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ABSTRACT
It is clear by now that modern processing hardware gets
increasingly heterogeneous, which forces data processing al-
gorithms to care about the underlying hardware. However,
current approaches for implementing data intensive opera-
tors (e.g., in database systems) either cause enormous pro-
gramming effort for tuning one algorithm to several pro-
cessors (the hardware-sensitive way), or do not fully exploit
possible performance possibilities because of an abstract op-
erator description (the hardware-oblivious way). In this the-
sis, we propose an algorithm optimizer, which automatically
tunes a hardware-oblivious operator description to the un-
derlying hardware. This way, the DBMS can rewrite its op-
erator code until it runs optimally on the given hardware.

Categories and Subject Descriptors
H.2 [Information Systems]: Database Management

General Terms
Design, Performance

Keywords
Heterogeneous Hardware; Adaptivity; Domain-specific Lan-
guage; SIMD; Co-Processor Acceleration; Code Generation

1. INTRODUCTION
After decades of frequency scaling, single processors reach

the end of performance improvements due to the power- and
memory wall. A key to solve this problem is specialization
and task distribution, which means that current systems get
equipped with more and more specialized processors (e.g.,
FPGA, GPU, Intel Xeon Phi) which are optimized for a
given task. While specialization yields performance oppor-
tunities for specific tasks, it also leads to an increased hetero-
geneity of processors in a system. This evolution in the hard-
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Figure 1: Scan variants on Intel Xeon E5-2690 – the
best performing variant depends on the selectivity

ware landscape forces database vendors and researchers to
also specialize their algorithms for available processors [16].

For tuning a given algorithm to a processor, program-
mers mainly employ code optimizations. A code optimiza-
tion transforms the code in order to improve its performance
without changing its result. Prominent examples of code op-
timizations are loop fission, loop unrolling, predication (i.e.,
avoid branches in code), vectorization (i.e., using Single In-
struction Multiple Data capabilities; SIMD), and paralleliza-
tion [8, 25]. With the abstraction of code optimizations, we
tune our algorithms to the used processor by choosing the
right set of code optimizations. However, this is a non-trivial
task, because the benefit of each code optimizations is not
only depending on the processing capabilities of the proces-
sor, but also on the workload characteristics (e.g., selectiv-
ity or data size). To emphasize this statement, we show
the response time of a normal database selection using an
if-statement for evaluating the predicate and a predicated
database selection without any branching behavior in Fig-
ure 1.

For very low and high selectivity factors, the branching
version performs best while at medium selectivity factors,
the predicated version performs best. The exact points
where both lines cross depend on the used machine. Con-
sequently, although code optimizations aim to improve the
performance, they could also harm performance if either the
hardware does not sufficiently support it, or the workload is
unfavorable for this code optimization.

Investigating single code optimizations will make it easy
to assess their benefit – especially for database management
systems with their knowledge of stored data (e.g., selectivity
estimation). However, it is difficult to assess the benefit
of a combination of code optimizations, as we have shown
in a former study [8]. As a consequence, we need a way
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Figure 2: Hardware-sensitive vs. hardware-oblivious
programming – adapted from [16]

to find the set of code optimizations that, applied to given
code, produces the optimal code for the given machine and
workload.

For solving the issue of finding the optimal operator for a
given workload and machine, we propose a database man-
agement system that is exploring the code optimization space
during query execution and automatically rewrites its own
operator code. With this, we create a database management
system that tunes its own database operators until the set of
operators is optimal for the use case of the database system
(i.e., workload and hardware).

In this paper, we first reflect current techniques to han-
dle programming for heterogeneous hardware and present
related work in Section 2. Then, we present the idea of
an adaptive reprogramming approach in Section 3. In Sec-
tion 4, we present the resulting research plan and present a
small summary in Section 5.

2. HETEROGENOUS PROGRAMMING
To program for heterogeneous hardware, there are mainly

two paradigms: the hardware-sensitive paradigm, in which
the algorithms are tuned to one specific processor; or the
hardware-oblivious paradigm, which means that the algo-
rithms are abstractly defined and efficiently executed using
a processor-dependent driver [16]. We depict a sketch of
these two paradigms in Figure 2.

2.1 Hardware-Sensitive Programming
The main idea behind hardware-sensitive programming is

that the programmer knows the system that the algorithm is
written for in detail. So in a database, programmers would
write a set of operators per processor and tailor the code
to the underlying hardware by fully exploiting hardware’s
properties.

With this approach, programmers are able to reach the
best performance, because they know what hardware to pro-
gram for [16]. However, this approach does not scale to a
high amount of different processors. The reason is that with
each new processor, another set of operators has to be im-
plemented, although they may only differ slightly. Thus,
the development and maintenance effort is too high in this

approach, especially if we have in mind the increasing het-
erogeneity of future processors.

Related Work
Despite the high development overhead, tuning operators to
the underlying hardware has found much attraction in re-
search. First, tuning focusses on optimizing main-memory
database operators for different CPUs and the cache hierar-
chy.

CPU. Early work in this area includes to tune database
selections using vectorization, e.g., the work of Zhou and
Ross [30], or predication in the work of Ross [24]. Further
optimizations for selections include vectorized scans on com-
pressed data for single [27], and complex predicates [28], as
well as using vectorized bloom filters for the scan [23].

Recent studies consider even more complex operators such
as joins and aggregations. Here, Zukowski et al. optimize
hash tables and functions to the underlying hardware [31].
Based on that, efficient vectorized aggregation functions are
proposed by Polychroniou and Ross [22] to speed up ag-
gregations in databases. Simultaneously, the debate about
the best join algorithm has been revitalized, leading to even
more specialized and tuned join algorithms. These include
the massively parallel sort-merge (MPSM) join by Albutiu
et al. [1], the sort-merge join using SIMD-accelerated sorting
networks by Kim et al. [19], and the radix join which has
been initially proposed by Boncz et al. [4] and further im-
proved with vectorization and additional optimizations by
Balkesen et al. [2, 3].

GPU. Early work considering database operations on GPUs
has been published by He et al. [13], which uses highly
optimized primitives on the GPU whose combination can
compute any database operation. Furthermore, Sitaridi and
Ross [26] present an efficient selection with GPU’s missing
branch-prediction capabilities. Also, several authors present
how to adapt joins to GPUs [14, 18].

Other Processors. Furthermore, there is work presenting
how to design database operations for more specialized co-
processors. He et al. [15] show how to tailor the hash join to
work efficiently on an APU (a CPU with an integrated GPU)
and Jha et al. [17] investigate hash joins on an Intel Xeon
Phi. Moreover, Mueller et al. [21] extensively discuss how to
design sorting algorithms to implement them efficiently on
FPGAs (field-programmable gate arrays).

All these publications show that tuning algorithms to the
underlying hardware may improve performance by orders
of magnitude. Nevertheless, all of them are only tailored
to a single (co-)processor and do not provide a comprehen-
sive solution for the increasing heterogeneity of the hardware
landscape.

2.2 Hardware-Oblivious Programming
In contrast to hardware-sensitive programming, hardware-

oblivious programming includes an additional abstraction
layer: a parallel programming library. With this, database
operations are implemented without explicit knowledge of
the hardware based on the parallel programming library
(e.g., OpenCL), which then compiles a binary for each pro-
cessor [16]. This binary is executed using a specialized driver
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for each processor which should exploit special hardware ca-
pabilities of the (co-)processor.

The advantage of hardware-oblivious programming is, that
code for each operator is written only once and hardware-
related properties are included by the driver. With this, de-
velopment and maintenance overhead is reduced to a mini-
mum. However, the compiler and driver optimize algorithms
for the average use case and cannot take the workload into
account. Furthermore, an efficient execution and exploita-
tion of hardware capabilities always relies on a good imple-
mentation of the driver. Thus, it is not guaranteed that
the hardware-oblivious approach always provides the best
performance. Additionally, the driver is mainly designed to
optimize for the general use case. With this, we are not
able to fully exploit the domain knowledge that we have in
database systems about the workload.

Related Work
Related work of hardware-oblivious programming mainly fo-
cusses on implementing a whole system with the new para-
digm. For instance, Ocelot, the hardware-oblivious exten-
sion of MonetDB by Heimel et al. [16], maps an operator
of MonetDB to a single implementation in OpenCL and
reaches comparable performance on CPUs and even better
performance on GPUs. Also, Zhang et al. [29] propose a
DMBS for heterogeneous processors using OpenCL, called
OmniDB. For this system, they propose a kernel-adapter
based approach to be able to efficiently support different
processors.

3. ADAPTIVE REPROGRAMMING
If we summarize the advantages of the above-mentioned

paradigms, we reach the best performance using a hardware-
sensitive approach, while having the best development and
maintenance effort following a hardware-oblivious approach.
Hence, the ideal solution would be a combination of both
paradigms to maximize performance while minimizing pro-
gramming effort. As a consequence, we propose adaptive re-
programming that is able to create several hardware-sensitive
operators out of one abstract operator description. The
overall structure of our approach is visualized in Figure 3.

3.1 Variant Generation
In our approach, we propose to use a domain-specific lan-

guage (DSL) to define an operator [7]. With this, we add
an abstraction level to the operator implementation, which
helps us to flexibly adapt the resulting operator code. Given
the generic operator description, we are able to apply differ-
ent sets of code optimizations to produce different variants.
For example, we could decide to vectorize the tight loop in
a selection and then unroll the vectorized code.

The resulting variants are specific to one processor and
have variations in code depending on different possible work-
loads. These variants are grouped per available processor
type in a dedicated variant pool. On execution, the variant
selector chooses the optimal variant for the selected proces-
sor and workload.

3.2 Variant Selector & Feedback Loop
Since it is not an easy task to estimate how a given algo-

rithm performs on the given hardware – especially for par-
allel algorithms [2] – we argue to use a learning-based algo-
rithm instead of a static cost model. The selector learns the
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Figure 3: Sketch of our adaptive reprogramming ap-
proach for reaching hardware-sensitive database op-
erations on heterogeneous hardware.

execution behavior of variants under given hardware prop-
erties and workload characteristics. In order to learn the
execution behavior, we need a feedback loop, which informs
the selector about the runtime of the chosen variant to refine
the selector’s learned cost model. Also, the feedback loop
has to inform the variant generator about the performance
impact of used code optimizations in order to generate more
efficient code. This procedure resembles the idea of adaptive
query processing [11], where the query plan is refined during
run-time to achieve optimized performance.

3.3 Variant Management
In literature, there are numerous code optimizations pro-

posed [8, 10, 25] that improve the code for different use cases.
Hence, if we assume n independent code optimizations, we
can create 2n variants. Consequently, the number of possible
variants increases exponentially with an increasing number
of code optimizations. This causes the variant pool as well
as the learned cost model of the selector to grow dramati-
cally. As a consequence, we argue to limit the variant pool
and to keep only promising variants in the pool. However,
if the workload of the database system changes, better vari-
ants could be generated and included in the variant pool,
while others are evicted.

4. RESEARCH PLAN
Arising from the proposed adaptive reprogramming ap-

proach for heterogeneous hardware, there are several areas
that need to be investigated. Here, especially the influ-
ence of code optimizations, the design of the domain-specific
language as well as the explorative approach for finding a
promising set of new code optimizations play an important
role. At the end, our approach helps also to further under-
stand algorithm performance on modern processors.

4.1 Code Optimizations
At first, we investigate different code optimizations for

different devices to show their benefits. In earlier work, we
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have shown that for a simple scan on different CPUs, we can
get large performance differences between the variants [8].
Furthermore, we expect much higher impacts for more com-
plex operators such as joins and also for other processors
such as GPUs or the Intel Xeon Phi.

For implementing our adaptive reprogramming approach,
we choose CoGaDB, a column-oriented, GPU-accelerated
DBMS [5], because it executes database operations on dif-
ferent (co-)processors. Furthermore, it already comes with a
learning-based cost-estimator called HyPE [6], which allows
us to learn the execution behavior of our variants.

4.2 DSL Design
We propose to use a domain-specific language for being

able to automatically apply code optimizations to the re-
sulting code. This DSL can vary in its abstraction level,
i.e., from being very close to the C/C++ language to being
rather functional. On the one hand, a low-level abstraction
could make it possible to use specific compilers that may
already have the ability to apply several code optimizations
(e.g., the Polly LLVM compiler [12] allowing automatic loop
parallelization and SIMD-ization).

On the other hand, an abstract definition allows for more
coarse-granular refinement of the code. This approach has
been shown in LegoBase, which uses a Scala DSL [20]. How-
ever, their approach so far shows how to optimize, e.g., the
storage layout or the inter-operator execution, but leaves
tuning to the processor open for future work. Furthermore,
there is the Delite framework [9] which allows to build an
own DSL and also provides several DSLs for programming
for heterogeneous processors. Thus, these two approaches
could be a good starting point to create several variants out
of one abstract operator description by applying different
code optimizations.

In order to argue the usefulness of the used DSL, we con-
sider the flexibility of the DSL w.r.t. how many code opti-
mizations are applicable. Thus, our goal is to design a DSL
that is as flexible as possible, so that many code optimiza-
tions can be applied.

4.3 Exploration of Variant Space
An important aspect of the variant management is the

creation of promising variants using a different set of code
optimizations as before. A simple approach to create new
variants is to generate one variant per code optimization
and then combine the code optimizations of promising vari-
ants. However, with this approach, we resemble a greedy
approach, which will probably find only a local optimum. A
more mature approach is to use a heuristic approach such
as simulated annealing or a genetic algorithm. For instance
using a genetic algorithm, we represent the set of code op-
timizations as a feature vector. Those feature vectors are
mutated and crossed to create new sets of code optimiza-
tions which generate new variants.

4.4 Understanding Variant Performance
At the end, our approach automatically generates several

variants with different code optimizations enabled and keeps
only promising variants active. Thus, the variants that are
often used for a specific workload should be the optimal
ones for the machine and workload. Hence, from the usage
characteristic of the variants, we can conclude the suitabil-
ity of specific code optimizations for the given machine and

workload. Consequently, we expect that this thesis can fur-
ther improve the understandability of algorithms on modern
hardware.

5. SUMMARY
Driven by the increasing heterogeneity in the hardware

landscape, in this thesis, we aim at an improved program-
ming approach for implementing hardware-sensitive database
operations for such heterogeneous hardware. For this, we an-
alyzed current programming approaches for heterogeneous
hardware and envision to combine the advantages of both
approaches into a new one. In our adaptive reprogramming
approach for heterogenous hardware, database operators are
defined in a domain-specific language and, then, different
variants for different (co-)processors are generated by ap-
plying a different set code optimizations. When a query is
executed, a selector is choosing the right device and vari-
ant to be executed to suit the current workload and ma-
chine. With this approach, we reach peak performance for
the given use case while minimizing development costs for
the implemented operators. For implementing our proposal,
we present research questions that have to be answered and
present our research plan for this proposed thesis.
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