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ABSTRACT
Several public health (PH) researchers have lately been arguing that
big data can play a profound role in scientific discovery. Leverag-
ing the vast amount of population-level data collected by public
agencies and other organizations, could lead to important discover-
ies that were not necessarily suspected to be true. However, they
also warn about the pitfalls of data-driven discovery: The large
amount of data can easily lead to information overload for the re-
searchers. Additionally, data-driven studies that make a lot of tests
in the search for important discoveries have the potential to lead to
discoveries that seem important but are in fact random.

We show that data-driven studies can be effective and yet avoid
the potential pitfalls by keeping the researchers in the loop of the
discovery process. To this end, we propose PHD; an interactive vi-
sual discovery system that allows public health researchers to gain
interesting insights from large datasets. PHD generalizes the cur-
rent workflow of PH researchers by facilitating the major analytics
tasks involved in PH discovery, such as calculating important as-
sociations based on the standard notions of odds rations and con-
fidence intervals, controlling for the effect of other variables and
discovering interesting compounding effects. More importantly
however, it leverages user interaction and the semantics of the do-
main to make sure that this workflow scales to large datasets, while
avoiding information overload and random discoveries.

1. INTRODUCTION
Public health is the science of preventing disease and promoting

health and well-being. To accomplish this goal, public health re-
searchers (also known as epidemiologists) aim in discovering the
determinants of health; i.e., in the factors that affect health out-
comes. For instance, they may be interested in the factors that are
responsible for low weight of infants at birth. Such discoveries are
made through public health studies.

Traditionally, public health studies are hypothesis-driven. Epi-
demiologists start from a hypothesis about a (typically limited) set
of factors that are strongly suspected to affect an outcome. They
then collect data about these factors and outcome and check whether
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Figure 1: Screenshot of PHD’s discovery explorer

their hypothesis holds. For example, the authors of [15] suspected
that there is a correlation between maternal residential proximity to
major roads and low birth weight. In order to test this hypothesis,
they collected data about the distance from major roads and other
related measures, such as air pollution and noise, and used them to
test their hypothesis.

Starting from hypotheses though makes it hard to make unex-
pected discoveries about factors that are not even suspected to influ-
ence a health outcome. To address this concern, many public health
experts are pushing for a data-driven approach to public health.
They suggest that by leveraging large volumes of data that are col-
lected about individuals and/or communities (including hospital-
izations, socioeconomic data, behavioral data, and environmental
data), we may be able to make unexpected and highly valuable dis-
coveries about the determinants of health [8, 10, 11]. For instance,
imagine leveraging a large dataset on environmental data to study
birth weight. Using this dataset, one could produce evidence not
only for the association of the birth weight with major roads, but
also for the association with other environmental factors that one
may have never expected (e.g., proximity to parks).

However, data-driven public health studies do not come without
pitfalls. While hypothesis-driven studies are focused analyses that
involve a limited set of factors, data-driven studies start from a con-
siderably larger pool of factors (in the order of hundreds or thou-
sands). As such, data-driven studies are hard to carry out without
extra software support, as the current workflow of epidemiologists
does not scale to large numbers of factors: It is hard not only to
run their analyses for a large number of factors using their tools of
choice (typically spreadsheets or statistical packages), but also to
gain an overview of the multitude of results that would arise from
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Positive Outcome Negative Outcome
h ¬h

Exposed
PE NEf

Not Exposed
PN NN¬f

Table 1: Contingency table for 〈f → h〉

such a process. Last but not least, by testing for a large number
of associations, they are very likely to make spurious discoveries.
As many public health experts warn, increasing the number of tests
also increases the probability of discoveries that seem important,
but are in fact random [8].

We argue that data-driven studies that simultaneously have the
potential for important, unexpected discoveries and avoid poten-
tial pitfalls regarding lack of overview and spurious discoveries are
possible by keeping the epidemiologist in the loop during the dis-
covery process. To this end, we present PHD (Public Health Dis-
covery); an interactive visual platform that allows epidemiologists
to guide the discovery process and quickly make interesting discov-
eries in large datasets. PHD not only supports the tasks commonly
carried out by researchers in traditional hypothesis-driven studies
(such as finding the most interesting discoveries based on the same
formal statistical guarantees used in the field), but also makes sure
that these tasks scale to large data sets. Finally, it exploits the user
interaction and the semantics of the data to reduce the probability
of false discoveries. Figure 1 depicts PHD’s main screen, which we
describe in detail in later sections. This work is based on observa-
tions we made while integrating and analyzing data on more than
3,800 combined factors and outcomes about regions of San Diego
County, in the context of UC San Diego’s DELPHI project [7].

Contributions. This work makes the following contributions:

• It describes and formalizes the workflow followed by epidemiol-
ogists in traditional hypothesis-driven studies.

• It identifies the challenges of adjusting this workflow to data-
driven scenarios, which typically include a large number of vari-
ables, making the problem substantially different from the tradi-
tional small-data studies.

• It describes a novel visual interactive platform that enables a new
workflow suitable for data-driven studies. The platform supports
the notions and statistical guarantees commonly accepted in pub-
lic health, while adjusting them for the big amounts of data found
in data-driven use cases.

• It discusses how to leverage user interaction and domain-specific
semantics to address the problem of false discoveries, commonly
found in data-driven exploration systems.

2. DISCOVERIES IN PUBLIC HEALTH
Before we explain how to facilitate data-driven epidemiological

studies, we first describe the workflow followed by epidemiolo-
gists in current hypothesis-driven studies. Researchers conducting
a study typically start from a hypothesis that certain health factors
(in short factors), such as proximity to major roads and air pollu-
tion, are correlated with a particular health outcome (in short out-
come), such as low birthweight. The goal of the study is then to
prove that one or more of these factors f have a strong association
to the health outcome h. For the purposes of this work, this associ-
ation is called a discovery, and denoted by 〈f → h〉. However, not
all discoveries are interesting. For a discovery to be interesting it
has to be statistically significant. Thus the first step in an epidemi-
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Null	Hypothesis

Positive	Discoveries

Negative	Discovery

Figure 2: Epidemiologist’s worksheet showing the association
of five factors with asthma emergency department visits

ologist’s workflow is to find statistically significant discoveries.

Finding statistically significant discoveries. Statistics propose a
multitude of metrics to measure statistical significance. In public
health, the commonly accepted standard is the odds ratio and the
associated confidence interval. The odds ratio (OR) of a discovery
〈f → h〉 is the ratio of the odds of having a health outcome h
while being exposed to a factor f (i.e., proximity to major roads),
divided by the odds of having the outcome and not being exposed
to the factor. The confidence interval (CI) is used to measure the
statistical significance of the discovery. The medical field, typically
relies on 95% CI. Formally, the OR and the 95% CI of a discovery
are computed as follows:1

DEFINITION 2.1. Odds Ratio & 95% Confidence Interval. Given
a discovery 〈f → h〉, consider its contingency table shown in Table
1. Each cell of the table denotes the number of subjects that satisfy
the variables of the corresponding row and column.The odds ratio
of the discovery is given by:

OR(〈f → h〉) =
PE
NE

PN
NN

=
PENN

NEPN

while its 95% confidence interval is the range [lower limit (ll),
upper limit (ul)], whose upper and lower limits are given by:

[ll, ul] = e[ln(OR)±1.96
√

1/PE+1/NE+1/PN+1/NN ]

To compare discoveries, epidemiologists typically employ statis-
tical packages to visualize the odds ratios and confidence intervals
through forest plots. Figure 2 shows a forest plot of the association
of five different factors with asthma emergency department visits
(the data shown are extracted from the DELPHI dataset). An odds
ratio of 1 (a condition known as null hypothesis), signifies that the
factor does not have any effect on the health outcome. Therefore,
a discovery is considered statistically significant if its confidence
interval does not contain the value 1. In Figure 2, only three out of
the five discoveries are statistically significant.

Controlling for known confounders. Finding statistically signif-
icant discoveries is only the first step. A statistically significant
discovery could still be non-interesting if it is caused by a third fac-
tor that is known to be associated with the health outcome. For in-
stance, a discovery that the birthweight is associated with proximity

1For a complete review of odds ratios and confidence intervals, the
reader is referred to [9].



to major roads may be irrelevant if it is caused by socioeconomic
factors (e.g, income) and these factors are known determinants of
low birth weights. Such factors that are associated with both the
premise and the conclusion of a discovery are called confounders.
The public health literature contains extensive lists of factors that
are known to affect certain health outcomes and are therefore used
as confounders, with socioeconomic factors being the most promi-
nent example. To discard discoveries caused by known confound-
ing factors, as a second step in the analysis, epidemiologists control
for such factors, by adjusting the odds ratio, so that the effect of the
confounders is removed. The odds ratio of a discovery controlled
for a factor is computed as follows:

DEFINITION 2.2. Controlling for a factor. Let 〈f → h〉 be a
discovery and c a factor to control for. Let the contingency table
of the subpopulation that satisfies c (resp. ¬c) be Table 1 with the
suffix ′|c′ (resp. ′|¬c′) added to all variables. Then the odds ratio
of the discovery controlled for c is given by:

ORc
adj(〈f → h〉) =

PE|cNN|c
|c| +

PE|¬cNN|¬c

|¬c|
NE|cPN|c
|c| +

NE|¬cPN|¬c

|¬c|

where |c| (resp. |¬c|) is the count of subjects satisfying c (resp. ¬c)

Finding interesting compounders. Once epidemiologists find an
interesting discovery (i.e., one that is statistically significant even
after controlling for known confounders), they next study how the
discovery is affected by other factors. For example, does proximity
to parks affect the premise of the initial discovery? Such factors,
which when added to the premise of the discovery significantly af-
fect its statistical significance (by either increasing it if they have
a positive effect or decreasing it if they have a negative effect), are
called compounders.

Epidemiologists want thus to find the factors f1, f2, . . . , fn which
when added to a discovery d : 〈f → h〉 yield a new discovery
d′ : 〈f, f1, f2, . . . , fn → h〉, which is still statistically significant
and whose odds ratio OR(d′) is significantly different from the
odds ratio OR(d) of the initial discovery. Note that one may argue
that by adding more factors to the discovery, it is easy to achieve
a high odds ratio by limiting the population that satisfies the dis-
covery (i.e., minimizing PN ). This is where the importance of the
confidence interval shines, as these discoveries will easily stop be-
ing statistically significant.

At the end of this discovery process, epidemiologists have iden-
tified a set of discoveries with one or more factors in their premise
that are both statistically significant and not explained by known
confounders.

3. PHD: THE DISCOVERY SYSTEM
In contrast to hypothesis-driven studies that focus on the interac-

tion between a limited set of factors and outcomes, data-driven ap-
proaches promise the analysis of hundreds or thousands of factors
and outcomes. Typically, these are data sets that have been created
by accumulating population-level data from a variety of sources, in-
cluding health agencies, hospitals, surveys, environmental reports,
etc. This explosion in the number of factors and outcomes explored
creates significant challenges:

• Lack of overview: Due to the large number of factors, it is hard
for the epidemiologist to have an overview of all the data that are
used in the analysis.

• Information overload: Similarly, the large number of potential
discoveries have the potential of overwhelming the user if they
are not appropriately ranked or summarized.

• Random discoveries: Finally, due to the many associations tested,
it is easy to arrive at seemingly interesting discoveries that are
random.

We next describe how PHD addresses these challenges.

Running example. We use as our running example a data-driven
study carried out at UC San Diego in collaboration with the Center
on Society and Health at the Virginia Commonwealth University
and the San Diego Health and Human Services Agency. As part
of the study, we integrated data about more than 3,800 combined
factors and outcomes, including environmental exposures (such as
traffic density and air pollution), individual behaviors (such as smok-
ing, exercising, and consumer buying patterns), health systems (such
as insurance status), and hospitalizations and emergency depart-
ment visits for various health conditions. We then analyzed the
data using a preliminary version of the proposed system to get in-
sights on the determinants of behavioral health conditions (such as
anxiety disorders, attention-deficit disorders, schizophrenia, etc.).
A demo of this early version of PHD can be found in [2]. The
lessons learned from the study were used to inform the revision of
the system, which led to the system presented below.

We next outline how PHD facilitates the three main steps of the
discovery process: (a) finding statistically significant discoveries,
(b) controlling for confounders, and (c) exploring compounders.

Finding statistically significant discoveries. As a first step in
the discovery process, PHD allows epidemiologists to find statis-
tically significant discoveries. However, the plethora of factors and
outcomes makes it impossible to present to the user all discover-
ies whose confidence interval does not contain the null hypothesis
(which is the definition of statistical significance, as explained in
Section 2). To avoid information overload, PHD limits the sets of
discoveries displayed on the screen in two ways:

• User guidance: The epidemiologist guides the search by select-
ing a subset of factors and outcomes of interest. Even though it
may at first sight seem counter to the data-driven nature of the
system, in reality epidemiologists are not interested in a blind
search for discoveries. Instead, they have some broad area of
interest in mind. For instance, in our running example, the user
may be interested in exploring how factors related to education,
insurance, and income affect behavioral health outcomes. To fa-
cilitate this user guidance, all factors and outcomes are grouped
into broad areas and subareas (such as socioeconomic factors,
individual behaviors, etc.).

• Top k computation: However, even with the user’s restriction on
the input, the number of statistically significant discoveries may
still be substantial. To address this problem, PHD computes and
displays the top k discoveries, in terms of significance that con-
tain factors and outcomes selected by the user (where the value
of k is either selected by the user or automatically chosen by
the system based on the available screen real-estate to reduce the
need for scrolling). An interesting problem is selecting the met-
ric that is used for the top k computation. As described in Section
2, the significance of a discovery is represented by its confidence
interval, which is described by two numbers (i.e., the two inter-
val limits). In traditional studies, epidemiologists could visual-
ize and display the limited number of confidence intervals so that
they could compare them, as shown in Figure 2. In data-driven
studies, the number of discoveries precludes such an approach.
Instead, PHD represents the significance of a discovery through
a single normalized significance value that is used for the top k
computation and which is given by the following formula:
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Figure 3: Example interaction of epidemiologist with PHD

Normalized Significance (NS) =

{
1−ul
ul+1

, negative discovery
ll−1
ll+1

, positive discovery

This value, corresponds to the limit of the confidence interval
that is closest to the null hypothesis (which is intuitively the
worst-case odds ratio). Additionally, this value normalizes pos-
itive and negative discoveries (as the range of significance for
negative and positive discoveries is [0,1] and [1, +∞], resp.).

PHD visualizes the resulting k discoveries through the discov-
ery explorer shown in Figure 3a. Rows and columns correspond
to factors and health outcomes, resp., participating in the top k dis-
coveries. Similar factors are grouped into large semantic categories
(e.g., education or insurance), which exist in the input data, as we
will discuss in Section 4. Each discovery 〈f → h〉 is shown as a
colored cell at the intersection of the row/column corresponding to
the factor f /outcome h, respectively. A blue (resp., orange) shade
denotes negative (resp., positive) discoveries, while the color inten-
sity represents the normalized significance of the discovery (more
saturated colors denote more significant discoveries). For instance,
the discovery under the mouse pointer denotes a positive associa-
tion between lack of health insurance for 18-64 year olds and high
emergency department discharge rates for anxiety disorders.

Controlling for known (and unknown) confounders. At any
point during the discovery process, the epidemiologist can control
the discoveries for confounders. To ease the process, PHD incor-
porates knowledge about known confounders for particular health
outcomes. Known confounders for the outcomes shown on the
screen are shown on the left-hand side of the discovery explorer
for the epidemiologist to select. Upon selection, PHD controls for
these factors and updates the top-k discoveries and their signifi-
cance values. For instance, in Figure 3a, the user has already con-
trolled for smoking and alcohol consumption.

In addition to being semantically important, controlling for known
factors is also very beneficial in data-driven scenarios for quickly

pruning non-interesting discoveries. Preliminary results show that
controlling can considerably reduce the number of discoveries to
be explored. For instance, in an experiment with 810 factors and
1 health outcome, controlling for households that received food
stamps (a proxy for income) reduced the number of statistically
significant discoveries from 362 to 203 (a reduction of 44%).

However, not all confounders are known. A discovery may not
have any known confounders, but it may still have confounders
that were not previously known. Intuitively, these correspond to
unknown latent variables that explain a discovery. In hypothesis-
driven studies, finding unknown confounders is rare, as only a lim-
ited set of factors, hand-picked by the researchers, participate in the
study. In data-driven scenarios on the other hand, the large set of
participating factors significantly increases the potential for finding
interesting unknown confounders.

This is why PHD, in addition to known confounders, allows epi-
demiologists to find and control for unknown confounders. Once
the user selects a discovery from the discovery explorer, PHD shows
the discovery analysis screen (see Figure 3b). This screen, among
others, shows the top unknown confounders for the selected dis-
covery. A confounder c of a discovery d is ranked based on its
confounding effect, which is defined as |NS(d)−NSc

adj(d)

NS(d)
|, where

NS(d) and NSc
adj(d) is the normalized significance value of dis-

covery d before and after controlling for confounder c, respec-
tively. Intuitively, the confounding effect of c expresses the rela-
tive change of the discovery’s significance value after controlling
for c. After reviewing the top unknown confounders, an epidemi-
ologist can control for any of them, by simply selecting them. For
instance, Figure 3b shows the top unknown confounders for the as-
sociation between the lack of health insurance for 18-64 year olds
and anxiety disorder emergency department discharge rates. The
screen shows that if we control for subjects that have auto loans, the
normalized significance of the discovery is reduced by 9.7%. Note
that the number of such unknown confounders could be significant.
While by showing the top confounders we avoid information over-
load, in our future work we will explore how we can leverage the



semantics of the data (which as we will see in Section 4 are impor-
tant for other purposes as well) to select the unknown confounders
that are more likely to be of interest to the user.

Discovering interesting compounders. Once an epidemiologist
has found an interesting discovery, they can use the compounding
tab of the discovery analysis screen to also check for interesting
compounding factors (see Figure 3c). The tab shows the top com-
pounding factors for the selected discovery d, ranked by their com-
pounding effect; i.e. the relative change to the normalized signifi-
cance of d when compounding factor c is added to d’s premise. The
top compounding factors are shown on an array, which allows the
user to select one factor (by selecting a cell on the diagonal) or two
factors (by selecting any other cell), to be added to the discovery.
Once the user makes a selection, the chosen factor(s) are added to
the discovery and its confidence interval is updated. For instance,
Figure 3c shows that having a Master’s degree acts as a strong com-
pounder for the association between lack of health insurance for
18-64 year olds and anxiety disorder emergency department visits.

PHD faciltates the discovery of two types of compounding fac-
tors, pruning along the way across myriads of combinations. In
addition to the commonly studied compounding factors (which as
explained in Section 2 are defined as factors that significantly af-
fect a discovery when added to its premise), PHD allows the user
to also find unexpected compounding factors. We call a factor f1
an unexpected compounding factor for a discovery 〈f → h〉 iff
NS(〈f, f1 → h〉)� (or�) NS(〈f → h〉)∗NS(〈f1 → h〉); i.e.,
iff the joint effect of f1 and f on h is significantly different than the
multiplication of their individual effects. This intuitively shows that
f and f1 are not independent factors, but have an interesting inter-
action w.r.t. the health outcome h. This is an important feature that
enables discoveries, such as the one in [4], which states that obe-
sity and smoking are both risk factors for cardiovascular diseases,
but together they have an amplified effect. The discovery analy-
sis screen allows a user to choose between the top compounders in
general and the top unexpected compounders to facilitate different
types of discoveries.

4. AVOIDING RANDOM DISCOVERIES
While we have shown how PHD addresses the lack of overview

and information overload pitfalls inherent in data-driven studies,
we have not yet seen how it deals with random discoveries. As
the critics of data-driven approaches correctly argue, as a system
tests more and more associations in order to arrive at a significant
discovery, the probability of finding a discovery that appears statis-
tically significant but is in fact random increases as well [8]. This
phenomenon, well known in both statistics and medicine [5], is
particularly pronounced in data exploration systems, which make it
easy to perform large numbers of tests without even realizing it [6].

To mitigate this problem, statisticians have proposed a variety
of methods that adjust upwards the probability associated with the
confidence interval (upwards of the conventional 95%) to account
for the fact that one has computed multiple associations. Conse-
quently, the confidence intervals of individual discoveries widen.
These include the well-known Bonferonni correction (which is con-
sidered too conservative), the Benjamini-Hochberg procedure [5],
and others. Recently, [6] integrated such metrics in a visual explo-
ration system.

Limiting the number of tests. While important steps in the right
direction, these approaches diagnose and mitigate the problem after
the fact (i.e., after a large number of associations have been tested,
which may have led to very wide confidence intervals, which in turn

R
ac

e 

0-14 

Asian 

Black 

Hispanic 

White 

Female 

Male 

Age 

H
as

 In
su

ra
nc

e 

0-17 18-64 65+ 

With Ins. 

W/o Ins. 

Age 

15-24 25-44 45-64 65+ 

Anxiety Disorder, Hospitalizations Health Insurance 

Figure 4: Semantic structure of factors and outcomes

may have led to false negatives where legitimate discoveries are
deemed non-significant ones). Interactive systems, such as PHD,
offer the opportunity to combine this with a proactive approach that
leverages user interaction to avoid performing many tests in the first
place. By receiving guidance from the user on which discoveries
to pursue, the system can avoid testing and paying the penalty in
statistical significance for associations of no interest to the user.

At first sight, this seems to go against the data-driven nature
of the system. How can a user inform the system that they are
not interested in a discovery before knowing the statistical signif-
icance of said discovery? Ontologies come to the rescue at this
point: To solve this apparent circularity, the system groups factors
into higher-level categories and first displays discoveries in terms
of these high-level categories. For the purpose of the top-k dis-
covery computation each category acts as a single factor and thus
computing the association of the category with an outcome requires
significantly fewer tests than testing the associations of all factors
within the category with the outcome. After seeing the discoveries
in terms of categories, the user can select a category of interest and
drill further down into it.

To group factors into categories, PHD exploits the semantic struc-
ture of factors and outcomes that typically exists in the source data
(e.g., in the ontology implied by the hierarchical structure of ques-
tionnaires or in explicit medical ontologies [1]). In particular, the
input data typically contain characteristics of the population that
are broken down into finer-grained factors, according to a set of di-
mensions. For instance, Figure 4 shows two such broad character-
istics; health insurance and hospitalizations for anxiety disorders.
The latter is broken down according to gender, race, and age, while
the former is broken down according to health insurance status and
age. If flattened, each characteristic yields as many factors as the
combination of values for its dimensions. It is therefore obvious
that using this structure to cluster the flat factors into higher-level
categories (e.g., total of people with/without health insurance re-
gardless of age), can significantly cut down on the number of tests
performed by the system.2

Figure 1 on the first page of the paper shows how the discov-
ery explorer of Figure 3a is transformed by the use of categories
that exploit the semantic structure of the data (and after drilling
down into the non-insured population category). For instance, the
six health insurance factors of Figure 3a have been summarized
through two high-level factors (with and without health insurance).

2Note that in contrast to data warehouses where data are commonly
modelled as a single datacube, public health data are clustered into
multiple datacubes. The reason is that they are population-level
data that do not contain certain combinations of dimensions. For
instance, even though we know how many people were hospitalized
for anxiety disorders and how many have health insurance, we may
not know how many people simultaneously satisfy both conditions.



With grouping, not only becomes the visualization more concise,
but the system also performs significantly fewer tests, thus reduc-
ing the possibility of random discoveries.

Trading off statistical significance with information loss. How-
ever, summarizing discoveries into higher-level categories comes
with an information loss, as discoveries that exist at lower levels
may not appear at the higher level. For instance, consider the non-
insured population category shown in Figure 1 and its children.
Most of the age groups of uninsured subjects behave similarly and
hence they are correctly summarized by the uninsured category.
Uninsured over 65 years though behave differently than other age
groups by having a negative association with hospitalizations for
anxiety disorders. While this discovery may be interesting, it does
not appear on the discovery explorer if we bundle together all unin-
sured into a single category. Each grouping of factors into cate-
gories corresponds thus to a particular tradeoff between statistical
significance and information loss, with grouping into broader cat-
egories exhibiting higher statistical significance but also increased
information loss. Currently, PHD groups factors into categories
that are predetermined by domain experts (e.g., the expert might
decide that it makes more sense to group health insurance by the
status and not by the age). Using the data to automatically select
the grouping that corresponds to the optimal tradeoff is though an
interesting problem that we will pursue in our future work.

5. RELATED WORK
Leveraging big data to discover interesting patterns has been the

focus of extensive work in three areas: public health, data mining,
and databases. In addition, the statistics community has done a lot
of work on reducing the possibility of false discoveries.

The public health community has lately started using data-driven
techniques to compute factors that affect an outcome [10]. How-
ever, such approaches are limited to particular studies and are not
concerned with automating the process. Even though it has been
argued that public health has a lot to gain from big data [8, 11],
we are not aware of specialized interactive discovery tools for the
problem, which is the focus of our work.

The data mining and machine learning community has worked
on inferring associations from a dataset, commonly known as as-
sociation rule mining (ARM) [3]. However, ARM algorithms are
typically based on non-standard statistical notions (commonly con-
fidence and support). The limited work that exists on ARM with
odds ratios does not support confidence intervals, which form the
accepted standard for statistical significance in public health. Sec-
ond, PHD can prune the space of compound effects (which are
equivalent to associations in ARM) by dismissing those that are im-
plied by the independence assumption of their components. Finally,
our work helps with the summarization of discoveries. Note that the
latter two aspects address the most common complaint about ARM
techniques, which is the exorbitant size of their output.

The database community has lately worked on general frame-
works for extracting and visualizing interesting facts. In particular,
systems such as SEEDB [14] and zenvisage [13], have focused on
extracting automatically or through a specification language, visu-
alizations that exhibit patterns of interest to the user. Compared to
these works which look at general notions of “interestingness", our
work focuses on interesting discoveries and provides a discovery
process tailored to public health. To achieve that, our work aug-
ments visual discovery with the statistical guarantees needed in the
field, it aims to help with the whole workflow of a researcher by
facilitating pruning spurious discoveries at different stages of the
discovery process, and it places significant weight on user interac-

tion as a way of improving the provided guarantees.
Related to the summarization of the results done by PHD is work

on clustering the data as a way of providing an overview in the ex-
ploratory process [12]. However, in contrast to our work, the sum-
marization uses the actual data (and not their semantics) and, more
importantly, the summarization is used to improve user interaction
(not any associated statistical guarantees, as is the case with PHD).

Finally, the statistics community has proposed several techniques
to solve the problem of maintaining the family-wise error rate (i.e.,
adjusting the statistical significance of associations for past tests).
These include the Bonferroni correction, the Benjamini-Hochberg
method [5], and many more. The reader is referred to [6] and [16]
for a discussion and detailed evaluation of the effectiveness of such
techniques for interactive data exploration.

6. CONCLUSION & FUTURE WORK
Public health can greatly benefit from augmenting the common

hypothesis-driven studies with data-driven studies that leverage big
amounts of health-related data to find the determinants of health.
In this work, we have shown how we can leverage user interaction
and the semantics of the domain to facilitate data-driven studies that
lead to interesting discoveries and avoid common pitfalls, such as
the information overload and the potential for random discoveries.

Future work will explore further the semantics-based approach.
In particular, semantics will be used (a) to augment the top k com-
putation of confounders and compounders, in order to present the
confounding and compounding factors that are more likely to be
of interest to the user, and (b) to find the grouping of factors and
outcomes that corresponds to the right tradeoff between statistical
significance and information loss, as explained in Section 4. Once
we have solved the technical problems, we will be evaluating the
PHD platform with public health experts in the DELPHI project.
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