
Streaming Algorithms for Robust Distinct Elements

Di Chen∗
Hong Kong Univ. of Science and Technology

Clear Water Bay, Kowloon
Hong Kong

dchenad@cse.ust.hk

Qin Zhang†
Indiana University Bloomington

Bloomington, IN 47401
United States

qzhangcs@indiana.edu

ABSTRACT
We study the problem of estimating distinct elements in the
data stream model, which has a central role in traffic mon-
itoring, query optimization, data mining and data integra-
tion. Different from all previous work, we study the problem
in the noisy data setting, where two different looking items
in the stream may reference the same entity (determined by
a distance function and a threshold value), and the goal is
to estimate the number of distinct entities in the stream.
In this paper, we formalize the problem of robust distinct
elements, and develop space and time-efficient streaming al-
gorithms for datasets in the Euclidean space, using a novel
technique we call bucket sampling. We also extend our algo-
rithmic framework to other metric spaces by establishing a
connection between bucket sampling and the theory of local-
ity sensitive hashing. Moreover, we formally prove that our
algorithms are still effective under small distinct elements
ambiguity. Our experiments demonstrate the practicality of
our algorithms.

1. INTRODUCTION
Estimating the number of distinct elements is a fundamen-

tal problem in the streaming model [18, 2], where a single
machine is observing a sequence of data items of unknown
size arriving over time, and it would like to compute the
number of distinct elements of this data sequence by a sin-
gle left-to-right scan using a memory space that is much
smaller than the size of the input sequence. The distinct el-
ements problem was first studied by Flajolet and Martin [18]
in 1985, and has attracted a significant attention in the past
three decades, due to its central importance in traffic moni-
toring, query optimization, data mining and integration. In
this paper we try to attack a more difficult question:

∗Work supported in part by HKRGC grants GRF-621413
and GRF-16211614. Part of the work was done when the
author was visiting Indiana University Bloomington.
†Work supported in part by NSF CCF-1525024, and IU’s
Office of the Vice Provost for Research through the FRSP.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

SIGMOD’16, June 26-July 01, 2016, San Francisco, CA, USA
c© 2016 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ISBN 978-1-4503-3531-7/16/06. . . $15.00

DOI: http://dx.doi.org/10.1145/2882903.2882915

What if the dataset is noisy? More precisely, if
two different looking data items may reference to
the same entity, can we effectively and efficiently
estimate the number of distinct entities in the
streaming model?

Here we define an entity in a broad sense: it can be an
atomic real-world entity; it can also be a topic (e.g., im-
ages can be partitioned into cats, dogs, cars, etc.). In gen-
eral, given a pairwise distance function between items, and
a threshold value α, we say two items reference to the same
entity if their distance is no more than α; we call these two
items near-duplicates. One can view the distinct elements
problem in the noise-free case as setting α = 0.

Motivation. Our problem is motivated by the fact that
real-world datasets are inherently noisy. A few examples:

– Images of the same content uploaded to Flickr may
look differently due to different formats, compressions,
rescales, photoshop edits, etc.

– Twitter messages are re-distributed with small edits.

– Queries of the same meaning are sent to Google under
different keywords combinations.

In this paper we study the distinct elements problem on
such noisy datasets in the streaming model. The streaming
model is relevant since (1) items (images, messages, query
keywords) typically come in a streaming fashion; and (2) a
single scan of the dataset using a small working memory is
much faster than randomly accessing data in the disk.

We note that one cannot run the streaming algorithms de-
signed for noise-free datasets in the noisy setting since an al-
gorithm for noise-free datasets will treat 100 near-duplicated
items as 100 different elements, and then the resulting num-
ber of distinct elements will be 100 instead of 1.

The universal needs of handling noisy datasets have fu-
eled an extensive research activity in the past few decades.
The line of research that is closest to ours is called data de-
duplication (or entity resolution, record linkage, etc.). We
refer readers to [25, 14, 21, 12] for introductions to this sub-
ject. Unfortunately, in the streaming model it is impossible
to perform entity de-duplication thoroughly, simply because
we cannot store the whole dataset, even spending only 1 bit
for each item in the stream.

One may wonder if we can adapt the previous techniques
for noise-free streaming data. Indeed, if we can design a
magic hash function h which can hash items referencing to
the same entity (different entities) to the same element (dif-
ferent elements), then we can simply adopt any existing algo-
rithm for distinct elements in the hashing space. However,

1433

such a magic hash function is unlikely to be constructed
and stored in a small space (say, logarithmic in terms of the
stream length), simply due to the fact that the number of
such mappings is exponentially large.

One who is familiar with locality sensitive hashing (LSH)
[22, 3] may think if LSH functions can be used as magic hash
functions. We notice that LSHs can only guarantee that
similar items are mapped into the same bucket with a certain
probability, while not-so-similar items may also be mapped
into the same bucket with a certain probability. One can use
the “AND-OR” trick1 to sharpen these probabilities, but the
“OR” part cannot be implemented in the streaming setting,
because unlike “AND” it does not create a well-defined hash
value for each point. However, the theory of LSH is still
very useful to our problem, and we will discuss it in detail
in Section 4.

Similarly, all linear sketching algorithms in the streaming
literature cannot be used in the noisy data setting, simply
because items referencing to the same entity may be mapped
into different coordinates of the sketching vectors.

One who is familiar with clustering may wonder if this
problem has any connection with the streaming k-center
problem (e.g., [20]), in which we want to cluster items to k
groups so that the maximum group diameter is minimized.
Indeed, an algorithm called Baseline that we used for com-
parison in the experiments can be thought as a streaming
algorithm for k-center. The issue of formulating our robust
distinct elements problem as a clustering problem is that in
our case, the number of clusters, that is the “k”, can poten-
tially be linear in the number of distinct entities, and thus
the space usage will be at least linear in the worst case.

Problem Definition. Now we formally define our robust
distinct elements (F0) problem.

Definition 1 (Robust F0). Let d(·, ·) be a distance func-
tion, and α be a threshold value. The robust F0 of a dataset
S, denoted by F0(S, α) in this paper, is the size of the minimum-
cardinality partition G = {G1, G2, . . . , Gn} of S so that for
each pair of points p, q that belong to the same group Gi,
d(p, q) ≤ α; in other words, the diameter of each group Gi
is at most α.

In the analysis part of this paper we assume that α is given,
which can often be obtained by domain knowledge or de-
duced from a small sample of labelled items. In the experi-
ments (Section 5) we will also give a method to handle the
case where we do not know the value of α.

When clear from the context, we omit α and/or S and
simply write F0 , F0(S), or F0(α). Note that the definition
of robust F0 is monotonic, that is, F0(A) ≤ F0(B) if A ⊆ B
and F0(α0) ≤ F0(α1) if α0 ≥ α1.

We next introduce a notion of well-shaped datasets.

Definition 2 ((α, β)-sparsity and separation ratio).
Let S ⊆ U be a dataset, d : U × U → [0,∞) be a distance
function, and α be a threshold value. We say S is (α, β)-
sparse for some β ≥ α if for any pair of items u, v ∈ S, we
have

either d(u, v) ≤ α, or d(u, v) > β. (1)

We call maxβ β/α be the separation ratio of S, where β runs
over all values that (1) holds.

1http://en.wikipedia.org/wiki/Locality-sensitive hashing

Intuitively, if S is (α, β)-sparse, then all pairs of items that
belong to the same group have distance at most α (consistent
with the definition of robust F0), and all pairs that belong
to different groups have distance at least β.

Definition 3 (Well-shaped dataset). If S is (α, β)-
sparse with β/α ≥ 2, then items in S can naturally be parti-
tioned into a set of groups such that the intra-group distance
(diameter) is at most α, and the inter-group distance is more
than β. We call such datasets well-shaped.

To see the natural partition, note that for any three points
u, v, w, if d(u, v) ≤ α and d(v, w) ≤ α, by the triangle in-
equality we must have d(u,w) ≤ 2α ≤ β. Now since S is
(α, β)-sparse, we must have d(u,w) ≤ α (by (1)).

It is also easy to see that if S is well-shaped, then the
natural partition achieves the minimum, and it can be com-
puted easily offline: we just group items within distance α
in a greedy fashion. However, for a general dataset, comput-
ing F0(S) as an optimization problem is difficult even in the
RAM model, not mentioning the more restrictive streaming
model. To handle general datasets we introduce a notion we
call F0-ambiguity, which characterizes how far a dataset is
from well-shapedness. This parameter will be used in our F0

approximation guarantees for general datasets (Section 3.1).

Definition 4 (F0-ambiguity). Let S ⊆ U be a dataset,
and let d : U × U → [0,∞) be a distance function. The F0-
ambiguity of S is the minimum δ (δ ∈ [0, 1)) such that there
exists T ⊆ S satisfying the followings:

• S\T is well-shaped.

• F0(S\T) ≥ (1− δ) · F0(S),

We use δ(S) (or simply δ when there is no confusion) to
denote the F0-ambiguity of S.

Note that if δ = 0, then S is well-shaped. Conversely, if
S is not well-shaped, then δ > 0. Also note that T is just
used for defining how ambiguous the dataset is; we are not
dropping items in T – the final robust F0 still takes items in
T into account.

We comment in advance that our algorithms are designed
to handle datasets with small F0-ambiguities. We believe
that it is hard to handle datasets with high F0-ambiguities in
the streaming model since a comprehensive entity-resolution
(in particular, identifying two point clouds connected by a
bridge point as a single group) cannot be done using a small
memory space. For applications mentioned in the motiva-
tion, we expect that the F0-ambiguities of the datasets are
small given carefully chosen distance functions and thresh-
old α’s. We will show how to automatically determine good
α’s in the Euclidean metric in Section 5.

Our Contributions. We have made the following contri-
butions in this paper.

1. We have given a first study of the robust F0 problem in
the streaming model, and have obtained provable the-
oretical guarantees. Our space upper bounds for well-
shaped datasets in O(1)-dimensional Euclidean spaces
even match (up to a logarithmic factor) the lower bound
in the noise-free setting. This upper bound is obtained
using a new technique called bucket sampling which
may be of independent interest. These are presented
in Section 2.1.

1434

2. We have quantitatively shown that our algorithms also
work well for general datasets in the Euclidean space
with small F0-ambiguity. This is presented in Sec-
tion 3.

3. We have proposed an algorithm framework for the ro-
bust F0 problem in a general metric space, and es-
tablished a connection between our bucket sampling
framework and the theory of locality sensitive hash-
ing (LSH). More precisely, if a metric space admits an
efficient LSH scheme satisfying an additional natural
property, then we immediately obtain a streaming al-
gorithm for estimating robust F0 in that metric space.
This is presented in Section 4.

4. We have implemented our algorithms for the Euclidean
metric and run them on image data. The experiments
have demonstrated the effectiveness of our robust F0

algorithms in accuracy, space usage and running time.
This is presented in Section 5.

Related Work. The distinct elements problem in the noise-
free setting has been studied extensively in the streaming lit-
erature, due to its numerous applications in network traffic
monitoring [15], query planning [27], data mining in graph
databases [26], data integration [8] and data warehousing [1].
The first streaming algorithm to (1+ε)-approximate distinct
elements was proposed by Flajolet and Martin [18], followed
by a long line of research in the past several decades ([4, 5,
13, 17, 19], etc.), culminated in an optimal algorithm with
O(1/ε2 + log u) bits (u is the item universe size) by Kane
et al. [24]. However, all these algorithms cannot be used to
handle noisy datasets simply because they will consider each
item in a group as a different element. As a toy example, if
the dataset contains 10000 near-duplicates belonging to the
same group, these algorithms will give values close to 10000
which is far away from the true robust F0 which is 1.

As far as we have concerned, the distinct element prob-
lem has not been studied in the noisy streaming data set-
ting. Very recently, statistical estimations for noisy well-
shaped datasets have been studied in the distributed setting
for several basic problems, including distinct elements, `0-
sampling, frequency moments, heavy hitters and empirical
entropy [30], in the general metric space, but the algorithms
in [30] cannot be applied to the streaming setting since all
of them need a “second look” at the dataset. On the other
hand, our streaming algorithms can be trivially translated
to algorithms for distributed data: k parties process their
local datasets using the streaming algorithm in turn follow-
ing a fixed order, and then send their memory configura-
tions to their successors; the last party outputs the answer.
In particular, by such a translation we can obtain a dis-
tributed robust F0 algorithm with communication cost of
O(k/ε2) words for datasets in the Euclidean space, improv-
ing the generic algorithm in [30] by a factor of 1/ε·poly logm
(m = |S| is the length of the stream).

Preliminaries. We use [t] to denote {1, . . . , t}. Let U = [u]
be the item universe. We say n′ is a (1 + ε)-approximation
of n if n′ ∈ [(1− ε)n, (1 + ε)n]. All log’s are base of 2.

We will need a few mathematical tools including Markov
Inequality, Chebyshev’s inequality and Chernoff bound. Due
to the space constraints we leave them in Appendix C

We summarize the main notations in this paper in Table 1.

Symbol Description
m length of the stream
n number of groups, that is, robust F0

U item universe
S set of items in the stream, |S| = m
G/G set of groups / a group in G
C a grid cell in the Euclidean space;

also denote the set of points in the cell
C set of non-empty grid cells;
GC set of groups intersecting cell C
w(G) number of non-empty cells group G intersects
δ F0-ambiguity
ε multiplicative approximation ratio
α threshold of group diameter
cell(p) cell where point p is located

Table 1: List of notations

2. WELL-SHAPED DATASETS IN THE EU-
CLIDEAN SPACE

In this section we consider the case where data items are
points in the Euclidean space, which is a very useful metric
since many objects, such as documents and images, can be
mapped into vectors/points in the Euclidean spaces.

We will focus on well-shaped datasets, that is, those with
separation ratio β/α > 2. The general datasets will be stud-
ied in Section 3. W.l.o.g., we assume that α = 1, since we
can always rescale all distances between points in S ⊂ R2

by a factor of α.

2.1 Constant Dimensional Euclidean Spaces
In this section we consider points in constant dimensional

Euclidean spaces. We present our algorithms in the 2D
case, but they can be literally carried over to any O(1)-
dimensional spaces.

For a well-shaped dataset S = {p1, . . . , pm}, let G =
{G1, . . . , GF0} be the natural minimum-cardinality group
partition of S (we of course do not know F0 which is the
objective that we are going to compute). We post a random
grid G of side length 1/

√
2 on R2, and call a grid cell simply

a cell. Note that such a random grid can be specified by
a pair of two offsets (∆x,∆y) ∈ [0, 1/

√
2)2 from the origin,

and thus can be stored in O(1) words. We assume all points
have x, y-coordinates in the range [−MAX,MAX], and thus
we only need to consider the portion of the grid G in this
range, and consequently |G| is finite and can be computed
in advance. For simplicity, we assume that points do not fall
onto the boundary of cells, because this probability will be
zero if the grid is random.

Let C be the collection of non-empty cells, that is, C =
{C ∈ G | C ∩ S 6= ∅}. See Figure 1 for an illustration.
In this section d(p, q) denotes the Euclidean distance be-
tween points p, q. For a cell C and a point p, let d(p, C) =
minq∈C d(p, q); define d(p, C) = 0 if p ∈ C. For a p ∈ S, let
cell(p) be the cell where p is located.

2.1.1 The Algorithm

The Idea. We start by giving some general ideas of our
algorithm. For each cell C in the grid G, let GC be the set
of groups intersecting C, that is,

GC = {G ∈ G | G ∩ C 6= ∅}.

1435

G1

G2

G3

Figure 1: A well-shaped point set. Non-empty cells C are in
gray.

Note that if the dataset is (1, β)-sparse with β ≥ 2 and G
has side length 1/

√
2, then |GC | = 1 for each non-empty

cell C ∈ C. Let GC denote this unique intersecting group.
Taking Figure 1 for example, the GC for the left top two
cells is G1; the GC for the bottom two cells is G3; and the
GC for the right three cells is G2.

We define the weight of a group G to be the number of
non-empty cells C ∈ C it intersects, that is,

w(G) = |{C ∈ C | C ∩G 6= ∅}| ,

and define the weight of a non-empty cell C ∈ C to be

w(C) =
1

w(GC)
. (2)

For example, in Figure 1, the weights of the left top two
cells 1/2; the weights of the bottom two cells are 1/2; and
the weights of the right three cells is 1/3. It is easy to see
that the sum of weights of all cells is F0:∑

C∈C

w(C) =
∑
G∈G

∑
C:C∩G6=∅

w(C)

=
∑
G∈G

(
w(GC) · 1

w(GC)

)
= F0. (3)

To obtain a small-space (1+ε)-approximation of F0, a natu-
ral idea is to sample a sufficiently large subset of cells C′ ⊆ C,
compute their weights, and then add up all weights and
rescale to obtain an approximation of F0.2 However, at first
glance it seems difficult to implement this idea in the stream-
ing model, for the following reasons.

1. The weight of each cell C is determined by how many
cells the group GC intersects, and thus we need to
know the information about C’s non-empty neighbor-
ing cells which intersect group GC ; call them important
neighboring cells. This suggests us to fix the sampled
cells before the stream of points come, since otherwise
we risk discarding the information of important neigh-
boring cells when sampling a cell at a later stage of the

2We comment that up to this point, at the high level, our
idea is similar to Algorithm 2 in [30] in the distributed
model, but there is an important difference which is used
to save the space usage by a factor of maxG∈G |G|: we oper-
ate on cells instead of individual items. Our algorithm after
this point will be very different from that in [30], mainly
because in the streaming model we are not allowed to scan
the input for a second time.

one-pass scan. Note that we cannot store all the cells
due to the small working space constraint.

2. On the other hand, most grid cells will be empty at the
end of the streaming process. If we sample cells at the
very beginning, then most sampled cells will be empty
at the end thus are not in the set C, and consequently
cannot be used to approximate F0. In other words,
to get enough non-empty sampled cells at the end we
need to sample a much larger number of cells, and thus
need a much larger working space.

These two observations seem to contradict each other. That
is, the first suggests to sample cells at the beginning of the
streaming process, while the second suggests to sample a cell
until we know it is not empty (i.e., until an input point in
S falls into that cell). To handle this dilemma, we propose
a method we call bucket sampling, which we will explain in
the rest of this section.

Bucket Sampling. Our key idea is to sample collections of
cells in the grid, and only keep information about non-empty
and neighboring non-empty cells for each sampled collection,
which can be done at the runtime when an input point in S
falls into a cell. We can use a hash function to sample col-
lections of cells at the beginning of the streaming process,
and then we do not need to explicitly maintain the IDs of
each cell in a sampled collection (which cannot be done in
a small space), but just use the hash function to test their
“memberships” (i.e., whether they are in a sampled collec-
tion) when needed. Since we have employed a hash function
to solve the dilemma, we call each collection a bucket, and
this sampling process bucket sampling.

We maintain a random hash function h : G→ [R], where
R is a carefully chosen value such that

Pr[|{C ∈ C | h(C) = 1}| ∈ [1000/ε2, 20000/ε2]] ≥ 0.99.

Note that the cardinality of C will increase during the stream-
ing process, therefore we need to update(double) the value
of R once in a while (see Line 10 in Algorithm 1). Every
time R doubles, we also need to update h. At the beginning
we set h(x) = 1 for all x, and when R is updated we reset
h(x) = (ax + b mod κ mod R) + 1, where κ is an arbitrary
but fixed prime in [|G| , 2 |G|], and a, b are randomly chosen
from {0, . . . , κ− 1} conditioned on a 6= 0.

We now choose the set of sampled cells to be C′ = {C ∈
C | h(C) = 1}. Thus by our choice of R,

Pr
[∣∣C′∣∣ ∈ [1000/ε2, 20000/ε2]

]
≥ 0.99. (4)

To maintain the value R, we can use any off-the-shelf
streaming algorithm for distinct elements on noise-free datasets
to maintain a number z which is a (1 + ε)-approximation
to the number of non-empty cells |C|, and double R when
z ≥ 6000R/ε2. Algorithm 1 shows how to maintain the value
R, the hash function h, and the set of sampled cells C′. In
this paper in the theory part we use the algorithm by Kane
et al. [24] to maintain z, denoted as CountNonEmptyCells(p),
where p is a streamed-in point. While in the experiments
we will use the algorithm by Bar-Yossef et al. [4] which is
simpler to implement, though its theoretical performance is
a bit worse. The formal analysis to show (4) will be given
in Section 2.1.2.

Point Storage. During the streaming process we will store
a set of center points, denoted by Γ initialized to be ∅. At

1436

Algorithm 1 Maintain the Set of Sampled Cells C′

1: z is a global variable which is a (1 + ε)-approximation of
|C|

2: h : G → [R] is the global random hash function with R
initialized to be 1.

3: κ is an arbitrary but fixed prime between |G| and 2 |G|.
a is randomly sampled from {1, . . . , κ− 1} and b is ran-
domly sampled from {0, 1, . . . , κ− 1}.

4: procedure MaintainSampledCells(p)
5: if h(cell(p)) = 1 then
6: C′ := C′ ∪ {cell(p)}
7: end if
8: z := CountNonEmptyCells(p)
9: if z ≥ 6000R/ε2 then

10: R := 2R . Double the range of h
11: set h(x) = (ax+ b mod p mod R) + 1
12: C′ := {C ∈ C′ | h(C) = 1} and discard stored

point centers (Algorithm 2) in cells that are no longer
in C′ . Re-sample each cell in C with probability 1/2

13: end if
14: end procedure

Algorithm 2 Store Point Centers for Sampled Cells C′

1: procedure StoreCenter(p)
2: if ∃C ∈ G s.t. h(C) = 1 ∧ d(p, C) ≤ 1 then
3: if (@q ∈ Γ s.t. cell(p) = cell(q)) then
4: insert p to Γ . Keep a new center
5: end if
6: end if
7: end procedure

the end of the streaming process we will use Γ to recover the
weight of each sampled cell. The algorithm for processing
and storing each input point is described in Algorithm 2. In
words, it maintains all streamed-in points p that are in or
within distance 1 to a cell in {C ∈ G | h(C) = 1}, given that
no other point in cell(p) has already been stored in Γ.

We illustrate the“sample and store”procedure in Figure 2.
Cells with red heavy strokes are sampled cells in C; points
in red are stored point centers.

We comment that in Algorithm 2 it could be the case that
a stored point p is within a distance of 1 to a sampled cell
C ∈ G that is not in C; in other words, C will be empty at
the end of the streaming process and thus will be ignored.
In such a case p may not be used to compute the weights for
any sampled C ∈ C′ at the end (in Algorithm 3), and is thus
wasted. However, in the analysis we will show that such an
overhead will not affect the asymptotic storage cost.

Post-processing and the Full Algorithm. At the end
of the streaming process, we use Algorithm 3 to compute
the weight for each sampled cell C ∈ C′. We simply find all
groups that intersect C using the stored point centers, and
then for each such group compute its weight. The weight of
the sampled cell will be the sum of the inverse of these group
weights. Note that in the setting considered in this section
each cell only intersects at most one group, and thus the
while iteration at Line 7 will only run once. In Section 2.2
when we consider higher dimensional Euclidean spaces, a
cell may intersect multiple groups.

G1

G2

G3

Figure 2: Cells with red stroke are sampled cells in C; points
in red are stored point centers.

Algorithm 3 Computing Weights of Sampled Cells

1: Γ is the set of points stored by calling StoreCenter()
2: procedure ComputeWeight()
3: W := 0
4: Γ′ = Γ . Backup of Γ
5: for each C ∈ C′ do
6: w := 0
7: while ∃p ∈ Γ s.t. d(p, C) ≤ 1 do
8: pick any such p ∈ Γ . Consider a group in G

intersecting C
9: K := {cell(p)}

10: for each q ∈ Γ s.t. d(q, p) ≤ 1 do
11: if cell(q) 6∈ K then
12: K := K ∪ {cell(q)} . K is the set of

cells the considered group G intersects
13: end if
14: delete q from Γ
15: end for
16: w := w+ 1

|K| . Compute the weight of cell C

17: delete p from Γ
18: end while
19: W := W + w . Compute total weights of

sampled cells
20: Γ := Γ′ . Restore Γ
21: end for
22: return W
23: end procedure

We describe the final one-pass streaming algorithm in Al-
gorithm 4.

2.1.2 The Analysis
We now show the correctness of our algorithm and ana-

lyze its efficiency. We need the following lemma in [24] to
maintain the value z at Line 8 in Algorithm 1.

Lemma 1 ([24]). There is an algorithm that computes
a (1 + ε)-approximation of |C| with probability 0.99, using
O(1/ε2+log u) bits space and O(1) processing time per item.

Correctness. Let F0 = F0(S, 1) be the number of groups
in S, which is the value we are going to compute. First,
notice that

1 ≤ |C|/F0 ≤ 9. (5)

The left hand side inequality is due to the fact that each
non-empty cell intersects at most one group in our setting.

1437

Algorithm 4 Computing Robust F0 in R2

1: C′ is the set of sampled cells, maintained by Maintain-
SampledCells()

2: z is a global variable which is a (1 + ε)-approximation of
|C|

3: Streamed input points p1, . . . , pm
4: while a new input point pi comes do
5: MaintainSampledCells(pi)
6: StoreCenter(pi)
7: end while
8: w := ComputeWeight() . Post-processing
9: Output z

|C′| · w . Rescale to compute robust F0(S)

The right hand side inequality holds since the side length
of the grid is 1/

√
2, while the diameter of each group is at

most 1, as a consequence each group intersects at most 9
grid cells.

Second, we show that Inequality (4) holds. Recall that at
Line 9, 10 in Algorithm 1, R is maintained such that

3000R

ε2
≤ z ≤ 6000R

ε2
,

where z is a (1 + ε)-approximation of |C|. Therefore

|C|
R
∈
[

2000

ε2
,

12000

ε2

]
. (6)

Write C as {C1, . . . , C|C|}. For each Ci ∈ C, define Yi = 1 if
h(Ci) = 1, and Yi = 0 otherwise. Let Y =

∑
i∈[|C|] Yi, thus

Y = |C′|. We have E[Y] = |C|
R

. By a Chernoff bound,

Pr

[∣∣C′∣∣ ∈ [|C|
2R

,
3 |C|
2R

]]
= Pr

[
|Y −E[Y]| ≤ E[Y]

2

]
≥ 1− 2e−

|C|
12R ≥ 1− 2e

− 2000
12ε2

≥ 0.99.

Consequently,

Pr

[∣∣C′∣∣ ∈ [1000

ε2
,

20000

ε2

]]
by (6)

≥ Pr

[∣∣C′∣∣ ∈ [|C|
2R

,
3 |C|
2R

]]
≥ 0.99,

proving Inequality (4).
Now let t = |C′| be the number of sampled cells. Define

Xi (i ∈ [t]) be the random variable representing the weight
of the i-th sampled cell Ci ∈ C′, and let X = 1

t

∑
i∈[t]Xi.

Since each cell in C′ is sampled from the set of non-empty
cells C independently uniformly at random, we have

E[Xi] =
F0

|C| for each i ∈ [t],

and E[X] = E

1

t

∑
i∈[t]

Xi

 =
F0

|C| . (7)

We next compute their variances. For each i ∈ [t].

Var[Xi] = E[X2
i]−E2[Xi] ≤ E[X2

i]

=
1

|C|
∑
C∈C

(w(C))2

≤ 1

|C| · F0
by (7)

= E[X],

where the last inequality is by the fact that w(C) ≤ 1 for
any C ∈ C, and

∑
C∈C w(C) = F0 (by (3)).

Since Xi (i ∈ [t]) are i.i.d. samples, we have

Var(X) =
1

t2

∑
i∈[t]

Var(Xi) ≤
E[X]

t
. (8)

Finally, by a Chebyshev’s inequality, we have

Pr[|X −E[X]| > εE[X]] ≤ E[X]

t · ε2E2[X]
≤ 0.01, (9)

where the last inequality is due to E[X] = F0
|C| ≥ 1/9 (by

(5)) and t = |C′| ≥ 1000/ε2 (by (4)). Therefore, X · |C|
is a (1 + ε)-approximation of F0 with probability at least
0.99. Finally, in Algorithm 4 we have w = X · t, and z is
a (1 + ε)-approximation of |C|, thus zw/t is a (1 + ε)2 ≤
(1 + 3ε)-approximation of F0. Note that the constant 3 in
the approximation ratio can be removed by setting ε′ = 3ε
and adjusting relevant constants in the analysis.

To sum up, the final success probability is 1−0.01−0.01−
0.01 = 0.97, where the first error term 0.01 is introduced by
(4), the second error term 0.01 is introduced by (9), and the
third error term 0.01 is introduced by Lemma 1.

Space and Time Complexities. Now we analyse the
performance of Algorithm 4.

For the space usage, the dominating cost is the storing
of point centers in Γ. Note that each cell C will have at
most one point center, which is stored only if h(C) = 1 or
h(C′) = 1 where C′ is any of C’s neighboring cells. Thus
each C ∈ C will have a point center stored with probability
at most 9/R = O(1/(ε2 |C|)). Therefore the total stored
point centers can be bounded by O(1/ε2) with probability
1 − o(1) by a Chernoff bound. The costs for storing other
random variables in Algorithm 4 and its subroutines, the
grid and the hash functions are negligible.

For each new input point p, storing p using Algorithm 2
can be done in O(1) time, since we can locate the cell h(p)
and then search/check its neighboring sampled cells in con-
stant time. By Lemma 1, MaintainSampledCells(p) can be
done in O(1) time. Therefore the total processing time per
item is O(1). At the end, Algorithm 4 calls ComputeWeight()
to post-process the stored information and then return the
answer. It is easy to see that ComputeWeight() can be done
in O(1/ε2) time since each stored center point and each sam-
pled cell will be considered at most O(1) times.

We can in fact avoid a separate post-processing step by
maintaining the weights of each cell and their sum during the
streaming process. This will not change the O(1) processing
time per item since each item will only affect the weights of
an O(1) number of neighboring cells.

As mentioned, our algorithm and analysis can be literally
carried to any O(1)-dimensional space (by appropriately ad-
justing constant parameters). We sum up this section with
the following theorem. Note that our space upper bound
even matches (up to a logarithmic factor) the Ω(1/ε2) bits
space streaming lower bound for distinct elements in the
noise-free data setting [23].

Theorem 1. There is a streaming algorithm that given
a well-shaped dataset S in the O(1)-dimensional Euclidean
space, outputs a (1 + ε)-approximation to robust F0(S) with
probability 0.96, using O(1/ε2) words of space and O(1) pro-
cessing time per item.

1438

2.2 High Dimensional Euclidean Spaces
In this section we consider points in the d-dimensional

Euclidean space for d > 2.
Following the ideas in Section 2.1.1, we employ a d-dimensional

grid but with side length d to partition Rd to cells. We first
discuss the case when β ≥ d3/2, which guarantees that each
cell intersects at most one group of points. We will show that
in this case our algorithm for the 2D case (with the grid size
replaced by d) can still produce a (1 + ε)-approximation to
F0(S). We then extend it to general well-shaped datasets
(i.e., (1, β)-sparse with β ≥ 2).

2.2.1 (1, β)-sparse Datasets with β ≥ d3/2

Correctness. Compared with the 2D case discussed in Sec-
tion 2.1, the main difference in the d-dimensional case with
a random grid of side length d is that each group can in-
tersect up to 2d grid cells in the worse case. Note that we
cannot simply use 2d to replace the constant “9” in Equa-
tion (5) in the 2D case, because the number of sampled cells
|C′| and the final space usage will be proportional to this
intersection value, and will consequently be exponential in
d. Fortunately, we can show that on average each group will
intersect Θ(1) cells, which is enough for keeping the correct-
ness of Algorithm 4.

Lemma 2. Let S be a (1, β)-sparse dataset in the d-dimensional

Euclidean space with β ≥ d3/2, let G be a random grid
of side length d, let C = {C ∈ G | C ∩ S 6= ∅}, and
let G = {G1, . . . , GF0} be the natural minimum-cardinality
group partition of S. Then 1 ≤ |C| /F0 ≤ 300 with probabil-
ity 0.99.

Due to the space constraints, we delay the technical proof
to Appendix B.1.

It is easy to see that if we use Lemma 2 to replace In-
equality (5), the rest of correctness proof in Section 2.1.2
still holds (by appropriately adjusting constant parameters).

Space and Time Complexities. We next analyze the
space and time costs of our algorithm in the d-dimensional
Euclidean space. For a group G ∈ G, let B(G) be a ball
of diameter 3 that contains all unit balls centered at some
point q ∈ G. Let ν be the probability that B(G) is cut by the
boundaries of grid cells, which can be bounded by ν ≤ 3/d.
Let NG be the number of grid cells group G intersects; let
MG be the number of grid cells that group G adjoin, i.e.,

MG = |{C | ∃p ∈ G s.t. d(p, C) ≤ 1}| .

Obviously NG ≤MG. Similar to (23) (in Appendix B.1), by
replacing µ with ν, we can show that

E[MG] = O(1). (10)

Note that a non-empty cell C ∈ C will have a point stored
only if at least one cell in MGC has been sampled. We thus
can upper bound the total number of point centers stored
in Γ by

Z =
∑
G∈G

(NG · χ(one of cells in MG is sampled)),

where χ(A) = 1 if event A holds, and χ(A) = 0 otherwise.
We now bound the expectation of Z.

E[Z] =
∑
G∈G

E[NG · χ(one of cells in MG is sampled)]

≤
∑
G∈G

E[MG · χ(one of cells in MG is sampled)]

≤
∑
G∈G

d∑
i=0

2i
(
d

i

)
νi(1− ν)d−i · 2i

R

=
F0

R
· (4ν + (1− ν))d

≤ O

(
1

ε2

)
· (1 + 9/d)d = O

(
1

ε2

)
,

where the first inequality is due to the fact that NG ≤ MG

(by definitions); in the second inequality, 2i/R is the proba-
bility that one of cells in MG is sampled (recall that R is the
range size of the random hash function used in the bucket
sampling; see Section 2.1.1); the last inequality is due to
|C| ≥ F0 and Equation (6) (constants need to be adjusted
for the high dimensional case). Therefore by a Markov in-
equality, Z = O(1/ε2) with probability 0.99.

We next consider the processing time per item. Compared
with the 2D case, the difference is that in StoreCenter(p),
in the worst case one needs to test up to 2d adjacent cells to
see if any of them are sampled. Fortunately by (10) we can
upper bound the total processing time by

T =
∑
G∈G

(|G| ·MG).

Taking the expectation,

E[T] =
∑
G∈G

(|G| ·E[MG])

by (10)

≤ O(1) ·
∑
G∈G

|G| = O(m).

Therefore T = O(m) with probability 0.99 by a Markov
inequality. Thus on average, for each inserted point we only
need to check O(1) adjacent cells.

Finally, the cost of the post-processing step can again be
amortized into each insertion step. We thus arrive at the
following theorem.

Theorem 2. There is a streaming algorithm that given a
(1, β)-sparse dataset S with β ≥ d3/2 in the d-dimensional
Euclidean space, outputs a (1 + ε)-approximation to robust
F0(S) with probability 0.9, using O(d/ε2) words of space and
amortized O(d) processing time per item.

2.2.2 Well-shaped Datasets
For general well-shaped datasets in Rd (d > 2) and a grid

with side length d, it is possible that a grid cell intersects
multiple groups of points. While the high level idea of sam-
pling cells and add up their weights still apply, we need to
modify the definition of the weight of a non-empty cell C ∈ C
(Equation (2)) to be

w(C) =
∑
G∈G:G∩C 6=∅ 1/w(G).

Algorithms presented in Section 2.1 can still be used for
this case. However, once a cell intersects multiple groups,
its weight can no longer be bounded by a constant. Thus
it is not clear how to use rigorous theoretical analysis to
determine the least number of cells we need to sample in
order to obtain a (1 + ε)-approximation of F0(S), since the
variance of the weights of cells can be very high. We leave
this to future work.

1439

3. GENERAL DATASETS IN CONSTANT DI-
MENSIONAL EUCLIDEAN SPACES

In this section we consider a general dataset which is pos-
sibly not well-shaped. That is, it has an F0-ambiguity δ > 0.
We can rigorously show that Algorithm 4 still performs well
if δ is small. Ideally, we would also like to have an algo-
rithm to estimate the F0-ambiguity δ of a dataset, so that
we can filter out those inputs that have a large δ, on which
Algorithm 4 may not perform well; in other words, we can
declare that the value returned by Algorithm 4 may not be
very accurate due to the fact that the dataset is “too noisy”
(call such a dataset a bad input). Unfortunately, we noticed
that one needs Ω(m) (recall that m = |S| is the length of
the stream) space to differentiate whether δ = 0 or 1/2.

3.1 Approximation Guarantees under Small
F0-ambiguity

In this section we prove the following theorem, which
shows that Algorithm 4 still performs well when F0-ambiguity
is small.

Theorem 3. There is a streaming algorithm that given
a dataset S with F0-ambiguity δ in the O(1)-dimensional
Euclidean space, outputs a (1 + Θ(δ + ε))-approximation to
robust F0(S) with probability 0.9, using O(1/ε2) words of
space and O(1) processing time per item.

The proof for this theorem is very technical, and we delay
it to Appendix A due to the space constraints. The idea
of the proof is as follows. Let T be the set of “outliers”
defined in Definition 4, such that S/T is well-shaped and
F0(S\T) ≥ (1 − δ) · F0(S). If the F0-ambiguity δ is small,
then we can think the optimal grouping is the natural group-
ing for S\T plus some balls3 of diameter α covering points
in T . Note that in O(1)-dimensional Euclidean space, a ball
of diameter 2α can be covered by O(1) balls of diameter
α. Thus in the optimal solution the balls that are used to
cover T are evenly spread across the (natural) groups formed
by S\T . Since our algorithms use near-uniform group sam-
plings (the probability of sampling each group differs by at
most a constant), if δ is small then only a small fraction of
our sampled groups will be relevant to points in T . Conse-
quently, the outliers T will not affect much of our estimation
of F0(S\T), which is close to F0(S) by the definition of T .

3.2 Estimating F0-ambiguity is Theoretically
Hard

The problem of estimating the F0-ambiguity is closely re-
lated to the problem of computing the diameter of a point
set, that is, given a set of points S in the Euclidean space,
try to find maxp,q∈S d(p, q). It has been shown that to com-
pute the diameter exactly in the streaming model, we need
Ω(|S|) = Ω(m) space [16].

The connection between computing the diameter of the
point set and estimating its F0 ambiguity is as follows. Again
rescale α = 1. If the diameter of the dataset is 1, then all
the points will be in one group, that is, (robust) F0 = 1; oth-
erwise if the diameter is 1 + ι for an arbitrarily small ι > 0,
then F0 will be at least 2. By the hardness of the diameter

3This is not very precise since a group of diameter 1 may
not be covered by a ball of diameter 1, but they are close.

problem we cannot differentiate whether F0 = 1 or 2 un-
less using Ω(m) space, equivalently, we cannot differentiate
whether δ = 0 or 1/2 without using Ω(m) space.

4. A SOLUTION FRAMEWORK FOR GEN-
ERAL METRIC SPACE

So far we have discussed datasets in the Euclidean space.
In this section we show that our algorithmic framework in
Section 2 can also be used for datasets in other metric spaces.

Recall our high level ideas for datasets in the Euclidean
space in Section 2. First, we use a random grid to parti-
tion the item universe U to cells so that each group of items
only adjacent to a small number of grid cells. Second, we
reduce the problem of approximating robust F0(S) to sam-
pling cells and adding up their weights (and rescaling at
the end). Third, to solve the dilemma on the timing of the
samplings we employ a technique we call bucket sampling.

The observation is that the second and third steps can
be applied to any metric spaces, while in the first step the
random grid can be thought as a “hash function”, which is
generalized to the following concept.

Definition 5 (Smart Hash Function). We say a hash
function h is ρ-smart on an (α, β)-sparse (β ≥ 2α) dataset
S and its natural minimum-cardinality group partition if it
satisfies the followings:

• (Low “image distance”). Each group is adjacent to ρ
cells on average, where we say a group G is adjacent
to a hash cell C if there exists a pair of items p, q ∈ S
such that p ∈ G, h(q) = C and d(p, q) ≤ α. We call ρ
the image distance of the smart hash function.

• (No false-positive). Items from different groups will be
hashed into disjoint buckets.

Obviously, the smaller the ρ, the better the performance
of the smart hash function. When ρ = 1, we get a magic
hash function, which is however unlikely to exist (see our
discussion in the introduction).

4.1 Locality Sensitive Hashing as Smart Hash
Functions

As we have shown, a random grid can be used as a smart
hash function for the Euclidean space. In fact, a random
grid can be seen as a locality sensitive hash (LSH) function,
whose general form is as follows:

Definition 6 (LSH). (see, e.g., [22, 3]) Let U be the
item universe, and d(·, ·) be a distance function. We say a
hash family H is (`, u, p1, p2)-sensitive if for any two items
p, q ∈ U ,

1. if d(p, q) ≤ ` then Prh∈rH[h(p) = h(q)] ≥ p1,

2. if d(p, q) ≥ u then Prh∈rH[h(p) = h(q)] ≤ p2,

where h ∈r H means picking h randomly from H.

Under this definition, the random grid we used in Sec-
tion 2.1 (in R2, of side length 1/

√
2) can be thought as a(

`, u, 1√
2
− `, (1−u)2

2

)
-sensitive LSH. In this section we show

that a locality sensitive hash function for any metric space,
if satisfies an additional natural property, can be used as a
smart hash function for that space, and thus can be used to
compute robust F0.

1440

Definition 7 (Concentrated Hash Function). Let
S ⊆ U be a dataset and let G = {G1, . . . , GF0} be the natu-
ral minimum-cardinality partition of S. A hash function h
is called η-concentrated on S if for any G ∈ G,

|{h(x) | ∃y ∈ G s.t. d(x, y) ≤ α}| ≤ η.

We say an LSH family that is η-concentrated on S if for any
h ∈ H, h is η-concentrated on S.

In fact, many popular LSHs are of low concentration, as we
will see shortly.

Definition 8 (k-fold Hash Function). Let H be a
hash family. We say F is a k-fold hash family of H if

F = {F = (h1, . . . , hk) | hi ∈ H for any i ∈ [k]},

For any x, y ∈ U , we define F (x) = F (y) if and only if
hi(x) = hi(y) for any i ∈ [k].

The following lemma reveals the connection between LSHs
and smart hash functions. The proof can be found in Ap-
pendix B.2.

Lemma 3. Let β ≥ 2α. Let S ⊆ U be an (α, β)-sparse
dataset consisting of m items. Let G be the natural minimum-
cardinality partition of S. Let H be a (2α, β, p1, p2)-sensitive
LSH family that is η-concentrated on S. Let F be a k-fold
hash family of H and let f ∈r F . Then f is 100(η(1− p1) +
p1)k-smart on S with probability at least (0.99−m2pk2).

We next show two examples on how use Lemma 3 to-
gether with some well-known LSHs to construct smart hash
functions with low image distances for data in corresponding
metric spaces.

Gaussian LSH for Euclidean Metric. For a point set
S ⊆ Rd (|S| = m) in the Euclidean space that is (1

2
, β)-

sparse (rescale α to 1
2

for technical convenience), we can use
the Gaussian LSH [10]. Let γ a parameter. Define Gaussian
LSH family HG be the set of functions h~a,b(~x) : Rd → N
mapping a d-dimensional vector ~x onto the set of integers,
where ~a is a vector chosen from the unit sphere Sd−1, and b
is a scale parameter in the range [0, γ). More precisely,

h~a,b(x) =

⌊
~x · ~a+ b

γ

⌋
.

It was shown in [10] that HG is (1, β, p(1), p(β))-sensitive
where

p(x) = 1− 2Φ
(
−γ
x

)
− 2√

2πγ/x

(
1− e−

γ2

2x2

)
,

where Φ(·) is the cumulative distribution function for the
standard Gaussian distribution N (0, 1). Now we choose β =
logm and γ = logm, and then

• η = 2 since each group, when projecting to a line by
an h ∈ H, has a diameter at most 1, and thus can
adjacent at most 2 cells;

• p1 = p(1) ≥ 1− 2/ logm;

• p2 = p(β) = 1− 2Φ(−1)− 2√
2π

(1− e−1/2) < 0.4.

Finally let F be a k-fold hash family of H with k = 2 logm.
By Lemma 3 we have that for an f ∈r F , f is Θ(1)-smart
on S with probability at least 0.98.

To plug-in the algorithm framework in Section 2, we need
to define for a point p and a hash bucket C the distance
d(p, C) so that we can test d(p, C) ≤ α (in Section 2 w.l.o.g.
we have assumed α = 1). Note that LSH buckets partitions
the item universe. In the case of Gaussian LSH for Euclidean
Metric, the set of the points in Rd (denoted by S(C)) hashed
into the same bucket C is the intersection of 2k = O(logm)
half-spaces. We define d(p, C) = minq∈S(C) d(p, q), which
can be computed by measuring the Euclidean distances be-
tween p and the boundaries of the 2k half-spaces.

The following theorem summarizes the performance of
Gaussian LSH on estimating robust F0 in the Euclidean met-
ric. The analysis is very similar to that for high dimensional
Euclidean space in Section 2.2, and is omitted here.

Theorem 4. There is a streaming algorithm that given a
dataset S with separation ratio Ω(logm) in the d-dimensional
Euclidean space, outputs a (1 + ε)-approximation to robust
F0(S) with probability 0.9, using O(logm/ε2) words of space
and amortized O(d logm) processing time per item.

Random Projection LSH for Cosine Metric. The co-
sine distance function is defined as follows: given two vec-

tors ~a,~b ∈ Rd, the cosine distance is defined to be d(~a,~b) =

1 − 〈~a,~b〉/(‖~a‖ ‖~b‖). This distance function is used exten-
sively in information retrieval and text mining, in particular,
in comparing the similarity between two documents [28].

For a set of vectors S (|S| = m) in Rd under the cosine
distance, we can use the random projection LSH [9]. Define
random projection LSH family HP be the set of functions
h~a(~x) : Rd → {+1,−1} mapping a d-dimensional vector ~x
onto signs {+1,−1}, where ~a is a vector chosen from the
unit sphere Sd−1. Concretely,

h~a(~x) =

{
+1 if 〈~a, ~x〉 > 0
−1 otherwise,

(11)

It is shown in [9] that HP is (2α, β, 1 − 2α/π, 1 − β/π)-
sensitive. Obviously η = 2 since the range of each hash
function in HP only consists of two numbers {+1,−1}.

Let F be a k-fold hash family of H with k = 3 logm
log(1−π/β) .

By Lemma 3, for any parameter α, β with α ≤ 1
logm

and

Ω(1) ≤ β < π, we have that for an f ∈r F , f is Θ(1)-smart
on S with probability at least 0.98.

Similar to Gaussian LSH, the set of the vectors/points in
Rd hashed into the same Random Projection LSH bucket is
the intersection of k = O(logm) half-spaces. Thus d(p, C)
can again be computed by measuring the cosine distances
between p and the boundaries of the k half-spaces.

We have the following theorem for random projection LSH
for the cosine metric. The analysis is again similar as before
and is omitted.

Theorem 5. Let α, β be parameters such that α ≤ 1
logm

and Ω(1) ≤ β < π. There is a streaming algorithm that
given an (α, β)-sparse dataset S in Rd under the cosine dis-
tance, outputs a (1 + ε)-approximation to robust F0(S) with
probability 0.9, using O(logm/ε2) words of space and amor-
tized O(d logm) processing time per item.

At the end of this section, we would like to remark that
not all LSH functions can be used as smart hash functions

1441

with a small image distance. We delay the details of this
remark to Appendix B.3 due to the space constraints.

5. EXPERIMENTS
We will refer to our algorithm as Sketch in this section.

Our theoretical analysis has shown that Sketch has good
accuracy guarantees, and is both space and time efficient.
We now show how these theoretical expectations interact
with practice.

We note that our theoretical analysis focuses on a fixed,
known α (i.e. group diameter). We explore in this section
how one can deal with unknown α, and propose a heuris-
tic that reliably complements Sketch under realistic circum-
stances.

5.1 The Setup
Datasets. We derive our test data from a set of images,
denoted by Images, which contains 4 million images taken
from ImageNet [11]. These images serve as the ground truth.

To study the scalability of Sketch. We take subsets Images
with sizes 4, 000, 000 (whole set), 512, 600, 100, 000 and 10, 000,
denoted by I4m, I500k, I100k and I10k respectively. The
sizes are chosen to differ by magnitudes, to contrast the ef-
fects of the resource usage.

For each image in I500k, I100k and I10k, we introduce an
average of 100 perturbed duplicates, producing test datasets
I500k100x, I100k100x and I10k100x, which contain approx-
imately 50 million, 10 million and 1 million images, re-
spectively. For I500k, we also generate another dataset
I500k10x, where an average of 10 duplicates are generated
for each ground truth image.

To test our algorithms on datasets with low duplication
ratios, we introduce an average of 2 perturbed duplicates to
I4m, I500k, with number of duplications for each image fol-
lowing the power-law distribution, this gives datasets I4m2x

and I500k2x.
Finally, we map each image to a signature in a feature

space. Each image is mapped to a point, i.e. a signature of
the image, in R5, R10 or R20. Our final test datasets are

• I500k100x5d, I100k100x5d, I10k100x5d for basic tests.

• I4m2x5d; I500k2x5d for low duplication ratio tests.

• I4m2x10d; I4m2x20d for high dimensionality tests.

The duplicates are generated through resizing images in
the ground truth set; each image is randomly resized to be-
tween 300 and 500 in width and/or length. Resizing intro-
duces interpolation errors, which are usually small but can
sometimes be large, serving as a realistic source of noise.

To map an image to a point in Rd, we first convert an im-
age into grayscale, and then take the color histogram with
d buckets as a d-dimensional vector, and rescale so that its
`1 norm is 100, 000. The final rescaling effectively normal-
izes each signature to that of an image with 100, 000 pixels.
We note that our datasets are not well-shaped (i.e., they
have non-zero F0-ambiguities), which is expected for real
datasets.

Parameters and resources. We use the grid as our smart
hash function, and the `2 norm as the distance function.

We use the distinct elements algorithm in [4] (for the
noise-free data setting) to approximate the number of non-
empty cells for Sketch. The storage space is fixed at 500

words, which is accurate enough for our purpose. This
space cost is negligible compared with the other parts of our
sketching algorithm, and thus is neglected for simplicity.

We run our experiments on a desktop PC with 8GB of
RAM and a 4-core 3.40GHz Intel i7 CPU. Single-threaded
running times are recorded.

5.2 Reference Algorithms
We compare Sketch with two alternative methods. The

first one is Baseline, corresponding to a non-sampling ver-
sion of our sketching algorithm (thus needs at least linear
space in the worst case). In Baseline, we scan through
points in S in an arbitrary order, during which we maintain
a set Γ̂ of balls with radius α, initialized to ∅. When a point
p is not covered by the union of balls in Γ̂, we add to Γ̂ the
ball with radius α centered at p. At the end, we output |Γ̂|.

It is easy to see that Baseline stores up to F0 balls, out-
puts F0(S, α) if S is well-shaped, and otherwise outputs a
value between (1 − δ(S))F0 and F0 (recall that δ(S) is the
F0-ambiguity of the dataset S). Baseline is used to demon-
strate the validity of our data model, measure the accuracy
of Sketch, and serve as a baseline for the space usage. Note
that in the worst case it will use a linear amount of space.
In some sense it represents the clustering-based algorithms
and the full space de-duplication algorithms (but can be
done much faster in one scan).

The second one, CellCount, simply counts the number of
non-empty cells in the grid. As the grid can be considered an
LSH, this method corresponds to grouping elements simply
by LSH. We show that CellCount is not suitable for esti-
mating robust F0 by contrasting it to Sketch and Baseline.

As mentioned in the related work, all the state-of-the-
art streaming algorithms for distinct elements for noise-free
datasets are just infeasible to handle noisy datasets – they
will simply output values that are approximations to the
total number of items instead of groups; for example, on
I100k100x5d their outputs will be values close to 10 million,
which is far-away from the ground truth 100, 000. We thus
do not compare them in our experiments.

5.3 Finding Group Diameters
We first consider the case where α is not known a priori.

Our idea is to run Sketch on parallel guesses α′ for α, and
make use of the assumption that the dataset has a good
separation ratio.

Recall that once we fix S, F0(α′) decreases monotonically
as α′ increases. In particular, if α′ < α, then F0(α′) ≥
F0(α), as ground truth groups will be broken down into
smaller groups; on the other hand if α′ > β, we will have
F0(α′) ≤ F0(α), because small groups may be merged into
a few larger groups. However, if the dataset is (α, β)-sparse
with a reasonably large separation ratio β/α, then there will
be a range of values of α′ ∈ [α, β] for which F0(α′) = F0(α).

Of course, real-world datasets rarely have large well-defined
separation ratios; it could be the case that some groups are
too close to each other, though the overall distribution is
spatially sparse. In the case when the separation ratio is
not large, we can still expect there is a region where the
change in F0(α′) is very small as we vary α′, unless in ex-
treme cases.

Suppose that our trials use α′ = α0, α1, . . . , αl where αi’s
form a geometric sequence, finding the appropriate value for
α reduces to searching for a region with a low gradient in

1442

Figure 3: F0(α′) against α′ on dataset I500k100x5d, with
log-log plots.

the log-log plot of F0 against α. Our heuristic simply finds
an i (0 < i ≤ l) that minimizes the absolute value of the
slope of the corresponding piece-wise linear plot, that is:∣∣∣∣ logF0(αi)− logF0(αi−1)

logαi − logαi−1

∣∣∣∣ . (12)

This is equivalent to finding two adjacent values α′ that
make the least percentage change in F (α′). We then take

F̃0 = (F0(αi) + F0(αi−1))/2 as the estimator for the true
F0. We call this the saddle point heuristic. We will see
that, given an algorithm that computes F0(α′) accurately,
this allows us to identify appropriate ranges for α′ which is
close to or contains α, and the corresponding F0 = F0(α).

For Baseline, to demonstrate that this heuristic is viable,

we try values of α′ in smaller steps in factors of 2
1
8 to build a

fine-grading graph. For Sketch, since we need to reduce the
space usage, we have to narrow down the search range for a
good α′. Our idea is to determine the smallest and largest
values of α′ that we are going to try, denoted by αmin and
αmax, which can be done by sampling a small number of
labelled data points. We then step from αmin to αmax by
increasing α′ by factors of

√
2.

5.4 Results - Unknown Group Diameters
Figure 3 shows a log-log plot for Baseline, Sketch and

CellCount on dataset I500k100x5d, with F0(α′) against α′.
First of all, it can be seen that Sketch, with larger steps,

interpolates Baseline well.
For Baseline, one can see that the gradient decreases as

one approaches from both sides near the interval 504 ≤ α′ ≤
713, where F0(α′) is very close to the ground truth. This is
in accordance to the intuition of the heuristic. In particular,
the segment 504 ≤ α′ ≤ 599 minimizes the slope (Equation
(12)). Similarly, for Sketch, the slope is the smallest for the
segment 504 ≤ α′ ≤ 713, and the F0 values at the endpoints
are both close to the ground truth 512, 600.

It is easy to see that no such thing can be said for CellCount.
The output is wildly high for lower cell lengths, rapidly drops
to very low values in the graph, encompassing a large range
of guesses at F0 without hinting at any plausible way to de-
tect the ground truth graphically. This suggests modelling
robust F0 directly using LSH is not a good idea.

Full-info Baseline Sketch

Space (million points) 51 3.2 0.43
Average Error − 4.8% 7.3%

Table 2: Unknown α; saddle point heuristic on 6 α′ values
for both Baseline and Sketch; over 10 runs.

Samples: 200 400 800 1,600
Space (pts): 1,500 3,000 6,000 12,000
I500k100x5d 27.3% 19.7% 11.6% 9.3%
I500k10x5d 25.8% 21.1% 10.4% 8.8%
I100k100x5d 22.6% 18.2% 8.9% 7.5%
I10k100x5d 17.1% 14.5% 8.2% 7.6%

Table 3: Average error over 20 runs; single sketch; known α.
Samples refers to number of sampled buckets; space denotes
the total number of points stored.

We note that the cost for the unknown α case is high even
for a non-streaming algorithm, since we still have to guess
different α′ values in parallel. In Figure 3, we used small
steps in Baseline to figure out the best α, during which we
also had to allocate space for each run of Baseline.

We compare Sketch to two alternatives: one is Baseline

but we use the same 6 α′ values as that for Sketch; the
other is simply storing the entire dataset and process offline.
For Baseline we randomize the order of points in the data
streams, so the answer may vary due to the F0-ambiguity.

Table 2 summarizes the space usage and accuracy. Sketch
uses 6 sketches each with a space bound of 12, 000 points,
and 6 values of α′ are tried in parallel. The total space is
thus 432, 000 (points). The corresponding space usage for
Baseline is 3, 200, 000. The space saving of Sketch over
Baseline is about a magnitude, at a small cost of accuracy.
We expect the space savings to grow as the size of the dataset
grows further.

5.5 Results - Known Group Diameters
We next consider the case where α is known, e.g. using

domain knowledge.
Table 3 shows average error percentages over 20 trials

for datasets I500k100x5d, I500k10x5d, I100k100x5d and
I10k100x5d, run against different space allowances (in terms
of number of points stored), using α′ determined by the sad-
dle point heuristic. Table 4 summarizes the error percent-
ages by taking the median of outputs of 6 parallel sketches,
again average over 20 trials. All results are compared with
the corresponding exact values F0(α′) outputted by Baseline.

We notice that the error percentages correlate relatively
weakly with the numbers of duplicates and the numbers of
groups. In contrast to magnitude differences in data size,
the error percentages display much smaller changes.

We next look at the effects of using different numbers of
duplicates. The observation is that the datasets I500k10x5d
and I500k100x5d do not require significantly different space
budgets to achieve similar accuracies, despite the magnitude
difference in the number of duplicates. This shows that the
choice of the length of our grid is good at limiting the number
of cells that a group can intersect, and hence bounding the
variance of the estimator.

Table 5 summarizes the average processing times for vari-
ous datasets, for Sketch under different space budgets, and

1443

Space (pts) 9,000 18,000 36,000 72,000
I500k100x5d 22.8% 10.6% 8.3% 6.6%
I500k10x5d 15.8% 9.2% 6.7% 5.7%
I100k100x5d 12.7% 8.4% 5.5% 3.5%
I10k100x5d 10.8% 8.8% 3.6% 3.0%

Table 4: Average error over 20 runs; median output of 6
sketches; known α.

Samples: 200 400 800 1,600
Space (pts): 1,500 3,000 6,000 12,000 Baseline

I500k100x5d 0.45 0.47 0.49 0.46 1.45
I500k10x5d 0.42 0.50 0.52 0.46 1.42
I100k100x5d 0.48 0.44 0.48 0.53 1.38
I10k100x5d 0.42 0.48 0.51 0.50 1.35

Table 5: Average processing time (seconds) per 10, 000 pts

for Baseline. We observe that in Sketch the average time
to process each point is almost a constant, which is consis-
tent with our theoretical analysis. Baseline is a bit slower,
but the time is still linear in the number of points.

5.6 Datasets with Low Duplication Ratios and/or
High Dimensionality

In fact, in all of our experiments above, for the sake of a
“stress test”, the ambiguity we injected into the raw dataset
Images is on the high end – the average number of duplicates
we generated is between 10 to 100, while for many real-world
datasets this ratio can be below 2. For example, the duplica-
tion ratios of the document datasets in the Internet studied
by Broder [7] are between 1.4 to 1.8. Similar phenomenon
has been observed by Wang et al. [29] on Internet images.

We thus also test our algorithms in datasets with low du-
plication ratios. In datasets I500k2x5d and I4m2x5d, the
number of duplications of images follow a power-law distri-
bution scaled to an expectation of 2 (to better model the
real-world image duplications).

Table 6 shows that under the same ground truth F0 =
512, 600, the performance of Sketch becomes better when
the duplication ratio becomes smaller. The error does not
increase much when we increase the robust F0 to 4 million
while keeping the same sketch size.

Figure 4: F0(α′) against α′ on dataset I4m2x20d and
I4m2x5d, with log-log plots. GT stands for ground truth.

No. pts 9,000 18,000 36,000 72,000
I500k100x5d 22.8% 10.6% 8.3% 6.6%
I500k10x5d 15.8% 9.2% 6.7% 5.7%
I500k2x5d 5.2% 3.0% 2.8% 2.2%

I4m2x5d 6.0% 3.5% 3.3% 2.4%

Table 6: Vary duplication ratio; average error over 20 runs;
median output of 6 sketches; known α.

No. pts 9,000 18,000 36,000 72,000 144,000
I4m2x5d 6.0% 3.5% 3.3% 2.4% 1.7%

I4m2x10d 5.8% 4.2% 3.4% 2.6% 1.5%
I4m2x20d 6.4% 4.4% 3.6% 2.0% 1.3%

Table 7: Vary dimensionality; average error over 20 runs;
median output of 6 sketches; known α.

Finally we test how the dimensionality of the feature space
affects the performance of Sketch. Table 7 shows the per-
formance of Sketch when the dimensionality varies. One
can see that under the same number of sampled points, the
performance of Sketch is roughly the same on the three
datasets. The reason is that when mapping images to points
in R5, the dataset I4m2x5d has already exhibit a good sepa-
ration ratio; see the α-curve for I4m2x5d in Figure 4. Further
increasing the dimensionality indeed gives better separation
ratio; see the α-curve for I4m2x20d in Figure 4. However,
it does not give much advantage in terms of accuracy. The
main reason is that the variance generated in the sampling
step of Sketch is larger in higher dimensions. On the other
hand, points in higher dimensions cost more storage space
and processing time (note that datasets in Table 7 are com-
pared under the same number of samples points, not the
total space). To conclude, our experiments suggest that we
should use the least necessary number of features that ex-
hibit a good separation ratio.

6. CONCLUSION
In this paper we present a set of streaming algorithms

for computing the number of distinct elements for noisy
datasets. We have shown that our algorithm for well-shaped
noisy datasets in constant dimensional Euclidean spaces is
theoretically optimal. We have also rigorously proved that
our algorithms still work well on datasets with small F0-
ambiguities, and proposed a method to detect datasets with
high F0-ambiguities. Furthermore, we have proposed an al-
gorithm framework for datasets in a general metric space
using the theory of locality sensitive hashing. The effec-
tiveness of our algorithms have been verified experimentally
on image data (or rather, point sets in the Euclidean space).
Future work includes designing algorithms for computing ro-
bust F0 for datasets in high dimensions with provable guar-
antees and extending our experiments to other metrics and
similarity functions.

7. REFERENCES
[1] S. Acharya, P. B. Gibbons, V. Poosala, and

S. Ramaswamy. The aqua approximate query
answering system. In SIGMOD, pages 574–576, 1999.

[2] N. Alon, Y. Matias, and M. Szegedy. The space
complexity of approximating the frequency moments.
J. Comput. Syst. Sci., 58(1):137–147, 1999.

1444

[3] A. Andoni and P. Indyk. Near-optimal hashing
algorithms for approximate nearest neighbor in high
dimensions. Comm. of the ACM, 51(1):117, 2008.

[4] Z. Bar-Yossef, T. Jayram, R. Kumar, D. Sivakumar,
and L. Trevisan. Counting distinct elements in a data
stream. In Randomization and Approximation
Techniques in Computer Science, pages 1–10.
Springer, 2002.

[5] K. Beyer, P. J. Haas, B. Reinwald, Y. Sismanis, and
R. Gemulla. On synopses for distinct-value estimation
under multiset operations. In Proceedings of the 2007
ACM SIGMOD international conference on
Management of data, pages 199–210. ACM, 2007.

[6] A. Z. Broder. On the resemblance and containment of
documents. In Compression and Complexity of
Sequences 1997. Proceedings, pages 21–29. IEEE, 1997.

[7] A. Z. Broder. Identifying and filtering near-duplicate
documents. In Proceedings of the 11th Annual
Symposium on Combinatorial Pattern Matching, COM
’00, pages 1–10, London, UK, UK, 2000.
Springer-Verlag.

[8] P. Brown, P. J. Haas, J. Myllymaki, H. Pirahesh,
B. Reinwald, and Y. Sismanis. Toward automated
large-scale information integration and discovery. In
Data Management in a Connected World, pages
161–180, 2005.

[9] M. Charikar. Similarity estimation techniques from
rounding algorithms. In STOC, pages 380–388, 2002.

[10] M. Datar, N. Immorlica, P. Indyk, and V. S. Mirrokni.
Locality-sensitive hashing scheme based on p-stable
distributions. In SoCG, pages 253–262, 2004.

[11] J. Deng, W. Dong, R. Socher, L. Li, K. Li, and F. Li.
Imagenet: A large-scale hierarchical image database.
In 2009 IEEE Computer Society Conference on
Computer Vision and Pattern Recognition (CVPR
2009), 20-25 June 2009, Miami, Florida, USA, pages
248–255, 2009.

[12] X. L. Dong and F. Naumann. Data fusion: resolving
data conflicts for integration. Proceedings of the VLDB
Endowment, 2(2):1654–1655, 2009.

[13] M. Durand and P. Flajolet. Loglog counting of large
cardinalities. In Algorithms-ESA 2003, pages 605–617.
Springer, 2003.

[14] A. K. Elmagarmid, P. G. Ipeirotis, and V. S. Verykios.
Duplicate record detection: A survey. IEEE Trans.
Knowl. Data Eng., 19(1):1–16, 2007.

[15] C. Estan, G. Varghese, and M. Fisk. Bitmap
algorithms for counting active flows on high-speed
links. IEEE/ACM Trans. Netw., 14(5):925–937, Oct.
2006.

[16] J. Feigenbaum, S. Kannan, and J. Zhang. Computing
diameter in the streaming and sliding-window models.
Algorithmica, 41(1):25–41, 2004.

[17] P. Flajolet, É. Fusy, O. Gandouet, and F. Meunier.
Hyperloglog: the analysis of a near-optimal cardinality
estimation algorithm. DMTCS Proceedings, (1), 2008.

[18] P. Flajolet and G. N. Martin. Probabilistic counting
algorithms for data base applications. J. Comput.
Syst. Sci., 31(2):182–209, 1985.

[19] S. Ganguly. Counting distinct items over update
streams. Theoretical Computer Science,
378(3):211–222, 2007.

[20] S. Guha. Tight results for clustering and summarizing
data streams. In ICDT, pages 268–275, 2009.

[21] T. N. Herzog, F. J. Scheuren, and W. E. Winkler.
Data quality and record linkage techniques, volume 1.
Springer, 2007.

[22] P. Indyk and R. Motwani. Approximate nearest
neighbors: Towards removing the curse of
dimensionality. In STOC, pages 604–613, 1998.

[23] P. Indyk and D. P. Woodruff. Tight lower bounds for
the distinct elements problem. In FOCS, pages
283–288, 2003.

[24] D. M. Kane, J. Nelson, and D. P. Woodruff. An
optimal algorithm for the distinct elements problem.
In PODS, pages 41–52, 2010.

[25] N. Koudas, S. Sarawagi, and D. Srivastava. Record
linkage: similarity measures and algorithms. In
SIGMOD, pages 802–803. ACM, 2006.

[26] C. R. Palmer, P. B. Gibbons, and C. Faloutsos. Anf: a
fast and scalable tool for data mining in massive
graphs. In SIGKDD, pages 81–90, 2002.

[27] P. G. Selinger, M. M. Astrahan, D. D. Chamberlin,
R. A. Lorie, and T. G. Price. Access path selection in
a relational database management system. In
SIGMOD, pages 23–34, 1979.

[28] A. Singhal. Modern information retrieval: A brief
overview. IEEE Data Eng. Bull., 24(4):35–43, 2001.

[29] X. Wang, L. Zhang, and C. Liu. Duplicate discovery
on 2 billion internet images. In IEEE Conference on
Computer Vision and Pattern Recognition, CVPR
Workshops 2013, Portland, OR, USA, June 23-28,
2013, pages 429–436, 2013.

[30] Q. Zhang. Communication-efficient computation on
distributed noisy datasets. In Proceedings of the 27th
ACM on Symposium on Parallelism in Algorithms and
Architectures, SPAA 2015, Portland, OR, USA, June
13-15, 2015, pages 313–322, 2015.

APPENDIX
A. PROOF OF THEOREM 3

In this section we prove Theorem 3. We first consider the
2-dimensional Euclidean space.

Given a dataset S with F0-ambiguity δ, let n1 = F0(S)
and n2 = F0(S\T) where T ⊆ S is the corresponding subset
such that S\T is well-shaped. By the monotonicity of the
robust F0(·) function and the second item of Definition 4,

(1− δ)n1 ≤ n2 ≤ n1. (13)

Let G = {G1, . . . , Gn1} be the minimum-cardinality parti-
tion of S. We will show that if we run Algorithm 4 (call it
A) on S, then with a good probability the following holds:

(1−O(δ + ε))n1 ≤ A(S) ≤ (1 +O(δ + ε))n1. (14)

In other words, A(S) produces a (1+O(δ+ε))-approximation
to F0(S).

Let C1 and C2 be the sets of non-empty cells correspond-
ing to S and S\T respectively. Obviously C2 ⊆ C1. By the
second item of Definition 4, and the fact that a group inter-
sects at most 9 grid cells under the settings in Section 2.1,

1445

we have

|C1\C2| ≤ 9δ |C1| , (15)

We now run A on S, and let C′1 ⊆ C1 be the whole set of
sampled items. Let C′2 ⊆ C′1 be the set of cells sampled from
C2. Since C′1 is sampled uniformly at random from C1, by
(15) and a Chernoff bound, we have with probability 1−o(1)
that ∣∣C′1\C′2∣∣ ≤ 10δ

∣∣C′1∣∣ . (16)

Moreover, observe that

∀C ∈ C1, w(C) = Θ(1). (17)

This follows from the simple geometry fact that each cell can
intersect at most O(1) unit-diameter groups under the con-
dition that F0(S) is defined on the group partition with the
minimum size, since otherwise some groups can be merged
to produce a group partition of a smaller size.

By (15), (16) and (17), we have with probability 1− o(1),

(1−O(δ))
|C1|
|C′1|
·
∑
C∈C′1

w(C)

≤ |C2|
|C′2|
·
∑
C∈C′2

w(C)

≤ (1 +O(δ))
|C1|
|C′1|
·
∑
C∈C′1

w(C). (18)

The idea to finish the proof is the following: Suppose we
run Algorithm (4) on S\T only, since C′2 is a uniformly ran-
dom sample on C2, we know by the analysis in Section 2.1
that with probability 0.96,

|C2|
|C′2|

∑
C∈C′2

w(C) ∈ [(1− ε)n2, (1 + ε)n2]. (19)

And then by (13), (18) and (19), it holds with probability
1− o(1)− 0.04 > 0.95 that

(1−O(δ+ ε))n1 ≤
|C1|
|C′1|

∑
C∈C′1

w(C) ≤ (1+O(δ+ ε))n1, (20)

proving (14).
The cavity of the above argument is that (19) does not

necessarily hold since points from T may interfere the value
of w(C) for a cell C ∈ C′2. Fortunately, we can show that
such an interference is negligible.

For a cell C ∈ C2, we say it is contaminated if there exists
a cell C′ ∈ C1\C2 and a group G ∈ G such that both C
and C′ intersect with G. Let C3 ⊆ C2 denote the set of
contaminated cells, and let C′3 ⊆ C′2 be the set of sampled
contaminated cells. Note that w(C) will only decrease if
cell C is contaminated. Now observe that each cell in C1\C2
can contaminate at most O(1) cells in C2 in the Euclidean
plane. Together with (16) and a Chernoff bound, we have
with probability 1− o(1) that∣∣C′3∣∣ ≤ O(δ) ·

∣∣C′2∣∣ . (21)

Therefore by (17), (21) and the analysis in Section 2.1, it
holds with probability 1− o(1)− 0.04 that,

|C2|
|C′2|

∑
C∈C′2

w(C) ∈
[
(1− ε)n2

(
1−O

(
|C′3|
|C′2|

))
, (1 + ε)n2

]

⊆ [(1−O(ε+ δ))n2, (1 + ε)n2]. (22)

Finally replacing (19) with (22), we can show that (20) still
holds, and thus (14) also holds. Therefore, the probability
that (14) holds is 1−o(1)−o(1)−0.04 > 0.95, where the two
o(1) error terms are introduced by Chernoff bounds (for de-
ducting (16) and (21)), and the 0.04 error term is introduced
by using the analysis in Section 2.1.

The above analysis can be literally carried to any constant
dimensional Euclidean space (one only needs to slightly ad-
just some constant parameters).

B. OTHER MISSING PROOFS

B.1 Proof for Lemma 2

Proof : First, note that if β ≥ d3/2, then each cell can inter-
sect at most one group. Thus |C| ≥ F0.

Second, since the grid G is random and each group has
diameter at most 1, the probability that the convex hull
CH(G) of a group of points G is cut by the boundaries of
grid cells in each dimension is at most µ = 1/d. If CH(G)
is cut by grid boundaries in i dimensions, then G intersects
(at most) 2i grid cells. Therefore the expectation of the
number of cells each group G intersects, denoted by NG,
can be bounded by

E[NG] ≤
d∑
i=0

2i
(
d

i

)
µi(1− µ)d−i

= (2µ+ (1− µ))d

= (1 + 1/d)d < 3. (23)

By the linearty of expectation, E[C] ≤
∑
G∈G E[NG] ≤ 3F0.

Therefore |C| ≤ 300F0 with probability at least 0.99 by a
Markov inequality.

2

B.2 Proof for Lemma 3
We investigate the two items in the definition of a smart

hash function (Definition 5). Let f be a random hash func-
tion sampled from F . For each pair x, y ∈ S that are in
different groups, the probability that f(x) 6= f(y) is at least
1 − pk2 by the definitions of LSH and k-fold hash function.
By a union bound, with probability 1 −m2pk2 , we have for
all pairs x, y ∈ S that are in different groups, f(x) 6= f(y).

Let f(x) = (h1(x), . . . , hk(x)) where hi ∈r H. We next
consider each group G ∈ G. We say G is cut by hi if there
exist two items x ∈ G and y ∈ U such that d(x, y) ≤ α
but hi(x) 6= hi(y). Thus if G is cut by j hash functions,
then the cardinality of the {f(x) | ∃y ∈ G s.t. d(x, y) ≤
α} can be bounded by ηj since H is η-concentrated. The
probability that G is cut by hi can be bounded by p1 sinceH
is (2α, β, p1, p2)-sensitive and Diameter(G) ≤ α (S is (α, β)-
sparse). We thus can upper bound

E[ρ] ≤
k∑
j=0

ηj
(
k

j

)
(1− p1)jpk−j1 ,

which is (η(1 − p1) + p1)k. By a Markov inequality ρ ≤
100(η(1− p1) + p1)k with probability 0.99.

1446

B.3 A Remark on LSH and Smart Hash Func-
tion

We note that not all LSH functions can be used as smart
hash functions with a small image distance. We use the
MinHash [6] for example.

Given a set A = {a1, . . . , at} ⊆ U , the MinHash is defined
to be

h(A) = min{g(a) | a ∈ A},

where g : U → N is a random hash function. MinHash is
an (α, β, 1−α, 1−β)-sensitive LSH for the Jaccard distance
function J(·, ·), which is defined as follows: Given two sets
A,B ⊆ U ,

JDist(A,B) = 1− |A ∩B||A ∪B| .

For any x ∈ U\A, let Ax = A ∪ {x}. It is easy to see that
even for the small threshold α = 1/(t + 1), Ax (x ∈ U\A)
are in the same group, but |h(A`) | ` ∈ [t]| ≈ |U | /t which
could be very large.

On the other hand, in practice, when given any query
point, one often chooses to only search a much smaller num-
ber of buckets than |U | /t for near neighbors, giving a de
facto bound on the ‘image distance’, and the techniques in
this paper may still be applied.

C. MATHEMATICAL TOOLS
We will need the following mathematical tools.

Lemma 4 (Markov Inequality). Let X ≥ 0 be a ran-

dom variable. Then for all a > 0, Pr[X ≥ a] ≤ E[X]
a

.

Lemma 5 (Chebyshev’s inequality). Let X ≥ 0 be
a random variable. Then for all a > 0,

Pr[|X −E[X]| ≥ a] ≤ Var[X]

a2
.

Lemma 6 (Chernoff bound). Let X1, . . . , Xk ∈ [0, 1]

be independent random variables, and let X =
∑k
i=1Xi.

Pr[|X −E[X]| ≥ εE[X]] ≤ 2e−
ε2E[X]

3 .

1447

