as for storing the graph topol-
ogy, which is having a node directory where each entry points to a
chain of buckets. Node property buckets contain entries of the type
nodePropOp := (value, timestamp). The createSnapshot(t)
operation for a node property consists of looking for the entry with
the highest timestamp less or equal to t and copying that into a
backing array at the index that corresponds to this vertex in the node
directory. That way, entries in the buckets never have to be reordered

Graph # vertices # edges Source

SanFrancisco 59.813 149.715 subset of [10]
LiveJournal 4.847.571 68.993.773 [1]
LDBC-300 1.253.978 136.219.368 [7, 4]

Twitter 41.652.230 1.468.365.182 [2, 3]
WebGraph 77.741.046 2.965.197.340 [2, 3]

Table 1: Datasets used in our benchmarks

and the access time for a property is O(1). We again exploit the
advantages of columnar layout to maximize cache utilization during
snapshot creation. While scanning for the correct timestamp, we
do not have to load memory that corresponds to property values. In
the CSR representation, the layout of an edge property can mirror
that of the edge list. In the mutable case, property updates can occur
independent of topology updates, so the entries for a property do in
general not correspond to the entries for the edges. Therefore, we
must associate an edge property update with its corresponding edge.
We do so by including the destination edge in the edge property entry,
as follows: edgePropOp := (destination, value, timestamp).
To access a property for a given edge e :=(from,to), we skip
through the bucket list of from until we find the correct bucket and
search it for an entry with destination to. This leads to worst case
access times in the order of the number of neighbors a node has,
which can become very large, especially for graphs with skewed
degree distribution. Therefore we adapt our algorithms to use an
optimization if possible: Instead of iterating the neighbors in the
ASGraph itself and access the property for each neighbor it can
iterate the property directly if the algorithm only needs to access
one property. If it needs to access multiple properties, at least one
of them can be accessed with this optimization. In Section 5.1 we
compare the performance for running the Bellman-Ford algorithm
once with this optimization and once without it.

5. EVALUATION
We ran our benchmarks on datasets with different characteristics and
sizes (Table 1). Our test machine is a dual socket server computer
equipped with Intel Xeon E5-2699 v3 18-core CPUs and 378 GB
of main memory. Each core has two Hyper-Threads, resulting in a
total of 72 hardware threads.

5.1 Algorithm Comparison
To get a feeling of the performance of ASGraph compared to CSR
we evaluate four different algorithms that cover a broad spectrum of
graph access patterns (see Figure 5).

PageRank

PageRank is a friendly algorithm in terms of memory access. On
the other hand, its low computational complexity means that per-
formance is mostly restrained by memory accesses. Depending on
the dataset, ASGraph performs 7% to 98% slower than CSR which
stems from the additional instructions in its iterator and the cache
miss when a new bucket is accessed.

Bellman-Ford

Our Bellman-Ford experiments use an edge property of double type
that is used as the distance weight. For all datasets we achieve equal
or better performance than CSR. This is due to the optimization
discussed in 4.4 where we iterate over the property directly, since
it already stores the information about edge destinations alongside
the actual property values. Since the algorithm always accesses
the property together with the edge information it has high cache

93%

419%

107%

67%

115%

105%

98%

183%

107%

198%

142% 167%

248%

50%

208%

135%

98%

239%

98%
263%

BellmanFord (unoptimized) BellmanFord Pagerank Triangle Counting Weakly Connected Comp.

0.001

0.01

0.1

1

10

100

SanFra
n

Live
J

Tw
itte

r

W
ebgra

ph

SanFra
n

Live
J

Tw
itte

r

W
ebgra

ph

ldbc−
300

SanFra
n

Live
J

Tw
itte

r

W
ebgra

ph

ldbc−
300

SanFra
n

Live
J

Tw
itte

r

W
ebgra

ph

ldbc−
300

SanFra
n

Live
J

Tw
itte

r

W
ebgra

ph

ti
m

e
[s

]

ASGraph

CSR

Figure 5: Comparison of different algorithms between ASGraph and CSR. Missing bars are runs that did not finish in a reasonable time

utilization. This optimization could also be applied to CSR by
storing the property value next to each edge entry. Compared to the
other algorithms, Bellman-Ford’s inner loop is also more complex
which alleviates the overhead of our iterator.
At the other end of the scale is the Bellman-Ford algorithm without
that optimization. There ASGraph has to do a normal lookup of
each property value for each edge, which involves traversing the
property bucket chain and searching for the correct entry in the
qualifying bucket. For skewed datasets with a long tail such as LiveJ
and Twitter, this effect leads to an explosion in runtime (419% for
LiveJ, Twitter did not finish in a reasonable timeframe).

Weakly Connected Components

Computing the number and affinity of weakly connected compo-
nents shows no special access pattern that is worth mentioning. It
behaves comparable to PageRank and likewise demonstrates the
overhead of the iterator and the cache misses which results in run-
times up to 139% slower than CSR, while for some datasets it is as
fast as CSR.

Triangle Counting

Our CSR implementation of triangle counting is highly tuned as
described in [12]. Therefore we expect relative low performance
for ASGraph compared to CSR as most of the optimizations are not
applicable to ASGraph since they require random accesses to the
neighbor list of a node.The benchmarks confirm this assumption.
We leave tuning ASGraph’s common neighbor iterator for future
work, but believe that it inherently performs bad in this algorithm
because ASGraph cannot do random access to neighbors due to its
bucket layout, so we have a O(n) runtime compared to O(log n)
for finding the first eligible entry in a neighbor list. For this reason,
triangle counting marks off another corner case for which ASGraph
performs particularly bad. We didn’t obtain runtimes for Twitter
and Webgraph as, due to the long tail and the graph size, they did
not finish in time.

5.2 Scaling
We found no significant difference between the scaling behavior
between ASGraph and CSR, which is not surprising as both employ
no synchronization for reading the graph.

5.3 Complex Scenario
While ASGraph is slower most of the time if we look at a single
analytical query run in isolation (Section 5.1), it beats CSR for a sce-
nario that is even a bit more complex and which comes much closer

SanFran LiveJ ldbc−300 Twitter Webgraph

0

0.2

0.4

0.6

0.8

0

5

10

15

20

25

0

10

20

30

40

0

100

200

300

400

500

0

500

1000

ASGraph CSR ASGraph CSR ASGraph CSR ASGraph CSR ASGraph CSR

ru
n

ti
m

e
[s

e
c
]

loadInitialGraph firstAnalytics generateChanges applyChanges secondAnalytics

Figure 6: Runtime for a more complex scenario including break-
down in the different phases

to a real use-case. We look at the total runtime for 1) loading a graph,
2) running an analysis on it (PageRank), 3) generating changes, 4)
applying those changes and finally 5) running a second analysis
on the changed graph. The changeset we use in this benchmark
randomly adds 10% of the original graph’s nodes and 10% of the
edges. Figure 6 shows our results for this scenario and also breaks
up each run into its single steps. While for smaller graphs runtime
is dominated by the loading and the time to run the algorithm, for
the larger graphs generating and applying the changes dominates
overall runtime. Generating the changes for CSR means collecting
them in a delta structure while for ASGraph they are appended to the
bucket list directly as explained in Section 4. Applying the changes
for CSR involves generating a whole new CSR while for ASGraph
it comes down to the createSnapshot() method explained in
Section 4.1. As Figure 6 shows, ASGraph is faster than CSR for
this scenario for large graphs with the size of Twitter or Webgraph.
The lead increases if steps 3) to 5) are executed repeatedly which
mitigates the role of the initial loading time and makes ASGraph
also the faster alternative on the long run.

5.4 Memory Consumption
Since ASGraph keeps track of the complete operation history, it
has to store the timestamps and opTypes for each operation which

Graph Topology Property Total

ASGraph Twitter 34 GB 29 GB 63 GB
CSR Twitter 23 GB 11 GB 34 GB

ASGraph Webgraph 68 GB 57 GB 125 GB
CSR Webgraph 47 GB 22 GB 69 GB

Table 2: Memory consumption of ASGraph vs. CSR

introduces a non-negligible memory overhead. Table 2 quantifies
this. But as soon as we look at a scenario like the one from Sec-
tion 5.3, the tide turns in favor of ASGraph. For CSR, we need to
materialize the whole graph multiple times, or at least twice during
the merge of the old CSR with the change set. ASGraph on the
other hand inherently stores all the necessary information for all
different versions, thus it has a smaller memory consumption when
the mutations to the graph do not exceed a certain percentage of the
original graph.

6. CONCLUSIONS
We presented ASGraph, a mutable graph container that shows perfor-
mance comparable to CSR for running single analytical queries and
beats it in overall runtime for more complex scenarios. ASGraph’s
performance is independent of the number of stored snapshots, thus
performance does not deteriorate even when ASGraph is used to
store thousands of snapshots. Furthermore, it offers support for a
concurrent update stream and a slow path access to arbitrary ver-
sions which do not have to be materialized. ASGraph supports node
and edge properties. While node properties can be accessed with-
out a performance penalty, lookup of edge properties can become
expensive in the current scheme.

6.1 Future Work
Our next steps include evaluating the slow path access to neighbor
lists. For a practical implementation we further need to investigate
mapping of vertex keys to internal ids. This is a non-trivial task as
most algorithm implementations expect a dense range of indices,
but for ASGraph the internal representation can contain deleted
nodes, so we need a second level of mapping to fill these holes. Our
property design currently only allows fixed-width values, but there
are use-cases where one would like to densely store variable-length
properties. To store these in fixed-size buckets we need to adopt
an approach similar to slotted pages from a RDBMS. While our
current implementation can handle more than 1 million operations
per second, eventually its performance will deteriorate because each
operation has to traverse the whole bucket chain to find the correct
slot. By reversing the chain we could solve that problem at the
cost of a more complex iterator and snapshot logic. This would
also introduce the possibility to optimize snapshot creation for the
common case where a user wants to incorporate the latest changes.
Another challenge is that the average length of the bucket chain and
thereby the memory consumption grows with the number of updates.
So a user may wish to compact the graph by removing older entries,
sacrificing the possibility to restore the graph to older snapshots.
Repeated insert and delete operations and property update operations
up to that time are thereby collapsed into one.
Once our system is mature enough, we want to compare it against
others in the Graphalytics Benchmark [4]. We claimed before, that
for most workloads a single shared memory machine is sufficient,
but there are graphs in the size of multiple terabytes for which we
need to develop a distributed version of ASGraph. We expect the
same challenges for this as there are for distributed CSR.

7. REFERENCES
[1] L. Backstrom, D. P. Huttenlocher, J. M. Kleinberg, and

X. Lan. Group formation in large social networks:
membership, growth, and evolution. In Proceedings of the

Twelfth ACM SIGKDD International Conference on

Knowledge Discovery and Data Mining, Philadelphia, PA,

USA, August 20-23, 2006, pages 44–54, 2006.

[2] P. Boldi, M. Rosa, M. Santini, and S. Vigna. Layered label
propagation: a multiresolution coordinate-free ordering for
compressing social networks. In Proceedings of the 20th

International Conference on World Wide Web, WWW 2011,

Hyderabad, India, March 28 - April 1, 2011, pages 587–596.

[3] P. Boldi and S. Vigna. The webgraph framework I:
compression techniques. In Proceedings of the 13th

international conference on World Wide Web, WWW 2004,

New York, NY, USA, May 17-20, 2004, pages 595–602, 2004.

[4] M. Capota, T. Hegeman, A. Iosup, A. Prat-Pérez, O. Erling,
and P. A. Boncz. Graphalytics: A big data benchmark for
graph-processing platforms. In Proceedings of the Third

International Workshop on Graph Data Management

Experiences and Systems, GRADES 2015, Melbourne, VIC,

Australia, May 31 - June 4, 2015, pages 7:1–7:6, 2015.

[5] A. Ching, S. Edunov, M. Kabiljo, D. Logothetis, and
S. Muthukrishnan. One trillion edges: Graph processing at
facebook-scale. PVLDB, 8(12):1804–1815, 2015.

[6] D. Ediger, R. McColl, E. J. Riedy, and D. A. Bader.
STINGER: high performance data structure for streaming
graphs. In IEEE Conference on High Performance Extreme

Computing, HPEC 2012, Waltham, MA, USA, September

10-12, 2012, pages 1–5, 2012.

[7] O. Erling, A. Averbuch, J. Larriba-Pey, H. Chafi, A. Gubichev,
A. Prat-Pérez, M. Pham, and P. A. Boncz. The LDBC social
network benchmark: Interactive workload. In Proceedings of

the 2015 ACM SIGMOD International Conference on

Management of Data, Melbourne, Victoria, Australia, May 31

- June 4, 2015, pages 619–630, 2015.

[8] A. Kemper, T. Neumann, J. Finis, F. Funke, V. Leis, H. Mühe,
T. Mühlbauer, and W. Rödiger. Processing in the hybrid OLTP
& OLAP main-memory database system hyper. IEEE Data

Eng. Bull., 36(2):41–47, 2013.

[9] J. Leskovec, J. M. Kleinberg, and C. Faloutsos. Graphs over
time: densification laws, shrinking diameters and possible
explanations. In Proceedings of the Eleventh ACM SIGKDD

International Conference on Knowledge Discovery and Data

Mining, Chicago, Illinois, USA, August 21-24, 2005, pages
177–187, 2005.

[10] F. Li. www.cs.utah.edu/~lifeifei/SpatialDataset.htm, 2005.

[11] P. Macko, V. J. Marathe, D. W. Margo, and M. I. Seltzer.
LLAMA: efficient graph analytics using large multiversioned
arrays. In 31st IEEE International Conference on Data

Engineering, ICDE 2015, Seoul, South Korea, April 13-17,

2015, pages 363–374, 2015.

[12] M. Sevenich, S. Hong, A. Welc, and H. Chafi. Fast in-memory
triangle listing for large real-world graphs. In Proceedings of

the 8th Workshop on Social Network Mining and Analysis,

New York, NY, USA, August 24, 2014, pages 2:1–2:9, 2014.

[13] V. Sikka, F. Färber, W. Lehner, S. K. Cha, T. Peh, and
C. Bornhövd. Efficient transaction processing in SAP HANA
database: the end of a column store myth. In Proceedings of

the ACM SIGMOD International Conference on Management

of Data, SIGMOD 2012, Scottsdale, AZ, USA, May 20-24,

2012, pages 731–742, 2012.

