
All-in-One: Graph Processing in RDBMSs Revisited

Kangfei Zhao, Jeffrey Xu Yu
The Chinese University of Hong Kong

Hong Kong, China
{kfzhao,yu}@se.cuhk.edu.hk

ABSTRACT
To support analytics on massive graphs such as online social net-
works, RDF, Semantic Web, etc. many new graph algorithms are
designed to query graphs for a specific problem, and many dis-
tributed graph processing systems are developed to support graph
querying by programming. In this paper, we focus on RDBMS,
which has been well studied over decades to manage large datasets,
and we revisit the issue how RDBMS can support graph process-
ing at the SQL level. Our work is motivated by the fact that there
are many relations stored in RDBMS that are closely related to a
graph in real applications and need to be used together to query the
graph, and RDBMS is a system that can query and manage data
while data may be updated over time. To support graph processing,
in this work, we propose 4 new relational algebra operations, MM-
join, MV-join, anti-join, and union-by-update. Here, MM-join and
MV-join are join operations between two matrices and between a
matrix and a vector, respectively, followed by aggregation com-
puting over groups, given a matrix/vector can be represented by
a relation. Both deal with the semiring by which many graph al-
gorithms can be supported. The anti-join removes nodes/edges in
a graph when they are unnecessary for the following computing.
The union-by-update addresses value updates to compute PageR-
ank, for example. The 4 new relational algebra operations can be
defined by the 6 basic relational algebra operations with group-by
& aggregation. We revisit SQL recursive queries and show that
the 4 operations with others are ensured to have a fixpoint, follow-
ing the techniques studied in DATALOG, and enhance the recursive
with clause in SQL’99. We conduct extensive performance stud-
ies to test 10 graph algorithms using 9 large real graphs in 3 major
RDBMSs. We show that RDBMSs are capable of dealing with
graph processing in reasonable time. The focus of this work is at
SQL level. There is high potential to improve the efficiency by
main-memory RDBMSs, efficient join processing in parallel, and
new storage management.

1. INTRODUCTION
Graph processing has been extensively studied to respond the

needs of analyzing massive online social networks, RDF, Seman-

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

SIGMOD’17, May 14-19, 2017, Chicago, Illinois, USA
c© 2017 ACM. ISBN 978-1-4503-4197-4/17/05. . . $15.00

DOI: http://dx.doi.org/10.1145/3035918.3035943

tic Web, knowledge graphs, biological networks, and road net-
works. A large number of graph algorithms have been used/pro-
posed/revisited. Such graph algorithms include BFS (Breadth-First
Search) [17], Connected-Component [48], shortest distance com-
puting [17], topological sorting [31], PageRank [36], Random-Walk-
with-Restart [36], SimRank [28], HITS [36], Label-Propagation [46],
Maximal-Independent-Set [40], and Maximal-Node-Matching [43],
to name a few. In addition to the effort to design efficient graph
algorithms to analyze large graphs, many distributed graph pro-
cessing systems have been developed using the vertex-centric pro-
gramming on BSP (Bulk Synchronous Parallel). A recent survey
can be found in [38]. Such distributed graph processing systems
provide a framework on which users can implement graph algo-
rithms to achieve high efficiency. Both new graph algorithms and
distributed graph processing systems focus on efficiency. On the
other hand, graph query languages have also been studied [60, 12,
21, 25]. As surveyed in [60], such graph query languages include
Lorel, StruQL, UnQL, G, G+, GraphLog, G-Log, SoSQL that ex-
press the conjunctive query, regular path query, or combination of
the both. Extending regular expressions to query both path and data
is recently studied [35]. And GraphQL is a graph query language
proposed based on graph algebra [25]. In addition, DATALOG has
been revisited to support graph analytics. The representative sys-
tems are DeALS [54, 53, 52] and SociaLite [50, 51]. The scaling
DATALOG for machine learning is studied in [14].

In this paper, we focus on RDBMS, which has been well studied
over decades to manage large datasets, and we revisit the issue how
RDBMS can support graph processing. Our work is motivated by
the following. First, RDBMS is to manage various application data
in relations as well as to query data in relations efficiently using
the sophisticated query optimizer. A graph may be a labeled graph
with node/edge label, and it is probable that additional information
is associated with the graph (e.g. attributed graphs). A key point
is that we need to provide a flexible way for users to manage and
query a graph together with many relations that are closely related
to the graph. The current graph systems are developed for process-
ing but not for data management. We need a system to fulfill both.
Second, there is a requirement to query graphs. In the literature,
many new graph algorithms are studied to query a specific graph
problem. And the current graph processing systems developed do
not have a well-accepted graph query language for querying graphs.
In other words, it needs coding, when there is a need to compute
a graph algorithm based on the outputs of other graph algorithms.
Instead of designing a new graph query language, a question to be
asked is why SQL cannot be used to query graphs, given the tech-
niques developed to process SQL queries. In this work, we revisit
recursive SQL queries [19] and show that a large class of graph
algorithms can be supported by SQL in RDBMSs. To the best of

1165

our knowledge, it is not well discussed on what graph analytics can
be supported and how to support them by SQL. We give our solu-
tion in this work. Our focus is on supporting graph processing at
the SQL level. There is high potential to improve the efficiency by
main-memory RDBMSs, efficient join processing in parallel [8],
and new storage management [30].

The issue of supporting graph algorithms in RDBMS at SQL
level is the issue how recursive SQL can be used to support graph
algorithms. There are two main concerns regarding recursive SQL
queries. One is a set of operations that are needed to support a large
pool of graph algorithms and can be used in recursive SQL queries.
The other is the way to ensure the recursive SQL queries can obtain
a unique answer. The two concerns are interrelated.

The main contributions of this work are summarized below.
First, for supporting graph algorithms, we propose to use a set

of 4 relational algebra operations, MM-join, MV-join, anti-join,
and union-by-update. Here, MM-join and MV-join are join opera-
tions between two matrices and between a matrix and a vector, re-
spectively, followed by aggregation computing over groups, given
a matrix/vector can be represented by a relation. Both are used
to deal with the semiring by which many graph algorithms can be
supported [34]. The anti-join removes nodes/edges in a graph when
they are unnecessary for the following computing, and it serves as a
selection. The union-by-update addresses value updates which are
needed in many iterative graph computing tasks, like PageRank,
SimRank, and HITS. It is worth mentioning that [41, 33] discuss
MV-join, MM-join is similar to MV-join, anti-join is the comple-
ment of the semi-join, and union-by-update is a new operation pro-
posed in this work. We show that the 4 relational algebra operations
can be defined by the 6 basic relational algebra operations together
with group-by & aggregation. However, none of them can be used
in recursive SQL queries, in general, as specified by SQL’99, be-
cause they are negation-like operations.

Second, we revisit recursive queries defined in SQL’99. SQL’99
supports linear recursion and mutual recursion, but it does not sup-
port nonlinear recursion. The existing RDBMSs support linear re-
cursion for monotonic SQL queries only, and do not support mu-
tual recursion. There are two separated issues. One is how to sup-
port non-monotonic recursive SQL queries since the 4 operations
are all non-monotonic in nature. By adopting the DATALOG tech-
niques given in [62, 63, 11], we show that a recursive SQL query
using the relational algebra operations, including MM-join, MV-
join, anti-join, and union-by-update, has a fixpoint. That implies
such 4 operations can be used in a recursive SQL query, which can
be linear, nonlinear, or have mutual recursion. The other is related
to linear, nonlinear, and mutual recursion. Even though many graph
algorithms can be specified by linear recursion, some well-known
graph algorithms such as HITS cannot be specified by linear re-
cursion, where nonlinear recursive queries are easy to follow and
converge fast, but they are hard to implement as pointed by Widom
(https://www.youtube.com/watch?v=0n9kScLFyIo). To support a large
pool of graph algorithms, we allow nonlinear and mutual recur-
sion. The efficiency issue can be addressed by incorporating the
new algorithms and implementations in main-memory and on new
storage systems.

Third, we enhance the recursive with clause in SQL’99. Such
with in SQL’99 is not designed for iterative graph algorithms to up-
date node/edge values in every iteration. We propose with+ which
supports iterative graph algorithms by making use of the operation
of union-by-update, and it supports linear, nonlinear and mutual
recursion.

Fourth, we conduct extensive performance studies to test 10 graph
algorithms using 9 large real graphs in 3 main RDBMSs. All the

testing is done by translating the enhanced recursive with statement
to SQL/PSM, which is an SQL standard to support procedures and
functions defined using looping and condition checking. By our
testing, we show that RDBMSs are capable of dealing with graph
processing in reasonable time.

The paper is organized as follows. Section 2 reviews the re-
lated works. Section 3 discusses the recursion handling by SQL in
RDBMSs. In Section 4, we present our approach to support graph
processing by SQL followed by the discussion on how to ensure the
fixpoint semantics in Section 5. We give the enhanced with clause
and its implementation details in Section 6. We report our exten-
sive performance studies using graph algorithms over real datasets
by RDBMSs, and conclude our work in Section 8.

2. RELATED WORK
Graph Query Languages: Graph query languages have been stud-
ied. A survey on query languages for graph databases can be found
in [60], which covers conjunctive query (CQ), regular path query
(RPQ), and CRPQ combining CQ and RPQ. Also, it surveys a
large number of languages including Lorel, StruQL, UnQL, G, G+,
GraphLog, G-Log, SoSQL, etc. Barceló investigates the expressive
power and complexity of graph query languages [12]. Libkin et al.
in [35] study how to combine data and topology by extending regu-
lar expressions to specify paths with data. There are several new at-
tempts to query graphs. Gao et al. in [21] propose a graph language
GLog on Relational-Graph, which is a data model by mixing rela-
tional and graph data. A GLog query is converted into a sequence
of MapReduce jobs to be processed on distributed systems. Jindal
and Madden propose graphiQL in [29] by exploring a way to com-
bine the features of Pregel (vertex-centric programming) and SQL.
He and Singh in [25] propose the language GraphQL on graph al-
gebra which deals with graphs with attributes as a basic unit. The
operations in the graph algebra include selection, Cartesian prod-
uct, and composition. Salihoglu and Widom in [49] propose HeLP,
a set of basic operations needed in many graph processing systems.

Recursive SQL Queries: SQL’99 supports recursive queries [39,
19]. As mentioned, in supporting graph algorithms, there are two
main issues regarding recursive SQL queries: a set of operations
that can be used in recursive SQL queries, and a way to ensure
unique solution by recursive SQL queries. For the former, Cabrera
and Ordonez in [15] and Kang et al. in [33] discuss an operation
to multiply a matrix with a vector using joins and group-by & ag-
gregation. Cabrera and Ordonez in [15] also discuss semiring for
graph algorithms, and give a unified algorithm which is not in SQL.
For the latter, recursive query processing is well discussed in [9].
Ordonez et al. in [42] compare SQL recursive query processing in
columnar, row and array databases. The main issue to be studied
in this work is that many graph algorithms need to use aggregation
and negation to get an answer, but aggregations and negations can-
not be used within a recursive SQL query for ensuring that an SQL
query can get a unique solution. Recently, Aranda et al. in [10]
study broadening recursion in SQL, but they do not deal with nega-
tion and aggregation. The SQL level optimizations for computing
transitive closures are discussed in [41], with its focus on mono-
tonic aggregation for transitive closures. However, aggregation and
negation in general are needed for a large pool of graph algorithms.
Ghazal et al. propose an adaptive query optimization scheme for
the recursive query in Teradata, which employs multi-iteration pre-
planning and dynamic feedback to take advantage of global query
optimization and pipelining [23].

Graph Processing in RDBMSs: Supporting graph processing in

1166

1. with
2. TC (F, T) as (
3. (select F , T from E)
4. union all
5. (select TC.F , E.T from TC, E where TC.T = E.F))

Figure 1: The recursive with statement
RDBMSs have been studied. Srihari et al. in [55] introduce an ap-
proach for mining dense subgraphs in a RDBMS. Gao et al. in [20]
leverage the window functions and the merge statement in SQL
to implement shortest path discovery in RDBMS. Zhang et al. in
[65] provide an SQL-based declarative query language SciQL to
perform array computation in RDBMSs. Fan et al. in [18] pro-
pose GRAIL, a syntactic layer converting graph queries into SQL
script. GraphGene [61] is a system for users to specify graph ex-
traction layer over relational databases declaratively. MADLib is
designed and implemented to support machine learning, data min-
ing and statistics on database systems [16, 26]. In [30], Vertica re-
lational database is studied as the platform for vertex-centric graph
analysis. In [56], a graph storage system SQLGraph is designed,
which combines the relational storage for adjacency information
with JSON for vertex and edge properties. It shows that it can out-
perform popular NoSQL graph stores. Aberger et al. in [8] develop
a graph pattern engine, called EmptyHead, to process graph pat-
terns as join processing in parallel.

Deductive Database Systems: DATALOG systems have been de-
veloped that use DATALOG as its language to process graphs. How-
ever, DATALOG is not for data management. A survey of early
deductive database systems can be found in [47]. LDL++ is a de-
ductive database system in which negation and aggregation han-
dling in recursive rules are addressed [62, 11]. Based on LDL++,
a new deductive application language system DeALS is developed
to support graph queries [54], and the optimization of monotonic
aggregations is further studied [53]. SociaLite [50] allows users
to write high-level graph queries based on DATALOG that can be
executed in parallel and distributed environments [51]. DATALOG
for machine learning is studied with Pregel and map-reduce-update
style programming [14], and it is investigated for big data analytics
on Spark [52]. In this work, we introduce the DATALOG techniques
into RDBMSs to deal with recursive SQL queries, since DATALOG
has greatly influenced the recursive SQL query handling.

3. THE RECURSION IN RDBMS
Over decades, RDBMSs have provided functionality to support

recursive queries, based on SQL’99 [39, 19], on which DATALOG
has significant influence. The recursive queries are expressed using
with clause in SQL. We introduce the with clause following the
discussions given in [22].

with R as 〈 R initialization 〉 〈 recursive querying involving R 〉

Here, the recursive with clause defines a temporary recursive rela-
tion R in the initialization step, and queries by referring the recur-
sive relation R iteratively in the recursive step until R cannot be
changed. As an example, the edge transitive closure can be com-
puted using with over the edge relation E(F, T), where F and T
are for “From” and “To”. As shown in Fig. 1, the recursive rela-
tion is named TC. Initially, the recursive relation TC is defined
to project the two attributes, F and T , from the relation E (line 3).
Then, the query in every iteration is to union TC computed and a
relation with two attributes TC.F and E.T by joining the two re-
lations, TC and E, over the join condition TC.T = E.F (line 5).

SQL’99 restricts recursion to be a linear recursion and allows
mutual recursion in a limited form [39]. In brief, a linear recursion

Features PostgreSQL DB2 Oracle

A
Linear Recursion 3 3 3
Nonlinear Recursion 7 7 7
Mutual Recursion 7 7 7

B Initial Step 3 3 3
Recursive Step 7 3 7

C
Between initial queries 3 3 3
Across initial & recursive queries 3 7 7
Between recursive queries – 7 –

D

Negation 7 7 7
Aggregate functions 7 7 7
group by, having 7 7 7
partition by 3 3 3
distinct 3 7 7
General functions 3 7 3
Analytical functions 3 7 3
Subqueries without recursive ref 3 3 3
Subqueries with recursive ref 7 7 7

E

Infinite loop detection 7 7 3
Cycle detection 7 7 3
cycle 7 7 3
search 7 7 3

Table 1: The with Clause Supported by RDBMSs

means that a recursive relation is invoked at most once in an iter-
ation, and a nonlinear recursion means that a recursive relation is
referred more than once in the from clause. A mutual recursion in-
dicates the situation that there are two recursive relations, RA and
RB , where RA invokes RB directly or indirectly, and RB invokes
RA directly or indirectly at the same time. Among the linear recur-
sion, SQL’99 only supports monotonic queries, which is known as
the monotonicity. In the context of recursion, a monotonic query
means that the result of a recursive relation in any iteration does not
lose any tuples added in the previous iterations. Such monotonicity
ensures that the recursion ends at a fixpoint with a unique result.
The definition of monotonicity can be found in [57], which we also
give in the Appendix. As given in Theorem 3.3 in [57], union,
select, projection, Cartesian product, natural joins, and θ-joins are
monotone. On the other hand, negation is not monotone [22]. In
SQL, the operations such as except, intersect, not exists, not in,
<> some, <> all, distinct are the operations leading to negation.
Also, aggregation can violate the monotonicity. It is worth men-
tioning that SQL’99 does not prohibit using negation in recursive
queries completely, as long as the monotonicity of queries is main-
tained. In other words, the monotonicity is ensured if the negation
is only applied to the relations that are completely known or com-
puted prior to processing the result of the recursion. This is known
as stratified negation.

We introduce stratification over the dependency graph defined in
Definition 9.1 in the Appendix, where an edge exists from g to h if
h depends on g to compute. The dependency graph (Definition 9.1)
is defined over SQL, and it is equivalent to the predicate depen-
dency graph defined over DATALOG [63, 57] over which the strati-
fication is discussed. Recall that a DATALOG program consists of a
set of rules. Here, a rule r is in the form of “h :– g1, g2, · · · , gn”,
where h is the head of the rule r, gi, for 1 ≤ i ≤ n, is a subgoal of
the rule r, and a comma between subgoals is a logical conjunction
∧. The head h is P and a subgoal gi is either P or ¬P , where
P is a predicate and ¬ is for negation. The predicate can be ei-
ther a user-defined predicate, which is the head of another rule, or
a built-in predicate over terms (constants, variables, functions). A
built-in predicate can be a base relation that exists in the database
or a predicate like the one used in selection (σ). The dependency
graph (Definition 9.1) is a predicate dependency graph by treating
nodes in the dependency graph as predicates. In the following, we
use relation and predicate used in the context of DATALOG inter-
changeably. The definition of stratification can be found in [63],
which we give it in the Appendix.

1167

SQL Recursion Handling in RDBMS: SQL’99 supports stratified
negation. Below, we discuss SQL recursion handling in RDBMSs,
following the similar discussions given in [44] in which Przymus
et al. survey recursive queries handling in RDBMSs. We focus
on Oracle (11gR2) [6], IBM DB2 10.5 Express-C [4], and Post-
greSQL (9.4) [7], where Oracle is not listed in [44]. We discuss the
features related to recursive query processing in 5 categories. (A)
linear/nonlinear/mutual recursion. (B) multiple queries used in the
with clause, (C) the set operations other than union all that can be
used to separate queries in the with clause, (D) the restrictions on
group by, aggregate function, and general functions in the recursive
step, and (E) the function to control the looping. Table 1 shows the
summary, where “3”, “7”, and “–” denote the corresponding func-
tionality is supported, prohibited, and not applicable, respectively,
in the with clause.

We discuss the 5 categories. For (A), all the 3 RDBMSs support
linear recursion but do not support nonlinear and mutual recursion.
For (B) multiple queries used in the with clause, all the 3 RDBMSs
support multiple queries in the initialization step without restric-
tions. In the recursive step, DB2 allows multiple queries, whereas
PostgreSQL and Oracle do not. The category (C) indicates which
set operations other than union all can be used to separate 2 queries.
Such set operations are union, except, and intersect. There are 3
cases. For 2 queries in the initialization step, all the set operations
can be used. For 2 queries that one is in the initialization step and
one is in the recursive step, PostgreSQL is the only one that can use
union instead of union all. Note that union is the union operation
that eliminates duplicates. For 2 queries in the recursive step, none
except for union all can be used. We further discuss the restrictions
in the recursive query (D). None of the 3 RDBMSs support negation
and aggregation as well as group by and having, since they violate
the monotonicity. Although aggregate functions are forbidden, ana-
lytical functions (partition by) specified in a window for aggregate
functions can be used in PostgreSQL as well as Oracle. Here, when
new tuples are added, analytical functions do not lose accumulated
result of previous iterations. The analytical functions are applied
only to the subset of data used in the current iteration, not the entire
set of data used in the recursive querying step. DB2 does not allow
any general arithmetic functions and analytical functions used in
the recursive querying step. With the concern of the monotonicity,
among the 3 RDBMSs, PostgreSQL supports distinct which is to
remove duplicates in the select clause. We show how PostgreSQL
supports PageRank using partition by and distinct in Fig. 9 in the
Appendix. It is important to note that partition by without distinct
cannot be used to support graph processing in general, since the
answer may be incorrect. That is because that every tuple in a
group has a tuple in the resulting relation if partition by is used,
which is different from group by that only one tuple per group is
in the result. All the 3 RDBMSs allow subqueries (including sub-
queries with exists and not exists) in the recursive querying step on
the condition that the subqueries cannot refer to the recursive rela-
tion. Finally, we discuss the control mechanisms used in Oracle to
control the looping (E). Oracle provides users with two auxiliary
clauses, namely, search and cycle, for the recursive with clause.
The search specifies a tuple search order, and the cycle marks a
cycle in the recursion. When a cycle is detected for a certain tu-
ple, the recursion will terminate for this tuple but will continue for
other noncyclic tuples. Oracle explicitly reports a warning if a cy-
cle is discovered. On the contrary, PostgreSQL and DB2 do not
provide automatic cycle detection. Table 1 summarizes the with
clause supported by RDBMSs.

Handing Recursion by PSM in RDBMS: There is another way to
implement recursion, which is SQL/PSM (Persistent Stored Mod-

ules) included in SQL standard [57]. By SQL/PSM (or PSM),
users can define functions/procedures in RDBMSs, and call such
functions when querying. In a function/procedure definition, users
can declare variables, create temporary tables, insert tuples, and
use looping where conditions can be specified to exit (or leave) the
loop. PSM provides users with a mechanism to issue queries using
a general-purpose programming language.

4. THE POWER OF ALGEBRA
In this paper, we model a graph as a weighted directed graph

G = (V,E), where V is a set of nodes and E is a set of edges.
A node is associated with a node-weight and an edge is associated
with an edge-weight, denoted as ω(vi) and ω(vi, vj), respectively.
In the following, we use n and m to denote the number of nodes
and the number of edges for a graphG. A graph can be represented
in matrix form. The nodes with node-weights can be represented as
a vector of n elements, denoted as V. The edges with edge-weights
can be represented as a n× n matrix, denoted as M, where its Mij

value can be 1 to indicate that there is an edge from vi to vj , or
the value of the edge weight. Such matrices and vectors have their
relation representation. Let V andM be the relation representation
of vector V and matrix M, such that V (ID, vw) and M(F, T, ew).
Here, ID is the tuple identifier in V . F and T , standing for “From”
and “To”, form a primary key in M . vw and ew are the node-
weight and edge-weight respectively.

4.1 The Four Operations
We discuss a set of 4 relational algebra operations, MM-join,

MV-join, anti-join, and union-by-update. Here, MM-join and MV-
join support the semiring by which many graph algorithms can be
supported. The anti-join is used to remove nodes/edges in a graph
when they are unnecessary in the following computing and serves
as a selection. The union-by-update is used to deal with value up-
dates in every iteration to compute a graph algorithm, e.g., PageR-
ank. It is worth noting that there is no such an operation like union-
by-update in relational algebra.

We show that all the 4 relational algebra operations can be de-
fined using the 6 basic relational algebra operations (selection (σ),
projection (Π), union (∪), set difference (−), Cartesian product
(×), and rename (ρ)), together with group-by & aggregation. For
simplicity, below, we use “Ri → Rj” for the rename operation
to rename a relation Ri to Rj , and use “←” for the assignment
operation to assign the result of a relational algebra to a temporal
relation.

We explain why we need the 4 operations which can be sup-
ported by the relational algebra because they do not increase the
expressive power of relational algebra. First, it is known that rela-
tional algebra can support graph algorithms. However, it is not well
discussed how to support explicitly. The set of 4 operations is such
an answer. Second, it is known that recursive query is inevitable. In
other words, new operations cannot function if they cannot be used
in recursive SQL queries in RDBMS. The 4 operations are the non-
monotonic operations that cannot be used in recursive SQL queries
allowed in SQL’99. With the explicit form of the 4 operations, in
this work, we show that they can be used in recursive SQL queries
which lead to a unique answer (fixpoint) by adopting the DATALOG
techniques. Third, with the explicit form as a target, we can further
study how to support them efficiently.

In this work, we do not include some matrix operations in the
set, if they can be used in recursive SQL queries. For example,
the transpose of a matrix M, denoted as MT, is such an operation,
which can be easily handled by renaming (ρ) in the relational alge-
bra as ρM (ΠT,F,ewM). In other words, this is to rename the F (T)

1168

value to be T (F) value, respectively, in the relation representation
M for matrix M. In addition, we do not include some matrix op-
erations if they need recursive computing. For example, the matrix
inverse, denoted as M−1 is such an operation. We discuss the 4
operations below.

To support graph analytics, the algebraic structure, namely semir-
ing, is shown to have sufficient expressive power to support many
graph algorithms [34, 15]. The semiring is a set of M includ-
ing two identity elements, 0 and 1, with two operations: addition
(+) and multiplication (·). In brief, (1) (M,+) is a commutative
monoid with 0, (2) (M, ·) is a monoid with 1, (3) the multipli-
cation (·) is left/right distributes over the addition (+), and (4) the
multiplication by 0 annihilatesM. Below, A and B are two 2 × 2
matrix, and C is a vector with 2 elements.

A =

(
a11 a12
a21 a22

)
, B =

(
b11 b12
b21 b22

)
, C =

(
c1
c2

)
The matrix-matrix (matrix-vector) multiplication (·), and matrix
entrywise sum (+) are shown below.

A · B =

(
a11 � b11 ⊕ a12 � b21 a11 � b12 ⊕ a12 � b22
a21 � b11 ⊕ a22 � b21 a21 � b12 ⊕ a22 � b22

)
A + B =

(
a11 ⊕ b11 a12 ⊕ b12
a21 ⊕ b21 a22 ⊕ b22

)
A · C =

(
a11 � c1 ⊕ a12 � c2
a21 � c1 ⊕ a22 � c2

)
We focus on the multiplication (·), since it is trivial to support the
addition (+) in relational algebra. Let A and B be two n × n ma-
trices, and C be a vector with n elements. For the multiplication
AB = A · B, and AC = A · C, we have the following.

ABij =

n⊕
k=1

Aik � Bkj (1)

ACi =

n⊕
k=1

Aik � Ck (2)

Here, Mij is the value at the i-th row and j-th column in the matrix
M, and Vi is the element at the i-th row in the vector V.

Let A and B be the relation representation for a n × n matrix,
and C be a relation representation for a vector with n elements.
The relations, A, B, and C are shown in Table 8 for 2 × 2 matri-
ces A and B, and 2-element vector C, in the Appendix. To support
matrix-matrix multiplication (Eq. (1)) and matrix-vector multipli-
cation (Eq. (2)), we define two aggregate-joins, namely, MM-join
and MV-join. The first aggregate-join, called MM-join, is used to
join two matrix relations A and B, to compute A · B. The MM-

join is denoted as A
⊕(�)
1

A.T=B.F
B , and it is defined by the following

relational algebra.

A
⊕(�)
1

A.T=B.F
B =A.F,B.T G⊕(�)(A 1

A.T=B.F
B) (3)

The second aggregate-join, called MV-join, is used to join a matrix
relation and a vector relation, A and C, to compute A · C. The

MV-join is denoted asA
⊕(�)
1

T=ID
C, and it is defined by the following

relational algebra.

A
⊕(�)
1

T=ID
C =F G⊕(�)(A 1

T=ID
C) (4)

Here, XGY is a group-by & aggregation operation to compute the
aggregate function defined by Y over the groups by the attributes

specified in X . Note that MV-join is discussed in [41, 33], and
MM-join is similar to MV-join.

There are two steps to compute MM-join. The first step is to
join A and B by the join condition A.T = B.F . This step is to
join the k value in order to compute � for Aik � Bkj as given in
Eq. (1). The second step is to do group-by & aggregation, where
the group-by attributes are the attributes that are in the primary key
but do not appear in the join condition, namely, A.F and B.T , and
the aggregate function is to compute Eq. (1). In a similar fashion,
there are two steps to compute MV-join. The first step is to join A
and C by the join condition A.T = C.ID. This step is to join the
k value in order to compute � for Aik � Ck as given in Eq. (2).
The second step is to do group-by & aggregation, where the group-
by attribute is the attribute A.F , and the aggregate function is to
compute Eq. (2).

We adopt the anti-join, R
_
n S, which is defined as the result of

R that cannot be semi-joined by S, such that R− (R n S).
In addition, we propose a new union operation, called union-by-

update, for the purpose of updating values in either a matrix or a
vector, denoted as]. Let R(A,B) and S(A,B) be two relations,
where A and B are two sets of attributes. R]A S is a relation,
RS(A,B). Let r be a tuple in R and s be a tuple in S. Different
from the conventional union operation (∪) where two tuples are
identical if r = s, with R]A S, two tuples, r and s, are identical
if r.A = s.A. The union-by-update is to update the B attributes
values of r by the B attributes values of s if r.A = s.A. In other
words, if r.A = s.A, then s is in RS but not r. There are 2 cases
that r and s do not match. If s does not match any r, then s is in
RS. If r does not match any s, then r is in RS. It is worth noting
that there can be multiple r match multiple s on the attributes A.
We allow multiple r to match a single tuple s, but we do not allow
multiple s to match a single r, since the answer is not unique. When
A attributes in both R and S are defined as the primary key, there
is at most one pair of r and s matches.

The 4 operations are independent among themselves, since we
can discover a property that is possessed by one operation but is
not possessed by the composition of the other three only [57]. The
property of anti-join (R

_
n S) is that the resulting relation must not

contain tuples in S. The property of union-by-update (R] S) is
that the resulting relation must contain tuples in S. The MM-join
returns a relation with the same arity of the edge table, while the
MV-join returns a relation with the same arity of the node table.

4.2 Relational Algebra plus While
To support graph processing, a control structure is needed in ad-

dition to the relational algebra operations discussed. We follow the
“algebra + while” given in [9].

initialize R
while (R changes) { · · · ; R← · · · }

In brief, in the looping, R may change by the relational algebra
in the body of the looping. The looping will terminate until R
becomes stable. As discussed in [9], there are two semantics for
“algebra + while”, namely, noninflationary and inflationary. Con-
sider the assignment, R ← E , which is to assign relation R by
evaluating the relational algebra expression E . By the noninflation-
ary, the assignment can be destructive in the sense that the new
value will overwrite the old value. By the inflationary, the assign-
ment needs to be cumulative. For the termination of the looping,
as pointed out in [9], explicit terminating condition does not affect
the expressive power. In this work, the conventional union (∪) is
for the inflationary semantics, whereas union-by-update (]) is for
the noninflationary semantics.

1169

In this work, the expressive power, and the complexity remain
unchanged as given in [9] under the scheme of “algebra + while”,
because the 4 operations added can be supported by the existing
relational algebra operations. From the viewpoint of relational al-
gebra, we can support all basic graph algorithms, including those
that need aggregation (Table 2) but excluding those complicated al-
gorithms for spectral analytics that need matrix inverse. The 4 op-
erations make it clear how to support graph algorithms in relational
algebra. In particular, all graph algorithms, that can be expressed
by the semiring, can be supported under the framework of “algebra
+ while” and hence SQL recursion to be discussed in this work.

4.3 Supporting Graph Processing
We show how to support graph algorithms by the “algebra +

while” approach, using MM-join and MV-join, anti-join, union-
by-update, as well as other operations given in relational algebra.
For simplicity, we represent a graph G = (V,E) with n nodes by
an n× n E and a vector V with n elements. We represent the vec-
tor V by a relation V (ID, vw), where ID is the tuple identifier for
the corresponding node with value vw associated. Moreover, we
represent the matrix E by a relation E(F, T, ew), where F and T ,
standing for “From” and “To”, form a primary key in E, which is
associated with an edge value ew. Below, to emphasize the oper-
ations in every iteration, we omit the while looping. Some graph
algorithms can be computed by either union or union-by-update.
We focus on union-by-update.

First, consider BFS (Breadth First Search). In the relation E, the
value ew = 1 if Eij = 1 for an edge from vi to vj , and otherwise
0. Initially, suppose that V is a relation where the vw value is 1 for
the tuple representing the source node to start BFS, and 0 for the
other tuples. The following relational algebra is for ET · V.

V ← ρV (E
max(vw∗ew)

1
F=ID

V) (5)

In the resulting relation, a tuple with vw = 1 indicates that the cor-
responding node can be traversed by BFS. It is worth noting that

E
⊕(�)
1

T=ID
V is for computing E · V, whereas E

⊕(�)
1

F=ID
V is for com-

puting ET · V. Here, to deal with the semiring for computing BFS,
the multiplication � and the addition ⊕ can be defined as ∗ and
max. In other words, if vi is visited and there is an edge from
vj to vi, then vj’s value should be 1 as 1 ∗ 1. There are multiple
nodes that have an edge to vj , the max is to take one of them over
the group-by attribute E.T . Note that in Eq. (5),← means assign-
ment, which updates the values in V (union-by-update) rather than
inserting new tuples into V .

In a similar fashion, Connected-Component can be computed.
Here, in a graphG, we show that all nodes in a connected-component
are with the same vw value. In order to do so, we have a relation
V , where the vw value is the ID of the tuple in V , initially. By the
following relational algebra,

V ← ρV (E
min(vw∗ew)

1
F=ID

V) (6)

in the resulting relation V , a connected component is determined
by a unique value, which is the smallest ID of the nodes in the same
connected component.

We show the relational algebra for two shortest distance algo-
rithms. One is the Bellman-Ford algorithm to compute the single
source shortest distances, and the other is the Floyd-Warshall al-
gorithm to compute all source shortest distances. To implement
Bellman-Ford, initially, let V be a relation where the vw is 0 for
the tuple representing the source node to start, and∞ for the other

tuples. Here, vw value of a tuple indicates the distance from the
source node to itself.

V ← ρV (E
min(vw+ew)

1
F=ID

V) (7)

To implement Floyd-Warshall, the relational algebra is given as fol-
lows.

E ← ρE((E → E1)
min(E1.ew+E2.ew)

1
E1.T=E2.F

(E → E2)) (8)

Next, we show the relational algebra for computing PageRank,
Random-Walk-with-Restart, SimRank, and HITS. The relational
algebra for PageRank is given below.

V ← ρV (E
f1(·)
1

T=ID
V) (9)

Here, f1(·) is a function to calculate c∗sum(vw∗ew)+(1−c)/n,
where c is the damping factor and n is the total number of tuples
in V . Note, vw ∗ ew is computed when joining the tuples from E
and V , regarding �, and the aggregate function sum is computed
over groups, given vw ∗ ew computed, along with other variables
in f1(·), regarding ⊕. Consider Random-Walk-with-Restart. Let
P (ID, vw) be a relation, where a non-zero ew value indicates its
probability of the corresponding node to restart.

V ← ρV (ΠV.ID,f2(·)+(1−c)∗P.vw(E
f2(·))
1

S.T=ID
V) 1

V.ID=P.ID
P)

(10)
Here, f2(·) is a function of c∗sum(vw∗ew), since Random-Walk-
with-Restart is the general case of PageRank.

R1 ← ρK(E
sum(E.ew∗K.ew)

1
E.T=K.T

K)

R2 ← ρK(R1

sum(R1.ew∗E.ew)
1

R1.F=E.T
E) (11)

K ← ΠR2.F,R2.T,max((1−c)∗R2.ew,I.ew)(R2 1
R2.T=I.T
R2.F=I.F

I)

For SimRank, let I(F, T, ew) be a relation, where ew = 1 if
F = T , and otherwise 0. Let K(F, T, ew) be I initially. It can
be computed by Eq. (11). We discuss HITS below in detail. Let
H(ID, h, a) be a relation, where h and a are the hub and authority
value of the ID. Initially, all the values of h and a are 1.

Hh ← ΠID,hH

Ra ← ρID,a(Hh
sum(h∗ew)

1
ID=T

E)

Rh ← ρID,h(Ra
sum(a∗ew)

1
ID=F

E) (12)

Rha ← ΠRa.ID,h,a(Ra 1
Ra.ID=Rh.ID

Rh)

Rn ← ρnh,na(Gsum(h∗h),sum(a∗a)Rha)

H ← ρH(ΠID,h/sqrt(nh),a/sqrt(na)(Rha ×Rn)

Here, we first projectHh which is a relation keeping the hub values
in the previous iteration. With Hh, we compute the current author-
ity values, Ra, in this iteration. And we compute the current hub
values, Rh, using Ra computed. Next, we combine the authority
values and hub values computed into a single table Rha. Finally,
we updateH by the newly computed authority and hub values after
normalization. Note that Rn is a relation with a single tuple for the
normalization purpose.

Below, we show how to support TopoSort (Topological Sorting)
for DAG (Directed Acyclic Graph) using anti-join. To compute
TopoSort, we assign a level L value to every node. For two nodes,

1170

u and v, if u.L < v.L, then u < v in the TopoSort; if u.L = v.L,
then either u < v or v < u is fine, since the TopoSort is not unique.
Let Topo(ID,L) be a relation that contains a set of nodes having
no incoming edges with initial L value 0. The initial Topo can
be generated by ΠID,0(V

_
nID=E.T E). In the recursive part, it is

done by several steps.

Ln ← ρL(Gmax(L)+1Topo)

V1 ← V
_
n

V.ID=T.ID
Topo

E1 ← ΠE.F,E.T (V1 1
ID=E.F

E) (13)

Tn ← ΠID,L(V1

_
n

V1.ID=E1.T
E1)× Ln

Topo ← Topo ∪ Tn

Here, first, we compute the L value to be used for the current iter-
ation, which is the max L value used in the previous iteration plus
one. It is stored in Ln. Next, we remove those nodes that have
already been sorted by anti-join and obtain V1. With V1 ⊆ V , we
obtain the edges among nodes in V1 as E1. Tn is the set of nodes
that are sorted in the current iteration. Finally, we get the new Topo
by union of the previous Topo and the newly sorted Tn. It repeats
until Tn is empty.

Table 2 shows some representative graph algorithms that can
be supported by the 4 operations including MM-join, MV-join,
anti-join and union-by-update. As a summary, MV-join together
with union-by-update can be used to implement PageRank, weakly
Connected-Component, HITS, Label-Propagation, Keyword-Search
and K-core, whereas MM-join together with union-by-update can
be used to support Floyd-Warshall, SimRank and Markov-Clustering.
The anti-join serves as a selection to filter nodes/edges which are
unnecessary in the following iterations. It is important to note
that anti-join is not only for efficiency but also for the correctness.
Equipped with anti-join, TopoSort is easy to be implemented. The
combination of MV-join and anti-join support Maximal-Independent-
Set and Maximal-Node-Matching.

We discuss the efficiency of supporting graph algorithms. The
efficiency is closely related to the behaviors of the graph algorithms
in every iteration. In general, there are groups of graph algorithms.
One is always-active and one is path-oriented (or graph traversal).
First, for the always-active algorithms, a node, v, needs to compute
its own value using the nodes in its neighbor, and all nodes in a
graph need to do so iteratively. Such algorithms include PageR-
ank, HITS, Maximal-Independent-Set and Label-Propagation, for
example. Here, the time complexity in one iteration in such algo-
rithms is in O(m+ n). In RDBMSs, a hash join together with ag-
gregation can be used to support such algorithms in every iteration
and possibly achieve the similar performance. Second, for the path-
oriented algorithms, an algorithm focuses on a specific local sub-
graph in an iteration, and such a local subgraph changes in different
iterations. Take reachability query as an example, which is to find
whether a node is reachable by another and can be done by either
BFS or DFS. It only needs O(m+ n) to finish the overall comput-
ing, but it needs to perform join iteratively in RDBMSs. RDBMSs
cannot support such path-oriented algorithms well in general. To
address it, there are some techniques. In [41], several SQL level op-
timizations are discussed in Teradata, among them one is early se-
lection. In [59], some labeling/indexing approaches are discussed.
In addition, new efficient join processing in-parallel/on-cloud and
new storage techniques have been recently studied, which can fur-
ther improve the efficiency. It is important to note that RDBMSs
are capable of handling large datasets when they cannot be easily
handled in main memory.

Graph Algorithm Aggregation linear nonlinear
TC [17] – 3 3

BFS [17] max 3

Connected-Component [48] min/max 3

Bellman-Ford [17] min 3

Floyd-Warshall [17] min 3

PageRank [36] sum 3

Random-Walk-with-Restart [36] sum 3

SimRank [28] sum 3

HITS [36] sum 3

TopoSort [31] – 3

Keyword-Search [13] max 3

Label-Propagation [46] count 3

Maximal-Independent-Set [40] max/min 3

Maximal-Node-Matching [43] max/min 3

Diameter-Estimation [32] – 3

Markov-Clustering [58] sum 3

K-core [37] count 3

K-truss [45] count 3

Graph-Bisimulation [27] – 3

Table 2: Graph Algorithms

5. XY-STRATIFIED
As discussed in Section 3, SQL’99 supports stratified negation in

recursion, which means it is impossible to support graph processing
that needs the functions beyond stratified negation. Recall that the
4 operations are not monotone and are not stratified negation. To
address this issue, we discuss relational algebra operations in the
context of DATALOG. The rules for the relational algebra are shown
below, where the rules for selection, projection, Cartesian product,
union, θ-join are given in [57].

Selection σPR where P is the predicate used in the selection σ
over the relation R. The DATALOG rule is given in Eq. (14).

R′(X1, ...Xn) :– R(X1, ...Xn), P (14)

Projection ΠX(R) where X is a set of attributes projected from
the relation R(Y) for X ⊆ Y .

R′(X) :– R(Y) (15)

Cartesian productR×S whereR(X) and S(Y) are two relations
over X and Y attributes such that X ∩ Y = ∅.

R′(X,Y) :– R(X), S(Y) (16)

Union R ∪ S where R(X) and S(X) are two relations over X
attributes.

R′(X) :– R(X)

R′(X) :– S(X) (17)

θ-Join R 1θ S where θ is the join condition between two relations
R(X) and S(Y). Here, for simplicity, we assume that X and Y
are two sets of attributes such that X ∩ Y = ∅.

R′(X,Y) :– R(X), S(Y), θ (18)

MV-Join and MM-join are A
⊕(�)
1

T=ID
C and A

⊕(�)
1

A.T=B.F
B, respec-

tively. The DATALOG rules for MV-Join and MM-join are given in
Eq (19) and Eq (20).

R
′
(Y,W) :– A(X,Y,W1), C(X,W2),W = ⊕(W1 �W2) (19)

R
′
(X,Y,W) :– A(X,Z,W1), B(Z, Y,W2),W = ⊕(W1 �W2) (20)

1171

Difference (R− S) and Anti-join (R
_
n S) are given in Eq. (21).

R′(X,Y) :– R(X,Y),¬S(X,−) (21)

Union by Update (R] S). The rules are given in Eq. (22).

R′(X,W1) :– R(X,W1),¬S(X,−)

R′(X,W2) :– S(X,W2) (22)

As union, selection, projection, Cartesian product and θ-joins are
monotone, recursive queries using such operations are stratified.
But, MM-join, MV-join, anti-join, and union-by-update are not
monotonic. The approach we take is based on XY-stratification [62,
63, 11]. An XY-stratified program is a special class of locally strat-
ified programs [24]. As proposed by Zaniolo et al. in [62], it is a
syntactically decidable subclass for non-monotonic recursive pro-
grams to handle negation and aggregation, and it captures the ex-
pressive power of inflationary fixpoint semantics [9].

We discuss the locally stratified programs using Example 4.8
given in [24]. Consider a DATALOG program with two rules, namely,
(r1) p(a) :- ¬p(c) and (r2) p(b) :- ¬p(c). This DATALOG pro-
gram is not stratified since there is negation in a cycle in the cor-
responding dependency graph for this DATALOG program. Note
that a predicate can be treated as a relation. The locally stratified
program is a fine-grained version which considers stratification at
the level of ground atoms rather than at the level of predicates. By
treating the single predicate p over a, b, and c, as three different
predicates, pa, pb, and pc, the above DATALOG program becomes
(r1’) pa :- ¬pc and (r2’) pb :- ¬pc, which is stratified. By Theorem
10.8 in [63], every locally stratified program has a stable model
that is equal to the result of the iterated fixpoint computation. How-
ever, the problem is that there is no simple way to decide whether
a DATALOG program is locally stratified in general because the lo-
cally stratified is to deal with atoms instead of predicates, which
cannot be easily checked at compile-time.

An XY-program is a locally stratified DATALOG program that
can be checked at compile-time by syntax. The main idea be-
hind XY-program for dealing with possible infinite atoms is to
use temporal (or stage) arguments over a discrete temporal do-
main: {0, 1, 2, · · · }, that is represented by an initial number 0 and
a successor function s(i) = i + 1 for a number i in the temporal
domain. Given the successor function s(·), any number i can be
represented by repeating s(0) i times in the form of s(s(· · · s(0))).
Here, consider a predicate pwith a temporal argument T , for exam-
ple, p(s(T)) :- p(T), where for simplicity p only has one temporal
argument. By combining the predicate name p with the tempo-
ral argument, XY-program can represent an infinite possible set of
atoms, p0, p1, p2, · · · , and whether a DATALOG program is XY-
stratified can be checked at compile-time by syntax. For easy ref-
erence, we give XY-program definition in Appendix.

There is a simple test to check whether an XY-program P is
XY-stratified. This is done by transforming P to a bi-state version
of P , denoted as Pbis, where all temporal arguments are removed.
An XY-program P is XY-stratified if its bi-state version Pbis is
stratified [63]. In addition, P is locally stratified if P is an XY-
stratified program. We give the procedure on how to transform an
XY-program P to its bi-state program Pbis following the discus-
sion in [63]. For each rule r in P , it conducts the 3 steps. First, it
removes all the recursive predicates in r that have the same tempo-
ral argument as the head of r with the distinguished prefix new_.
Second, it removes all other occurrences of recursive predicates in
r with the distinguished prefix old_. Third, it removes the temporal
arguments from the recursive predicates. For an XY-stratified DAT-
ALOG program, it computes fixpoint for each stratum with temporal

with R as
select · · · from R1,j , · · · (Q1)
union all
· · ·
union all
select · · · from Ri,j , · · · (Qi)
union all
· · ·
union all
select · · · from Rn,j , · · · (Qn)

Figure 2: The general form of recursive with in SQL’99

argument T before it computes fixpoint for each stratum with tem-
poral argument s(T). It repeats until the fixpoint of the DATALOG
program is reached.

In this paper, we extend the with clause in SQL’99, “with R as
〈 R initialization 〉 〈 recursive querying involving R 〉”, to support
a class of recursive query that can be used to support many graph
analytical tasks. To minimize such extension, we restrict that the
with clause only has one recursive relation R, and there is only
one cycle in the corresponding dependency graph. The extension
is to allow negation as well as aggregation in a certain form for
a recursive query Q. In the following discussion, we focus on “〈
recursive querying involving R 〉”. We give a theorem to show that
the recursive queries using the 4 operations discussed can have a
fixpoint by which a unique answer can be obtained.

Theorem 5.1: A recursive query Q with a single recursive rela-
tion, specified by the relational algebra operations, selection, pro-
jection, Cartesian product, union, θ-join, MM-join, MV-join, anti-
join (difference), and union-by-update, is XY-stratified if there is
only one cycle in the corresponding dependency graph.

The proof sketch is given in the Appendix.

6. TO ENHANCE THE WITH CLAUSE
In this section, we present our approach to enhance with clause.

The general form of the recursive with clause in SQL’99 is shown
in Fig. 2. It consists of several select statements connected by
union all. Here, the i-th select is indicated as the i-th SQL query
Qi in which it accesses several relations as Ri,j . It is important to
mention that such Ri,j may appear in a nested SQL query in Qi.
Among all such Qi queries, for 1 ≤ i ≤ n, there is a specific k
such that all queries Qi, for i < k, are for initialization and do not
refer to the recursive relationR amongRi,j , and all queriesQi, for
i ≥ k, are for recursive querying involving the recursive relation
R and refer to R among Ri,j . Below, we call Qi an initial sub-
query if it does not refer to R, and call Qi a recursive subquery if
it does refer to R. We focus on the recursive subqueries that refer
to the recursive relation R. We enhance the SQL’99 with clause as
follows. (1) To support negation/aggregation, we support anti-join,
MV-join, and MM-join in a recursive query Qi. (2) We support
union-by-update in addition to union all. (3) For each query Qi,
we support computed by, which allows us to specify how a rela-
tion is computed by a sequence of queries. By allowing it, we can
express complex queries in an easy way. (4) We support nonlinear
recursion as well as mutual recursion. (5) Like some RDBMSs, we
control the looping.

We explain why nonlinear/mutual recursion is allowed in this
work. From the viewpoint of SQL, it is understood that linear re-
cursion can support many applications, and it seems unnecessary
to adopt nonlinear recursion, which is hard to implement in order
to achieve high efficiency. From the viewpoint of supporting graph
algorithms, as shown in Table 2, many graph algorithms need to be
supported using nonlinear recursion. In other words, on one hand,
it is to support certain queries efficiently in RDBMS, and on the

1172

1. with
2. P (ID,W) as (
3. (select R.ID, 0.0 from R)
4. union by update ID
5. (select S.T , c ∗ sum(W ∗ ew) + (1− c)/n from P , S
6. where P.ID = S.F group by S.T)
7. maxrecursion 10)
8. select ID, W from P

Figure 3: The recursive with for PageRank by ours

other hand, it is to support as many as possible graph algorithms
in RDBMS. In fact, the recursive queries have not been discussed
since SQL’99. In this work, we take the position to support a large
pool of graph algorithms and we will study how to support non-
linear recursion by exploring the possibility of utilizing the graph
algorithms/implementation as an access method inside RDBMSs.

In the following, we highlight the main points but omit the syntax
details.

MM-join and MV-join: An MM-join/MV-join is supported by an
SQL query, which joins two relations followed by group by and

aggregation. Take MM-join, A
⊕(�)
1

A.T=B.F
B, as an example. This is

supported by the following SQL.

select A.F , B.T , ⊕(�) from A, B
where A.T = B.F group by A.F , B.T

Anti-join: There are several ways to support anti-join using not in,
not exists, and left outer join. We show how to support anti-join
by left outer join. Suppose there are two relations R(ID) and
S(ID), the anti-join, R

_
n S can be supported by “select ID from

R left outer join S onR.ID = S.ID where S.ID is null”. In addi-
tion, several RDBMSs like Oracle uses its internal implementation
of anti-join as a way to support not in. In other words, when an
SQL looks like “select * from R where R.A not in (select · · ·)”,
the RDBMS will use its internal anti-join to execute this query in-
stead.

Union-by-update is to update the values held in the recursive re-
lation R. There are restrictions on when union-by-update is used.
There is only one recursive queryQi in the with clause, because the
semantics is undefined when multiple union-by-update and union
are used together. Consider the case when two union-by-update are
used. It is unclear how to update a value since the new value cannot
be uniquely determined. Then, consider when union-by-update is
used with union all. It is unclear what it means in doing so. We al-
low two ways to specify union-by-update: with/without attributes.
With attributes given, it specifies that two tuples in the previous
iteration and the current iteration are identical if the values of the
attributes specified are identical. Without attributes, it is to replace
the previous recursive relation R by the currently generated result
as a whole.

Fig. 3 shows our enhanced with to support PageRank (Eq. (9)).
The recursive relation is given as P (ID,W). The initialization is
line 3. Here, the initialW attribute values are zero. The MV-join is
specified by line 5-6, and the union-by-update is specified in line 4,
where it specifies the attribute ID to check whether two tuples are
identical. Alternatively, the attribute ID (line 4) can be omitted.
Without ID attribute, it is to replace the previous recursive relation
P by the one newly generated. The recursive relation P , specified
by the with clause, is generated by the SQL query given in line 8.

The implementation of union-by-update by SQL is given below.
Suppose we need to update the values in a relation, V (ID, vw),
by the values in another relation, using union-by-update (V] V ′).
One way is to use the merge statement introduced in recent SQL
(https://en.wikipedia.org/wiki/Merge_(SQL)). We illustrate its syntax in
brief.

merge V using V ′ on ID
when matched then update set V.vw = V ′.vw
when not matched then

insert (V.ID, V.vw) values (V ′.ID, V ′.vw)

Here, merge is to insert/update tuples in the relation V by the re-
lation V ′. The attribute ID appears after “on” is the condition to
check if two tuples from V and V ′ are matched. The following
specifies the actions when tuples are matched and not matched. We
omit the details. Another implementation is to use outer join [30]
as follows.

select coalesce(V.ID, V ′.ID) as ID,
coalesce(V ′.vw, V.vw) as vw

from V full outer join V ′ on ID

The resulting relation by the full outer join is in the form of (V.ID,
V.vw, V ′.ID, V ′.vw). All V tuples and V ′ tuples appear in the
result even if a tuple in one fails to match any tuple in the other.
If a tuple t ∈ V cannot match any t′ ∈ V ′, the (V ′.ID, V ′.vw)
value in t is null. If a tuple t′ ∈ V ′ cannot match any t ∈ V , the
(V.ID, V.vw) value in t′ is null. Here, coalesce(x, y) is a function,
supported by all the 3 RDBMSs, which takes x value if it is non-
null, otherwise y value.

Computed by: Recall that in SQL, a with statement can be ex-
pressed using multiple “as” shown below.

with R1 as select · · · from R1,j , · · ·
· · ·
Ri as select · · · from Ri,j , · · ·

In brief, it allows relations used in a select for Ri to refer to other
relations used in another select for Rj that appears before Ri. In
other words, such references must be forwarded, which means that
it cannot lead to recursion. In addition, the relations defined using
as cannot be unioned using union all, since it mixes “as” to define
relations and “union all” to do query. However, in many cases,
since graph processing is rather complicated, on one hand, it needs
to use a sequence of SQL statements to query; on the other hand, it
needs to use union all or union-by-update. In this work, we propose
to separate “as” which is to define relations and “union all” which is
to query by introducing a computed by clause as shown in Fig. 4.
As shown Fig. 4, in the main body of the enhanced with, either
union all or union-by-update is allowed to union subqueries, and
no as is allowed. When union-by-update is used, it cannot be used
more than once, and cannot be used with other union all together
as discussed. By computed by, it specifies a collection of cycle-
free relations using as for computing relationsRi,j used in a single
Qi in the main body of with locally. We allow recursion on R by
recursive query Qi. The restriction is that the queries inside the
computed by part ofQi must be cycle free, as it can be proved that
it is XY-stratified. This condition can be relaxed. But it is beyond
the focus of this work. The with statement for TopoSort (Eq. (13))
is shown in Fig. 5.

Nonlinear/Mutual Recursion: We support nonlinear and mutual
recursion in the enhanced with clause. Here, Floyd-Warshall is an
example of nonlinear recursion (Eq. (8)), which needs to be imple-
mented as “select * from E as E1, E as E2, · · · ”. Some graph
processing tasks need nonlinear recursion, and a nonlinear recur-
sion is XY-stratified by Theorem 5.1 since renaming (ρ) does not
violate XY-stratification. In addition, nonlinear queries are easy to
understand and can converge faster, whereas it is difficult to im-
plement efficiently. The efficiency issues can be addressed by ex-
ploring if some nonlinear recursion needed in its limited form can

1173

with R as
select · · · from R1,j , · · · computed by · · · (Q1)
union all
· · ·
union all
select · · · from Ri,j , · · · computed by · · · (Qi)
union all
· · ·
union all
select · · · from Rn,j , · · · computed by · · · (Qn)

Figure 4: The general form of the enhanced recursive with

1. with
2. Topo(ID,L) as (
3. (select ID, 0 from V
4. where ID not in select E.T from E)
5. union all
6. (select ID,L from Tn

7. computed by
8. Ln(L) as select max(L) + 1 from Topo;
9. V1 as
10. select V.ID from V
11. where ID not in select ID from Topo;
12. E1 as
13. select E.F , E.T from V1, E
14. where V1.ID = E.F ;
15. Tn as
16. select ID, L from V1, Ln

17. where ID not in select T from E1;))
18. select from Topo;

Figure 5: The recursive with for TopoSort

be linearized [64], which we leave it as our future work. For mu-
tual recursion, even it is allowed by SQL’99, none of the RDBMSs
support it. We show the way of supporting HITS following the
example given https://www.youtube.com/watch?v=0n9kScLFyIo.

with recursive
Hub(· · ·) as select · · · from Author · · ·
Author(· · ·) as select · · · from Hub · · ·

select ∗ from Hub;

Some observations can be made. First, to deal with mutual recur-
sion for two relations to refer to each other, the with statement is
not written as “with (recursive) R” for a specific single recursive
relation R. Second, the two relations involved in mutual recur-
sion, such as Hub and Author, are defined using as followed by
select, and refer to each other mutually. Such references are not
all forwarded, and cannot be supported by the RDBMSs. We take a
different approach. (i) We use a single recursive relation in the with
statement. (ii) To deal with mutual recursion, instead of letting two
relations, sayHub andAuthor, to refer to each other mutually, we
get a relationHub′ that contains tuples ofHub in the previous iter-
ation, compute the current Author using Hub′, and then compute
the current Hub using the current Author. The with statement for
HITS (Eq. 12) is shown in Fig. 6.

Looping control: In general, it is difficult to decide whether a re-
cursive query will terminate. The following simple recursive query

with R(n) as ((select values(0)) union all (select n+ 1 from R))

leads to an infinite recursion in PostgreSQL. We adapt maxrecursion
which is used in SQL-Server [5] to allow users to limit the number
of iterations by setting the query hint maxrecursion (between 0 to
32,767).

With vs Enhanced With: By SQL’99, negation including group by
& aggregation is not allowed in the with clause. Therefore, none
of the 4 operations can be allowed by SQL’99. Some RDBMSs
(e.g., PostgreSQL and Oracle) support partition by. Like group by,
partition by is used to divide tuples into groups, and compute ag-
gregation for every group. Unlike group by, partition by does it

1. with
2. H(ID, h, a) as (
3. (select ID, 1.0, 1.0 from V)
4. union by update
5. (select ID, h/sqrt(nh), a/sqrt(na)
6. from Rha, Rn

7. computed by
8. Hh as select ID, h from H;
9. Ra(ID, a) as select ID, sum(h ∗ ew) from Hh, E
10. where H.ID = E.T
11. group by E.F ;
12. Rh(ID, a) as select ID, sum(a ∗ ew) from Ra, E
13. where Ra.ID = E.F
14. group by E.T ;
15. Rha as select Ra.ID, h, a from Ra, Rh

16. where Ra.ID = Rh.ID;
17. Rn(nh, na) as select sum(h ∗ h), sum(a ∗ a)

from Rha))
18. select from H;

Figure 6: The enhanced recursive with for HITS

for every tuple in a group, and does not result a single tuple for a
group. By partition by & aggregation, it can support some graph
algorithms (e.g., Bellman-Ford). But, it needs to keep the result
of a tuple in every iteration using an additional attribute to indi-
cate the value of a tuple in a specific iteration (e.g., L + 1 used to
compute PageRank in Fig. 9), because it cannot delete tuples by
the constraint on negation. The cost is that the number of tuples
increases exponentially in iterations. PostgreSQL allows distinct
along with partition by & aggregation and can compute PageRank
(Fig. 9). With distinct, the number of tuples increases linearly in
iterations. The cost of computing limited graph algorithms is too
high. Note that distinct is a kind of negation, there is no reported
study why it can be allowed, even though it only removes dupli-
cates. By with+, we support the 4 new operations which cannot be
used in with, where union-by-update is a powerful operation that
can be used to update values directly in iterations. In addition, in
with+, we support computed by, which makes it easy to support
graph algorithms (e.g., HITS). Note that DFS can be supported in
an indirect way by with/with+ as given in [7].

The implementation: We sketch how to support recursive queries
using the enhanced with over the RDBMSs. We process a recursive
query, Q, as given in Fig. 4. First, for each subquery Qi used
in Q including those defined by the computed by statement, we
construct a local dependency graph Gi. The graph Gi constructed
must be cycle free. We ensure that it is XY-stratified. Second, we
create a PSM (Persistent Stored Model) in the recent SQL standard.
With PSM, we create a unique procedureFQ for the recursive query
Q to be processed, as illustrated below.

create procedure FQ (
declare C1, · · · , Ci, · · · ;
create table Ri,j for all tables defined by as in a subquery Qi;
create SQL statement to compute the initial R by union of
all initial subqueries;
loop

insert into Ri,j select · · · for every Ri,j used in Qi;
compute condition Ci for each recursive subquery Qi;
if all Ci for the recursive subqueries are false then exit
compute the recursive relation R for the current iteration;
union the current R with the previous R computed;

end loop)

In the procedure, FQ, first we declare variablesC1, · · · , Ci, · · · for
every subquery Qi, which are used to check the condition to exit
from the looping. Second, we create all the tables needed for the
relations defined by as in the computed by statements. Third, we
include SQL statements to compute the initial recursive relation R.

1174

Fourth, we create a looping. In the looping, in every iteration, we
use an insert to compute Ri,j , and use an SQL to check whether
a Qi is empty. Note that different systems use different syntax to
do it. For example, in Oracle, it can be written as “select count (*)
Ci from · · · ” for Qi, where Ci is an integer variable declared. If
the resulting relation is empty, Ci = 0. By using such variables
declared, we can determine when it exits from the looping. When
the condition does not hold, the recursive relation computed in this
iteration will be unioned with the one computed in the previous
iteration by either union all or union-by-update. With the procedure
defined, we can run the statements in the procedure FQ by issuing
“call FQ”. The algorithm is given in Algorithm 1 in the Appendix.

7. PERFORMANCE STUDIES
We report our performance studies on a PC with Intel Core i7-

4770 (3.40 GHz) and 32GB RAM running Linux CentOS 6.7 64bit.
We tested the enhanced with in 3 RDBMSs: Oracle (11gR2 Enter-
prise Edition) [6], IBM DB2 10.5 Express-C [4], and PostgreSQL
9.4 [7]. For Oracle, we enable the Oracle Auto Memory Manage-
ment (AMM) by setting memory_target and memory_max_target
to 24GB, following Oracle recommendation to use 2/3 main mem-
ory. For PostgreSQL, we enable the non-durable setting and adjust
the following key parameters (shared_buffers = 8GB, temps_buffers
= 2GB and work_mem = 512M). Here, non-durable enabled re-
duces the overhead of durability by allowing the risk of data loss.
For DB2, self_tuning_mem is activated, and database_memory is
set as automatic, which is similar to AMM supported by Oracle.

Graph Algorithms: The 10 graph algorithms implemented by the
enhanced with statement include the single source shortest path
(SSSP) by Bellman-Ford (Eq. (7)), weakly Connected-Component
(WCC) (Eq. (6)), PageRank (PR) (Eq. (9)), HITS (HITS) (Eq. (12)),
TopoSort (TS) (Eq. (13)), as well as K-core (KC) [37], Maximal-
Independent-Set (MIS) [40], Label-Propagation (LP) [46], Maximal-
Node-Matching (MNM) [43], Keyword-Search (KS) [13]. We briefly
discuss how to process KC, MIS, MNM, LP, and KS. For KC, we
let E′ be the edge relation E initially. In every iteration, (1) we
obtain V ′ with nodes whose degree is > k, (2) we compute E′ if
u can reach v via w for those nodes in V ′. The result is obtained
when E′ cannot be changed. In testing, k is set to 10 for the dense
graph Orkut and 5 for the others. MIS is the random-priority par-
allel algorithm [40]. In each iteration, the algorithm repeats three
steps. (1) each node v generates a real number r(v) in [0, 1] ran-
domly and sends it to its neighbors by join toE. (2) the node v with
smallest r(v) among their neighbors is picked up and removed into
I . (3) the neighbors of I and associated edges are removed from
the graph. Note that RDBMSs have a Rand function to generate a
random number. We repeat 10 times to report the average time. For
MNM, each node collects the weight of its neighbors first. Among
these nodes, the one with maximum weight is chosen for this node.
If two nodes choose each other, they form a pair of matching, and
they will be excluded in the next iteration. This algorithm stops if
no matching pairs are found. For LP, in every iteration, each node
collects the label of its neighbors, finds the label which has the
maximum count, and uses it as its new label. For KS, it finds the
roots of Steiner trees, for a given keyword search query. Initially,
each node generates an indicated vector (composed by 0 or 1) for
itself. In every iteration, each node collects the indicated vector
of its neighbors and updates its indicated vector by logic pair-wise
OR. When the iteration reaches a given depth, the nodes whose in-
dicated vector without 0 elements are reported as the roots. In our
testing, we search for 3 labels with depth 4. For PR, HITS and LP,
the number of iterations is fixed to 15.

Graphs |V | |E| Diameter Avg. Degree
Youtube (YT) 1,134,890 2,987,624 20 5.27
LiveJournal (LJ) 3,997,962 34,681,189 17 17.35
Orkut (OK) 3,072,441 117,185,083 9 76.22
Wiki Vote (WV) 7,115 103,689 7 29.14
Twitter (TT) 81,306 1,768,149 7 51.69
Web Google (WG) 875,713 5,105,039 21 11.66
Wiki Talk (WT) 2,394,385 5,021,410 9 4.19
Google+ (GP) 107,614 13,673,453 6 254.12
U.S. Patent Citation (PC) 3,774,768 16,518,948 22 8.75

Table 3: The Real Datasets
Time (ms) Oracle DB2 PostgreSQL
update from – – 123,466
merge 187,030 178,079 –
full outer join 55,870 80,473 113,060
drop/alter 54,760 79,415 102,233

Table 4: union-by-update in Web Google

Datasets: We conducted testing using 9 real datasets, as shown in
Table 3. The datasets are obtained from SNAP (https://snap.stanford.
edu/data). In Table 3, the top 3 are undirected graphs and the remain-
ing 6 are directed graphs. An undirected graph is maintained as a
directed graph by including two directed edges for an undirected
edge. We randomly generate labels for nodes which are needed for
testing LP and KS. We also randomly generate a node-weight for
every node in a graph in the range of [0, 20], when node-weight is
needed for example in MNM.

7.1 Exp-1: Union-By-Update and Anti-Join
Union-by-update: We test 4 union-by-update implementations.
Two are to use merge and full outer join with function coalesce.
As PostgreSQL does not support merge until version 9.5+, we use
update from in testing PostgreSQL instead of merge, which up-
dates the tuples of one table by referencing tables in the from lists.
Oracle and DB2 do not support it since SQL does not support it.
In addition, a special way to support union-by-update is to replace
the relation in the previous iteration with the relation computed in
the current iteration. This can be done by drop a table and alter
table in SQL. We test union-by-update by performing PageRank in
15 iterations on two graphs, Web Google and U.S. Patent Citation.
Table 4 and Table 5 show the results. The full outer join outper-
forms merge, as it essentially does join instead of real update. The
update from clause is only supported by PostgreSQL. Different
from merge, the update from implementation does not check and
report duplicates in the source table, which shows the similar per-
formance as full outer join does. It is interesting to know that re-
placing the previous table by drop and alter shows the similar per-
formance as full outer join. In the following, we use full outer join
to support union-by-update.

Anti-Join: We test anti-join (
_
n) using 3 implementations, not in,

not exists and left outer join with “is null” condition. It is worth
noting that although not in is more intuitive to write than the other
two, their logics are not equivalent so that RDBMSs generate dif-
ferent query plans. Considering RO

_
n RI , where RO and RI

indicate the outer table used in the top SQL and the inner table
used in the nested SQL, respectively, since a nested SQL is needed.
Here, not exists and left outer join will generate the same query
plan. On the other hand, for not in, in PostgreSQL and DB2, its
query plan is scanning RO by filtering the tuples in RI . It is an
extension of the regular anti-join with building data structures for
sorting/hashing the null values. Oracle optimizer hints can con-
trol the specific query plan of NAAJ and anti-join. We test the
3 implementations of anti-join by processing TS on two graphs,
Web Google and U.S. Patent Citation. Table 6 and Table 7 show

1175

0

100

200

300

400

500

SSSP WCC KC PR HITS LP MIS MNM KS

Ti
m

e
(s

)

Oracle IBM DB2 PostgreSQL

(a) Youtube

0

500

1000

1500

2000

2500

3000

3500

SSSP WCC KC PR HITS LP MIS MNM KS

Ti
m

e
(s

)

Oracle IBM DB2 PostgreSQL

(b) LiveJournal

0

2000

4000

6000

8000

10000

12000

14000

>16000

SSSP WCC KC PR HITS LP MIS MNM KS

Ti
m

e
(s

)

Oracle IBM DB2 PostgreSQL

(c) Orkut
Figure 7: Testing 9 Graph Algorithms over 3 Undirected Graphs

0

10

20

30

40

50

SSSP WCC KC PR HITS LP MIS MNM KS TS

Ti
m

e
(s

)

Oracle IBM DB2 PostgreSQL

(a) Twitter

0

0.5

1.0

1.5

2.0

2.5

SSSP WCC KC PR HITS LP MIS MNM KS TS

Ti
m

e
(s

)

Oracle IBM DB2 PostgreSQL

(b) Wiki Vote

0

50

100

150

200

250

SSSP WCC KC PR HITS LP MIS MNM KS TS

Ti
m

e
(s

)

Oracle IBM DB2 PostgreSQL

(c) Web Google

0

100

200

300

400

SSSP WCC KC PR HITS LP MIS MNM KS TS

Ti
m

e
(s

)

Oracle IBM DB2 PostgreSQL

(d) Wiki Talk

0

300

600

900

1200

SSSP WCC KC PR HITS LP MIS MNM KS TS

Ti
m

e
(s

)
Oracle IBM DB2 PostgreSQL

(e) U.S. Patent Citation

0

100

200

300

400

>500

SSSP WCC KC PR HITS LP MIS MNM KS TS

Ti
m

e
(s

)

Oracle IBM DB2 PostgreSQL

(f) Google+
Figure 8: Testing 10 Graph Algorithms over 6 Directed Graphs

Time (ms) Oracle DB2 PostgreSQL
update from – – 643,965
merge 853,180 739,414 –
full outer join 281,060 386,573 430,066
drop/alter 298,300 366,032 429,696

Table 5: union-by-update in U.S. Patent Citation
Time (ms) Oracle DB2 PostgreSQL
not exists 31,190 76,747 74,594
left outer join 32,470 76,198 74,560
not in 32,050 76,297 78,792

Table 6: Antijoin in Web Google
the results. There are marginal differences among the 3 implemen-
tations. Both not exists and left outer join perform similarly and
outperform not in. In the following testing, we use left outer join
to support anti-join.

7.2 Exp-2: Graph Algorithms Testing
We conducted extensive testing using 10 graph algorithms over

9 large graphs. Fig. 7 shows the performance of the 9 algorithms
(without TopoSort) over 3 undirected graphs, and Fig. 8 shows the
performance of the 10 algorithms over 6 direct graphs. For Post-
greSQL, the results showed include the time needed to construct
indexes. We omitted the result for a graph algorithm if it fails to
finish in 5 hours. Overall, Oracle performs best, while DB2 outper-
forms PostgreSQL. This is because PostgreSQL does not generate
the optimal plan for temporary tables due to the lack of sufficient
statistical information.

The number of operations, such as join, aggregation, and union-
by-update, in an iteration, plays an important role. For example, in
an iteration PR executes 1 MV-join and 1 union-by-update, whereas
HITS executes 2 MV-joins, 1 union-by-update, 1 θ-join, and an
extra aggregation for normalization. HITS needs much time than
PR, as observed in Fig. 7, and Fig. 8. Also, the number of itera-
tions is an important factor in determining the performance. The
number of iterations needed by MNM has a significant variance in
testing, over different graphs. For U.S. Patent Citation (Fig. 8(e))
it ends after only one iteration. For Google+ (Fig. 8(f)), it needs
18 iterations which lead to a long running time. As a comparison,

Time (ms) Oracle DB2 PostgreSQL
not exists 87,030 152,814 178,693
left outer join 88,910 154,330 181,285
not in 88,870 156,524 204,712

Table 7: Antijoin in U.S. Patent Citation
MIS requires the similar number of iterations over different graphs,
and the average number 4-6. In addition, the system resources uti-
lization cannot be neglected. It is known that graph analytics are
CPU intensive work. Consider the graph algorithms over LiveJour-
nal (Fig. 7(b)), the CPU utilization ratio is 70%-80%. However,
the CPU utilization ratio for the same graph algorithms over Orkut
(Fig.7(c)) is only 40%-50%. Low CPU utilization indicates plenty
of system resources are spent on I/O, e.g., reading and writing data,
accessing indexes and logs. Note that, even though RDBMSs can
bypass the redo-log for temporary tables, it still needs to log. As
can be observed, if the whole graphs can be held in main memory,
it can achieve high efficiency.

8. CONCLUSION
To support a large pool of graph algorithms, we propose 4 oper-

ations, namely, MM-join, MV-join, anti-join and union-by-update,
that can be supported by the basic relational algebra operations,
with group-by & aggregation. Among the 4 operations, union-by-
update plays an important role in allowing value updates in itera-
tions. The 4 non-monotonic operations are not allowed to be used
in a recursive query as specified by SQL’99. We show that the 4
operations proposed together with others have a fixpoint semantics
based on its limited form, based on DATALOG techniques. In other
words, a fixpoint exists for the 4 operations that deal with negation
and aggregation. We enhance the recursive with clause in SQL and
conduct extensive performance studies by translating the enhanced
recursive with into SQL/PSM to process in RDBMSs. The testing
is done for 10 graph algorithms using 9 real graphs on Oracle, DB2,
and PostgreSQL. As future work, we will study the efficiency is-
sues and explore parallel processing techniques.

ACKNOWLEDGES: This work was supported by the Research Grants
Council of Hong Kong SAR, China, No. 14209314 and No. 14221716.

1176

9. REFERENCES
[1] https://github.com/dato-code/PowerGraph.
[2] http://socialite-lang.github.io.
[3] http://giraph.apache.org.
[4] IBM DB2 10.5 for linux, unix and windows documentation.

http://www.ibm.com/support/knowledgecenter/#!/SSEPGG_10.5.0/
com.ibm.db2.luw.kc.doc/welcome.html.

[5] Microsoft WITH common_table_expression.
https://msdn.microsoft.com/en-us/library/ms175972.aspx.

[6] Oracle database SQL language reference.
http://docs.oracle.com/cd/E11882_01/server.112/e41084/toc.htm.

[7] Postgresql 9.4.7 documentation. http://www.postgresql.org/files/
documentation/pdf/9.4/postgresql-9.4-A4.pdf.

[8] C. R. Aberger, S. Tu, K. Olukotun, and C. Ré. Emptyheaded: A
relational engine for graph processing. In Proc. o SIGMOD’16, 2016.

[9] S. Abiteboul, R. Hull, and V. Vianu. Foundations of Databases.
Addison-Wesley, 1995.

[10] G. Aranda-López, S. Nieva, F. Sáenz-Pérez, and
J. Sánchez-Hernández. Formalizing a broader recursion coverage in
SQL. In Proc. of PADL’13, 2013.

[11] F. Arni, K. Ong, S. Tsur, H. Wang, and C. Zaniolo. The deductive
database system LDL++. TPLP, 3(1), 2003.

[12] P. Barceló. Querying graph databases. In Proc. of PODS’13, 2013.
[13] G. Bhalotia, A. Hulgeri, C. Nakhe, S. Chakrabarti, and S. Sudarshan.

Keyword searching and browsing in databases using banks. In Proc.
of ICDE’02, 2002.

[14] Y. Bu, V. R. Borkar, M. J. Carey, J. Rosen, N. Polyzotis, T. Condie,
M. Weimer, and R. Ramakrishnan. Scaling datalog for machine
learning on big data. CoRR, abs/1203.0160, 2012.

[15] W. Cabrera and C. Ordonez. Unified algorithm to solve several graph
problems with relational queries. In Proc of AMW’16, 2016.

[16] J. Cohen, B. Dolan, M. Dunlap, J. M. Hellerstein, and C. Welton.
Mad skills: new analysis practices for big data. PVLDB, 2(2), 2009.

[17] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein.
Introduction to algorithms. MIT Press, 3 edition, 2009.

[18] J. Fan, A. Gerald, S. Raj, and J. M. Patel. The case against
specialized graph analytics engines. In Proc. of CIDR’15, 2015.

[19] S. J. Finkelstein, N. Mattos, I. Mumick, and H. Pirahesh. Expressing
recursive queries in SQL. ISO-IEC JTC1/SC21 WG3 DBL MCI,
(X3H2-96-075), 1996.

[20] J. Gao, R. Jin, J. Zhou, J. X. Yu, X. Jiang, and T. Wang. Relational
approach for shortest path discovery over large graphs. PVLDB, 5(4),
2011.

[21] J. Gao, J. Zhou, C. Zhou, and J. X. Yu. Glog: A high level graph
analysis system using mapreduce. In Proc. of ICDE’14, 2014.

[22] H. Garcia-Molina, J. D. Ullman, and J. Widom. Database Systems
The Complete Book. Prentice Hall, 2002.

[23] A. Ghazal, D. Seid, A. Crolotte, and M. Al-Kateb. Adaptive
optimizations of recursive queries in teradata. In Proc. of
SIGMOD’12, 2012.

[24] S. Greco and C. Molinaro. Datalog and Logic Databases. Morgan &
Claypool Publishers, 2015.

[25] H. He and A. K. Singh. Graphs-at-a-time: query language and access
methods for graph databases. In Proc. of SIGMOD’08, 2008.

[26] J. M. Hellerstein, C. Ré, F. Schoppmann, D. Z. Wang, E. Fratkin,
A. Gorajek, K. S. Ng, C. Welton, X. Feng, K. Li, et al. The madlib
analytics library: or mad skills, the sql. PVLDB, 5(12), 2012.

[27] M. R. Henzinger, T. Henzinger, P. W. Kopke, et al. Computing
simulations on finite and infinite graphs. In Proc. of FOCS’95, 1995.

[28] G. Jeh and J. Widom. Simrank: a measure of structural-context
similarity. In Proc. of SIGKDD’02, 2002.

[29] A. Jindal and S. Madden. Graphiql: A graph intuitive query language
for relational databases. In Proc. of BigData’14, 2014.

[30] A. Jindal, S. Madden, M. Castellanos, and M. Hsu. Graph analytics
using the vertica relational database. arXiv preprint arXiv:1412.5263,
2014.

[31] A. B. Kahn. Topological sorting of large networks. CACM, 5(11),
1962.

[32] U. Kang, C. E. Tsourakakis, A. P. Appel, C. Faloutsos, and
J. Leskovec. Hadi: Mining radii of large graphs. TKDD, 5(2), 2011.

[33] U. Kang, C. E. Tsourakakis, and C. Faloutsos. Pegasus: mining
peta-scale graphs. Knowledge and information systems, (2), 2011.

[34] J. Kepner and J. Gilbert. Graph Algorithms in the Language of
Linear Algebra. SIAM, 2011.

[35] L. Libkin, W. Martens, and D. Vrgoc. Querying graphs with data. J.
ACM, 63(2), 2016.

[36] C. D. Manning, P. Raghavan, H. Schütze, et al. Introduction to
information retrieval, volume 1. Cambridge University Press, 2008.

[37] D. W. Matula and L. L. Beck. Smallest-last ordering and clustering
and graph coloring algorithms. JACM, 30(3), 1983.

[38] R. R. McCune, T. Weninger, and G. Madey. Thinking like a vertex: A
survey of vertex-centric frameworks for large-scale distributed graph
processing. ACM Comput. Surv., 48(2), 2015.

[39] J. Melton and A. R. Simon. SQL: 1999: understanding relational
language components. Morgan Kaufmann, 2001.

[40] Y. Métivier, J. M. Robson, N. Saheb-Djahromi, and A. Zemmari. An
optimal bit complexity randomized distributed MIS algorithm.
Distributed Computing, 23(5-6), 2011.

[41] C. Ordonez. Optimization of linear recursive queries in sql. TKDE,
22(2), 2010.

[42] C. Ordonez, W. Cabrera, and A. Gurram. Comparing columnar, row
and array dbmss to process recursive queries on graphs. Information
Systems, 63, 2017.

[43] R. Preis. Linear time 1/2-approximation algorithm for maximum
weighted matching in general graphs. In Proc. of STACS’99, 1999.

[44] P. Przymus, A. Boniewicz, M. Burzańska, and K. Stencel. Recursive
query facilities in relational databases: a survey. In Proc. of
DTA/BSBT’10, 2010.

[45] L. Quick, P. Wilkinson, and D. Hardcastle. Using pregel-like large
scale graph processing frameworks for social network analysis. In
Proc. of ASONAM’12, 2012.

[46] U. N. Raghavan, R. Albert, and S. Kumara. Near linear time
algorithm to detect community structures in large-scale networks.
Physical Review E, 76(3):036106, 2007.

[47] R. Ramakrishnan and J. D. Ullman. A survey of deductive database
systems. J. Log. Program., 23(2), 1995.

[48] V. Rastogi, A. Machanavajjhala, L. Chitnis, and A. Das Sarma.
Finding connected components in map-reduce in logarithmic rounds.
In Proc. of ICDE’13, 2013.

[49] S. Salihoglu and J. Widom. Help: High-level primitives for
large-scale graph processing. In Proc. of Workshop on GRAph Data
management Experiences and Systems, 2014.

[50] J. Seo, S. Guo, and M. S. Lam. Socialite: Datalog extensions for
efficient social network analysis. In Proc. of ICDE’13, 2013.

[51] J. Seo, J. Park, J. Shin, and M. S. Lam. Distributed socialite: A
datalog-based language for large-scale graph analysis. PVLDB,
6(14), 2013.

[52] A. Shkapsky, M. Yang, M. Interlandi, H. Chiu, T. Condie, and
C. Zaniolo. Big data analytics with datalog queries on spark. In Proc.
of SIGMOD’16, 2016.

[53] A. Shkapsky, M. Yang, and C. Zaniolo. Optimizing recursive queries
with monotonic aggregates in DeALS. In Proc. of ICDE’15, 2015.

[54] A. Shkapsky, K. Zeng, and C. Zaniolo. Graph queries in a
next-generation datalog system. PVLDB, 6(12), 2013.

[55] S. Srihari, S. Chandrashekar, and S. Parthasarathy. A framework for
sql-based mining of large graphs on relational databases. In Proc. of
PAKDD’10, 2010.

[56] W. Sun, A. Fokoue, K. Srinivas, A. Kementsietsidis, G. Hu, and
G. Xie. Sqlgraph: An efficient relational-based property graph store.
In Proc. of SIGMOD’15, 2015.

[57] J. D. Ullman. Principles of Database and Knowledge Base Systems
(Vol I). Computer Science Press, 1988.

[58] S. M. van Dongen. Graph clustering by flow simulation. PhD Thesis,
University of Utrecht, 2000.

[59] H. Wei, J. X. Yu, C. Lu, and R. Jin. Reachability querying: An
independent permutation labeling approach. PVLDB, 7(12), 2014.

[60] P. T. Wood. Query languages for graph databases. SIGMOD Record,
41(1), 2012.

[61] K. Xirogiannopoulos, U. Khurana, and A. Deshpande. Graphgen:
exploring interesting graphs in relational data. PVLDB, 8(12), 2015.

1177

[62] C. Zaniolo, N. Arni, and K. Ong. Negation and aggregates in
recursive rules: the LDL++ approach. In Proc. of DOOD, 1993.

[63] C. Zaniolo, S. Stefano, Ceri, C. Faloutsos, R. T. Snodgrass, V. S.
Subrahmanian, and R. Zicari. Advanced database systems. Morgan
Kaufmann, 1997.

[64] W. Zhang, C. T. Yu, and D. Troy. Necessary and sufficient conditions
to linearize double recursive programs in logic databases. ACM
Trans. Database Syst., 15(3), 1990.

[65] Y. Zhang, M. Kersten, and S. Manegold. Sciql: Array data processing
inside an rdbms. In Proc. of SIGMOD’13, 2013.

Appendix

Algorithm 1 WITH+
Input: A recursive SQL query, Q, using the enhanced with (Fig. 4)
Output: SQL/PSM to execute
1: for each subquery Qi in the enhanced with do
2: create a local dependency graph Gi for the relations used in Qi,

where the computed by must be cycle free;
3: end for
4: create a SQL/PSM procedure to process Q;
5: call the SQL/PSM function;

F T ew

1 1 a11
1 2 a12
2 1 a21
2 2 a22

(a) Relation A

F T ew

1 1 b11
1 2 b12
2 1 b21
2 2 b22

(b) Relation B

ID vw

1 c1
2 c2

(c) Relation C

Table 8: The relation representations

1. with
2. P (ID,W,L) as (
3. (select V.ID, 0.0, 0 from V)
4. union all
5. (select distinct E.T ,
6. c ∗ (sum(P.W ∗ ew) over(partition by E.T))
7. +(1− c)/n, P.L + 1
8. from P , E where P.ID = E.F and P.L < 10))
9. select ID, W from P where L = 10

Figure 9: The recursive with for PageRank by PostgreSQL

Monotonicity: Consider any operation as a function f(·) which
generates a relation over relations R1, R2, · · · , Rn such as f(R1,
R2, · · · , Rn). Also, consider two assignments of f(·), namely,
f(R(1)) and f(R(2)), for R(1) = R

(1)
1 , R

(1)
2 , · · · , R(1)

n and and
R(2) = R

(2)
1 , R

(2)
2 , · · · , R(2)

n . The function f(·) is monotone if
f(R(1)) ⊆ f(R(2)) for any R(1) ⊆ R(2). Here R(1) ⊆ R(2)

means R(1)
i ⊆ R

(2)
i for 1 ≤ i ≤ n.

Definition 9.1: (Dependency Graph) A dependency graph is an
edge-labeled directed graph G = (V,E) for a recursive query Q
specified by the recursive with clause. Here, V is a set of nodes,
V = {v1, v2, · · · }, representing relations in Q as follows. (a) A
node represents the recursive relation called the recursive-node. (b)
Every select clause has a corresponding node called a select-node.
(c) Every base relation or its alias appearing in the from clause
has a corresponding node, called a base-node. E is a set of edges.
(i) There is an edge from every top select-node to the recursive-
node. Note that a select-node may represent a nested SQL in the
with clause. (ii) There is an edge from a base-node to a select-
node if the base-node appears in the from clause of the select-node.
(iii) There is an edge from a select-node, vj , to a select-node, vi,

where vj represents an immediate nested SQL appears in the SQL
represented by vi. Regarding edge label, by default the edge label is
“+” which represents monotone. The edge label is “−” (negation)
for an edge from vj to vi where vj is a negated node. Here, a
negated node is a node before which a negation condition (except,
intersect, not exists, not in, <> all, <> some appears.

Definition 9.2: (Stratification) A recursive query Q is stratifiable
if there is no edge with “−” label appearing in a cycle in the de-
pendency graphG forQ. By applying a topological sorting over G
for the stratifiable query Q, the nodes in G can be partitioned into
m strata from S1 to Sm, for Sk < Sl if k < l. Q is stratified if
every edge (vj , vi) directed to node vi in G satisfies the following
2 conditions. Suppose vi is in Sk, and vj is in Sl. (1) Sk ≥ Sl if
vj is a non-negated node. (2) Sk > Sl, if vj is a negated node.

Definition 9.3: (XY-programs) (Definition 10.13 in [63]) Let P be
a DATALOG program with a set of rules defining mutually recursive
predicates. Then P is an XY-program if it satisfies the following 2
conditions.

• (X-rule) Every recursive predicate of P has a distinguished
temporal argument.

• (Y-rule) Every recursive rule r is either an X-rule or a Y-rule.
First, a rule r is an X-rule when the temporal argument in
every recursive predicate in r is the same variable (e.g. T).
Second, a rule r is a Y-rule when (i) the head of the rule r has
as temporal argument s(T) where T denotes any variable,
(ii) some subgoals of r have temporal argument T , and (iii)
the remaining recursive goals have either T or s(T) as their
temporal arguments.

The proof sketch of Theorem 5.1: Since selection, projection,
Cartesian product, and union are monotone, they are stratified, and
therefore are XY-stratified. We focus on MM-join, MV-join, anti-
join (difference), and union-by-update that are not stratified be-
cause they deal with either negation or aggregation over group-by.
We prove it in two steps. In the first step, we prove that a recur-
sive query with only one MM-join, MV-join, anti-join (difference),
and union-by-update is XY-stratified. In the second step, we prove
that any combination of the relational algebra operations is XY-
stratified. Below Rq indicates a recursive relation (predicate), and
T is a temporal argument.

In the first step, first, consider MV-join, the DATALOG rule is
given in Eq. (19). The recursive query Q1 by DATALOG is given
below.

Rq(Y,W) :– Rq(X,W1), S(X,Y,W2),W = ⊕(W1 �W2)

Q1 is not stratified, since ⊕ and � do not preserve monotone. Fol-
lowing XY-program, we add T to the Rq , and the corresponding
XY-program is given below with one Y-rule.

Rq(Y,W, s(T)) :– S(X,Y,W2, T), Rq(X,W1),W = ⊕(W1 �W2)

This XY-program is XY-stratified since its bi-state program is strat-
ified. Second, we consider two possible recursive queries for MM-
join. One is linear and the other is non-linear.

Rq(X,Y,W) :– Rq(X,Z,W1), S(Z, Y,W2),W = ⊕(W1 �W2)

Rq(X,Y,W) :– Rq(X,Z,W1), Rq(Z, Y,W2),W = ⊕(W1 �W2)

The XY-programs for the two DATALOG programs are shown be-

1178

0

200

400

600

800

SSSP WCC KC PR HITS LP MIS MNM KS TS

T
im

e
 (

s)

with indexing without indexing

(a) Google+

0

1000

2000

3000

4000

SSSP WCC KC PR HITS LP MIS KS

T
im

e
(s

)

with indexing without indexing

(b) Live Journal

0

300

600

900

1200

1500

SSSP WCC KC PR HITS LP MIS MNM KS TS

T
im

e
 (

s)

with indexing without indexing

(c) U.S. Patent Citation

0

2000

4000

6000

8000

10000

SSSP WCC KC PR HITS LP MIS KS

T
im

e
(s

)

with indexing without indexing

(d) Orkut

Figure 10: The Effectiveness of Indexing

low, which are XY-stratified since their bi-state programs are strat-
ified.
Rq(X,Y,W, s(T)) :– Rq(X,Z,W1, T), S(Z, Y,W2),W = ⊕(W1 �W2)

Rq(X,Y,W, s(T)) :– Rq(X,Z,W1, T), Rq(Z, Y,W2, T),

W = ⊕(W1 �W2)

Third, consider the difference (anti-join). For the DATALOG pro-
gram,Rq(X,Y) :– Rq(X,Y),¬S(X,−), since the negation is not
a recursive predicate, this DATALOG program is stratified and there-
fore is XY-stratified. On the other hand, the DATALOG program,
Rq(X,Y) :– R(X, Y),¬Rq(X,−), is not stratified since the nega-
tion is the recursive predicate. However, its XY-program,Rq(X,Y,
s(T)) :– R(X,Y), ¬Rq(X,−, T), is XY-stratified. Fourth, con-
sider union-by-update, like the difference (anti-join), there are two
recursive queries. One is stratified and therefore XY-stratified. We
show the one that is not stratified below.

Rq(X,W1) :– R(X,W1),¬Rq(X,−)
Rq(X,W2) :– Rq(X,W2)

Its XY-program is given below with 2 Y-rules, which is XY-stratified.

Rq(X,W1, s(T)) :– R(X,W1),¬Rq(X,−, T)

Rq(X,W2, s(T)) :– Rq(X,W2, T)

In the second step, for the recursive queryQwith only one recur-
sive relation and one cycle in the corresponding dependency graph.
We can obtain a DATALOG program as follows.

R1(· · ·) :– Rq(· · ·), · · · , B(· · ·)
R2(· · ·) :– R1(· · ·), · · · , B(· · ·); for j = 1

Ri(· · ·) :– Rj(· · ·), · · · , B(· · ·); for i > j

· · ·
Rq(· · ·) :– Rj(· · ·), · · · , B(· · ·); for any 1 ≤ j < n

Here, Rq is the recursive relation (predicate). For simplicity, we
assume that Rq has already been initialized before the recursive
DATALOG program. Ri and Rj are 2 temporal relations generated
by processing the recursive query or by the DATALOG program,
where Ri 6= Rq and Rj 6= Rq . Rules are used to support the re-
lational algebra discussed above. To ensure there is only one cycle
of Rq , a rule with Ri as the head has subgoals Rj for i > j. In
other words, a temporal relation Ri is generated by some tempo-
ral relationRj generated in an iteration in the recursive processing.
B denotes any relations that are stored in the database to process
this recursive query, for simplicity. Such DATALOG program can
be rewritten as an XY-program as follows.

R1(· · · , s(T)) :– Rq(· · · , T), · · · , B(· · ·)
R2(· · · , s(T)) :– R1(· · · , s(T)), · · · , B(· · ·); for j = 1

Ri(· · · , s(T)) :– Rj(· · · , s(T)), · · · , B(· · ·); for i > j

· · ·
Rq(· · · , s(T)) :– Rj(· · · , s(T), · · · , B(· · ·); for any 1 ≤ j < n

Such an XY-program is XY-stratified since its bi-state program is
stratified. 2

Some implementation details: The overall framework to process
recursive SQL queries is shown in Algorithm 1. We give some
implementation details. In computed by, when there is a need to
create a relation, we create a temporary table, because (1) it pre-
serves the concurrency and consistency at the session level, (2)
the redo logs are bypassed for insert operations, and (3) the in-
dependent tablespace and buffer pool are used for improving per-
formance. In a loop, we use insert to compute Ri,j . In Ora-
cle, the optimizer hints provide a mechanism to instruct the opti-
mizer to generate a certain query plan. For example, we use the
“/*+APPEND*/” hint to perform a direct-path insert for the insert
operation, and disable the optimizer feedback for reducing the over-
head by “/*+OPT_PARAM*/" hint. We also check whether or not
the table defined in computed by is empty. If oneRij is empty and
it is not a negated node in the dependency graph, subsequent query
ofQi will end. To check whether aQi is empty, in PostgreSQL,Ci
is a variable of record to receive the first tuple by the limit clause
since a temporary table lacks statistical information. At the end of
each recursion, the intermediate result of Qi is cleaned up by the
truncate table clause. It is a DDL clause introduced in SQL to
remove all the tuples in a relation swiftly.

Exp-A: The Effectiveness of Indexing: To process a recursive
query using the enhanced with statement, we use PSM to generate
a sequence of SQL statements to process in which temporary tables
are used. We test the effectiveness of indexing for MV-join or MM-
join, over such temporary tables. In Oracle and DB2, the query plan
produced by the optimizer is hash join and hash aggregation. In
other words, the optimizers do not choose a new query plan for tem-
porary tables, even when an index (either B+-tree or hash) is con-
structed in PSM for the temporary tables. In other words, the query
plans are the same with/without an index constructed for temporary
tables. In PostgreSQL, the optimizer generates a sub-optimal query
plan using merge join and hash aggregation. The reason is that the
optimizer does not have sufficient statistics of join attributes, in
particular for temporary tables. Given merge join is used, the op-
timizer uses the indexing constructed on the joined attribute, and
does the index scanning instead of the sequential table scanning.
We test PostgreSQL since there is no difference between Oracle
and DB2. Fig. 10 shows the performance with and without index-
ing for 4 larger datasets using PostgreSQL. Fig. 10(a), Fig. 10(b),
Fig. 10(c) show that indexing improves 10%-50% performance. It
is worth noting that in Fig 10(d), for dataset Orkut, the performance
with indexing is similar or even slightly worse than that without in-
dexing. This is because index scanning is random disk access. For
a very large dataset, frequent index scanning makes I/O be the per-
formance bottleneck. For example, the algorithms tested on the
dataset Orkut only have CPU utilization 40%-50%. Overall, the
indexing helps to improve efficiency in PostgreSQL. In the testing,
we build indexes over temporary tables for PostgreSQL.

1179

0.1

1

1e+1

1e+2

1e+3

1e+4

WV TT WG YT WT GP PC LJ OK

T
im

e
 (

s)

GraphLab SociaLite Giraph Oracle

(a) PR

0.1

1

1e+1

1e+2

1e+3

WV TT WG YT WT GP PC LJ OK

T
im

e
 (

s)

GraphLab SociaLite Giraph Oracle

(b) WCC

0.1

1

1e+1

1e+2

1e+3

WV TT WG YT WT GP PC LJ OK

T
im

e
 (

s)

GraphLab SociaLite Giraph Oracle

(c) SSSP

Figure 11: Comparison with PowerGraph, SociaLite, and Giraph

0

50

100

150

200

250

2 4 6 8 10 12 14

T
im

e
 (

s
)

Iterations

WITH+
WITH

(a) Running Time

1n

4n

8n

12n

16n

2 4 6 8 10 12 14

#
 o

f
T

u
p
le

s

Iterations

WITH+
WITH

(b) # of Tuples

Figure 12: PR on PostgreSQL

0

200

400

600

800

1000

1 2 3 4 5 6 7

T
im

e
 (

s)

Iterations

Oracle WITH+
DB2 WITH+

PostgreSQL WITH+
PostgreSQL WITH

(a) TC

0

200

400

600

800

1000

1200

1 2 3 4 5 6 7

T
im

e
 (

s)

Iterations

Oracle WITH+
DB2 WITH+

PostgreSQL WITH+

(b) APSP

Figure 13: Linear TC and APSP

Exp-B: RDBMS vs Other Systems: We compare our with+ at
SQL level with 3 representative graph systems, PowerGraph [1],
SociaLite [2] and Giraph [3]. PowerGraph is a parallel graph sys-
tem (C/C++ version of GraphLab), which adopts vertex-centric,
and follows the GAS model (Gather, Apply, Scatter). SociaLite
is a DATALOG based graph analysis framework. Giraph is a graph
processing system based on the BSP model. We compare our ap-
proach in Oracle, with PowerGraph, SociaLite and Giraph to test
3 graph algorithms, PR, WCC and SSSP, over 9 real datasets (Ta-
ble 3). The 3 algorithms are provided in PowerGraph, SociaLite
and Giraph. Note that PR is always-acive whereas SSSP and WCC
are path-oriented (or graph traversal). The results are shown in
Fig. 11. For PR, as shown in Fig. 11(a), PowerGraph is the best.
Our approach in Oracle can outperform PowerGraph if the dataset
is small, and outperform SociaLite and Giraph in several datasets.
For WCC (Fig. 11(b)), our approach in Oracle performs the best
when the dataset is small (WV), and can outperform Giraph for
TT. However, since our approach needs to do it by joins itera-
tively, there is a gap between the performance when datasets be-
come large, which is similar to SSSP (Fig. 11(c)). It is important
to note Oracle is a disk-based system. The performance of our ap-
proach can be enhanced using in-memory RDBMS techniques, op-
timizations among joins in a recursive query where computing cost
can be reduced, and supporting graph algorithms as access methods
inside RDBMS.

Exp-C: More on With and Enhanced With: We conduct 3 more
testing of PageRank (PR), transitive closure (TC) and all pairs
shortest paths (APSP). It is worth noting that the with of TC can-

not stop if there are cycles in the dataset. To avoid infinite recur-
sion, a threshold of recursive depth d needs to be specified in the
where clause [41].

For PR, we compare PR based on our with+ (Fig. 3) over PR
based on the with clause on PostgreSQL (Fig. 9). The dataset used
is Web Google in Table 3, and the threshold of recursive depth d is
set to 14, (in Fig. 9, L is used as d). Note that DB2 cannot support
PR, because DB2 does not support partition by to compute aggre-
gation in with. Oracle cannot support PR because Oracle does not
support distinct to eliminate duplicates to get a correct answer in
with, even though it supports partition by. Among the 3 RDBMSs,
PostgreSQL can support it because it supports both partition by
and distinct in with. We run tests in PostgreSQL. Fig. 12(a) and
Fig. 12(b) show the running time and number of tuples accumulated
in iterations, respectively. Here, the number of tuples is shown as
xn, where x is a number and n is the number of nodes in the graph,
which is 875,713 for Web Google. Over iterations, the with+ ver-
sion of PR significantly outperforms the with version of PR. For
running time, as shown in Fig. 12(a), the running time using with+
is 2 times faster than that using with. The speedup is mainly be-
cause the former uses group by, whereas the latter uses partition by
and distinct. For the number of tuples accumulated in iterations, as
shown in Fig. 12(b), the number of tuples using with+ keeps n,
whereas the number of tuples using with increases linear. At the
end of the 14-th iteration, the number of tuples accumulated using
with is 15 times larger. The reason is that the with+ version uses
union-by-update whereas the with version uses union all.

TC can be supported by both with and with+ using linear re-
cursion. We test the implementation taken in with+ and that used
behind with (e.g., Seminaive) without aggregation computing. The
dataset used is Wiki Vote in Table 3, and the threshold of recursive
depth d is set to 7. In Fig. 13, we only show PostgreSQL using
with. We explain it below. DB2 and Oracle can only use union all
in the with clause, and cannot eliminate duplicates over iterations.
As a result, they take too long to compute TC. PostgreSQL allows
union instead of union all and can remove duplicates. As shown
in Fig. 13(a), our with+ implementation performs in a similar way
like the with implementation in PostgreSQL.

APSP can be done by linear recursion using MM-join based on
Bellman-Ford for all nodes. The dataset used is Wiki Vote in Ta-
ble 3, and the threshold of recursive depth d is set to 7. For APSP,
we test MM-join in linear recursion. A higher cost occurs due to
the extra aggregation operation in MM-join. Similar to TC, the cost
of each iteration increases, because the matrix is no longer sparse
over iterations by edge-to-edge join operations.

1180

