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ABSTRACT
Database-as-a-service has been gaining popularity in cloud
computing because multitenant databases can reduce costs
by sharing off-the-shelf resources. However, due to heavy
workloads, resource sharing often causes a hot spot; one
node is overloaded even while others are not. Unfortu-
nately, a hot spot can lead to violation of service level agree-
ments and destroy customer satisfaction. To efficiently ad-
dress the hot spot problem, we propose a middleware ap-
proach called Madeus that conducts database live migra-
tion. To make efficient database live migration possible, we
also introduce the lazy snapshot isolation rule (LSIR) that
enables concurrently propagating syncsets, which are the
datasets needed to synchronize slave with master databases.
Madeus provides efficient database live migration by imple-
menting the LSIR under snapshot isolation. Unlike current
approaches, Madeus is pure middleware that is transparent
to the database management system and based on commod-
ity hardware and software. To demonstrate the superiority
of our approach over current approaches, we experimentally
evaluated Madeus by using PostgreSQL with the TPC-W
benchmark. The results indicate that Madeus achieves more
efficient live migration than three other types of middleware
approaches, especially under heavy workloads; therefore, it
can effectively resolve hot spots.

Categories and Subject Descriptors
H.2.4 [Database Management]: Systems—Relational data-
bases; H.3.4 [Information Storage and Retrieval]: Sys-
tems and Software—Distributed systems

General Terms
Theory, Design, Experimentation, Performance
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1. INTRODUCTION
Recently, there has been a great deal of enthusiasm in

cloud computing since it can reduce costs by using the mul-
titenant model [1]. In this model, multiple tenants are con-
solidated on a single node; hardware and operation costs
can be reduced by sharing nodes and administrators. Ad-
ditionally, cloud computing can also reduce the engineering,
testing, and maintenance costs by using off-the-shelf hard-
ware and software. To increase resource utilization, cloud
providers consolidate as many tenants on a single node as
possible. However, as a node may have many tenants or a
tenant may have an unusually heavy workload, the node may
become a hot spot; one node is overloaded even while others
are not. The hot spot can lead to violation of service level
agreements (SLAs) and destroy customer satisfaction with
the service; users expect to obtain responses in 2 s or less in
Internet services [2, 3, 4]. Unfortunately, it is difficult to pre-
determine the ideal number of tenants in a node. To make
matters worse, workloads are erratic and unpredictable. To
address the hot spot problem, cloud providers adopt live mi-
gration, which involves transferring tenants among nodes to
better balance loads as well as determining whether a heavy
or light tenant should be transferred.

Cloud database services are offered today in pre-packaged
VM-instances (called database instance) [5, 6, 7]. However,
VMs incur significant throughput deterioration in normal
operation [30] which will also impact the performance of the
database applications running on them. One of the reasons
is that each database instance uses its own transaction log
file leading to random access of these files. The shared pro-
cess model proposed by Curino et al. [22] can be a solution
to this problem. With such a model, multiple databases
(tenants) share the same DBMS process and hence share a
transaction log file [22]. Since this model avoids random ac-
cess of transaction logs, it can significantly reduce overhead
in normal operation. Therefore, in our work, we assume this
(Database-as-a-Service) (DBaaS) model.

Recent studies have proposed two shared process mod-
els for database live migration [23, 25]. In these models, a
tenant on a node called the source is migrated to another
node called the destination, while the migrated database is
called the master and the created one the slave. Das et al.
proposed to start a slave DBMS process with a warm cache
on a shared-disk architecture [23]. Elmore et al. proposed
to leverage index information in a shared-nothing architec-
ture [25]. Unfortunately, both models need to be imple-
mented within the core of the DBMSs. This means rewrit-
ing of existing DBMSs is required. Since the source code
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of a DBMS is massive and complex, such modification is
impractical in a DBaaS that uses off-the-shelf software.

For efficient live migration at low cost, we focus on a
middleware-based approach; we use off-the-shelf hardware
and software with no modification. Barker et al. proposed a
middleware approach for database live migration [16]. The
advantage of their approach is that it does not require any
VM or DBMS modification. Unlike our approach, their ap-
proach uses transaction logs to synchronize the slave with
the master. Unfortunately, since the transaction log format
depends on the version and type of DBMS [34], their ap-
proach requires dedicated middleware for each DBMS pair
(master and slave databases). Furthermore, their approach
cannot use the shared process model since it is difficult to
unearth data of a particular database from transaction logs.
Moreover, their approach relies strongly on the commercial
backup tool (i.e., Percona XtraBackup [8]).

Live migration needs replication between the master and
slave. Replication approaches are classified into eager and
lazy [27]. Eager replication keeps all replicas (databases)
exactly synchronized at all nodes by updating all the repli-
cas as part of one atomic transaction. In lazy replication,
updates of the master are asynchronously propagated to the
slave after the update transaction commits. In live migra-
tion, the slave is empty at first and before replication, we
must create a database by using snapshot. During this pro-
cess, the system must continue to execute customers’ trans-
actions; this leads us to adopt the asynchronous approach
of lazy replication. However, it is difficult to achieve effi-
cient live migration by naively extending existing lazy repli-
cation [24, 36, 37]. If syncsets1 are serially propagated, mi-
gration time can be long since each syncset is processed in-
dividually [36, 37]. Moreover, even if write operations are
propagated concurrently, commit operations are not [24].
This limitation decreases concurrency and prevents group
commit (If multiple commit operations are propagated con-
currently, the DBMS induces only one I/O access for all
the commit operations) and its advantages. This results in
inefficient database live migration.

In this paper, we propose Madeus, a pure middleware ap-
proach that provides efficient database live migration. We
assume the shared process model [22]. Since this model
does not use any VMs, it can significantly reduce through-
put degradation. We also assume snapshot isolation (SI) as
the transaction isolation level since SI is a strong isolation
level and results in higher performance [17]. Under SI, a
transaction Ti reads data from the committed state of the
database, namely a snapshot, and writes its own snapshot.
Since a transaction reads data items from a snapshot, the
transaction never refers to the results of other transactions.
That is, transaction Ti detects all the changes made by other
transactions committed before transaction Ti starts. Trans-
action Ti does not detect any changes made by other trans-
actions committed after transaction Ti started. In SI, a read
operation never blocks write operations, and vice versa.

Madeus is transparent to a DBMS based on commodity
hardware and software without modification and indepen-
dent of any dedicated tool. Our key idea is that Madeus
propagates commit operations concurrently as well as the
first read operation and write operations to the slave. Madeus

1
Queries to synchronize the slave with the master.

is especially designed to handle database live migration un-
der heavy workloads. Our contributions are as follows:

• We introduce a lazy snapshot isolation rule (LSIR) for
efficient migration and the minimum set of queries in
the LSIR to make the slave consistent with the master
in database live migration.

• We propose Madeus, a pure middleware approach that
provides efficient database live migration. Madeus con-
currently propagates not only the first read operations
and write operations but also commit operations by
using the LSIR; Madeus benefits from group commit
unlike the current approaches.

• We conducted experiments with the TPC-W bench-
mark. The results showed that Madeus is more effi-
cient than three other types of middleware approaches,
especially under heavy workloads; the first one prop-
agates operations serially, the second one propagates
minimum operations serially [36, 37], and the third one
propagates write operations concurrently but commit
operations serially by obeying the previously proposed
rules [24]. Moreover, we can give an answer for the
question of which tenant, heavy or light, we should
migrate to address a hot spot.

The remainder of this paper is organized as follows. In Sec-
tion 2 we give the background of our work and theoretically
discuss a database model and introduce the LSIR in Sec-
tion 3. In Section 4, we propose Madeus, a lazy replication
based middleware approach. In Section 5, we explain the
experimental results and discuss related work in Section 6.
We conclude the paper in Section 7.

2. PRELIMINARY
Section 2.1 explains the database model in our approach,

Section 2.2 defines six types of dependencies among trans-
actions, and Section 2.3 discusses the feature of SI.

2.1 Database Model
A database consists of a set of data items. Each data item

has a value. The values at any one time comprise the state of
the database. We denote data items by lower-case letters,
typically x, y, or z. A DBMS is a collection of hardware
and software modules that support commands to access the
database; these commands are called operations. A trans-
action Ti is a sequence of read, write, and end (commit or
abort) operations. The subscript i identifies the i-th version
of transactions and distinguishes it from other transactions.
Thus, xi denotes the data item x written by transaction Ti,
wi,p(xi) denotes the p-th write operation by transaction Ti

on data item xi, and ri,q(xj) represents the q-th read oper-
ation of item xj . The terms ci and ai denote Ti’s commit
and abort operations, respectively.

We say transactions Ti and Tj (i < j) are serial if transac-
tion Ti commits before transaction Tj starts. If transaction
Ti starts but does not commit until after transaction Tj

starts, then transactions Ti and Tj are concurrent. When
a set of transactions is executed concurrently, their opera-
tions may be interleaved. We define a schedule as the order
in which the DBMS scheduler executes operations in the
transactions. A history indicates the order in which the op-
erations in the transactions were actually executed. Note
that a schedule is a plan for the future and is not necessarily
the same as the actual history.
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2.2 Dependency
In this paper, we say transactions Ti and Tj have a de-

pendency if a slave database executes transactions Ti and
Tj in a different order from a master database and the two
databases can have different outputs. To synchronize the
master and slave, we must replay all dependencies in the
slave. We use the phrase, data item xj is an immediate suc-
cessor of data item xi(i < j), to indicate that data item
xi is read or written, data item xj is written, and no data
item is written between data items xi and xj . We say that
operations oi and oj have dependency if at least one of the
operations is write since changes in execution order of the
same operations can yield different results. We define three
types of transactional dependencies as follows:

Definition 1 (Transactional dependencies). The fol-
lowing three types of dependencies between two operations
are defined according to read or write operations:

• Operations oi and oj have a wr-dependency if operation
oi writes data item xi by transaction Ti for data item
x and operation oj later reads this version xi.

• When operation oi reads data item x written by trans-
action Tk and operation oj writes the immediate suc-
cessor version xj of data item x, operations oi and oj

have an rw-dependency.

• There is a ww-dependency between operations oi and
oj when operation oi writes data item x of version xi

and the immediate successor version xj is written by
operation oj .

It is clear that two read operations have no impact on
the results of the operations. Therefore, we eliminate rr-
dependency from further discussion. We also categorize the
two remaining types of dependencies in terms of intra or in-
ter transaction. If operations oi and oj belong to the same
transaction, they have intra-transaction dependency. If op-
erations oi and oj belong to different transactions, they have
inter-transaction dependency.

Since the two categorizations are orthogonal, we have the
following six types of dependencies; intra-wr-dependency,
inter-wr-dependency, intra-rw-dependency, inter-rw-depen-
dency, intra-ww-dependency, and inter-ww-dependency.

2.3 How To Resolve Inter-WW-Dependency
With regard to inter-ww-dependency, SI follows the first-

updater-wins rule [26] as follows2 : If transaction Ti updates
data item x, it sets a write lock for data item x. If transac-
tion Tj subsequently attempts to update data item x while
transaction Ti is still active, transaction Tj will be prevented
by the lock on data item x from making further progress.
If transaction Ti then commits, transaction Tj will abort;
transaction Tj will continue only if transaction Ti drops its
lock for data item x by aborting. On the other hand, if
transaction Ti updates data item x but then commits be-
fore transaction Tj attempts to update data item x, there
will be no delay due to locking. However, transaction Tj

will abort immediately if it attempts to update data item
x; the abort does not wait until transaction Tj attempts to
commit.

2
When two transactions attempt to modify the same data item, only

the first updater modifies successfully and the other aborts. The
first-updater-wins rule is used in standard DBMSs such as Oracle,
SQL Server, and PostgreSQL.

Table 1: Definition of main symbols
Symbol Definition

Ti i-th transaction
T m transaction in a master database
T s transaction in a slave database
xi data item x written by transaction Ti

ri,p(xj) p-th read operation of data item xj in Ti

wi,p(xi) p-th write operation of data item xi in Ti

ci commit operation in transaction Ti

ai abort operation in transaction Ti

oi read or write operation in transaction Ti

Rm master database
Rs slave database
Hm history of database Rm

Hs history of database Rs

Ss schedule of database Rs

T m set of transactions T m

T s set of transactions T s

3. EFFICIENT LAZY REPLICATION
Our goal is to efficiently conduct live migration under

heavy workloads. To this end, we introduce the minimum
sets of queries to make the slave consistent with the master
as well as efficient scheduling rules.

If two operations in master and slave databases do not
have any dependencies, these databases have the same out-
puts regardless of the execution order. In other words, if
the two operations have a dependency, the master and slave
databases can have different outputs. This section describes
the minimum query set that makes the slave consistent with
the master to achieve efficient database live migration. Let
Rm and Rs be a master and slave database in a lazy repli-
cated database system, respectively. If all dependencies of
database Rm are also mirrored on database Rs, database
Rs achieves consistency with database Rm. We assume that
databases Rm and Rs are consistent at first. In Section 3.1,
we illustrate the snapshot creation rule that we assume. Sec-
tion 3.2 discusses unnecessary/necessary dependencies with
regard to making the master and slave database consistent.
In Section 3.3, we describe our approach to obtaining the
necessary dependencies in the middleware level for live mi-
gration. We finally introduce the LSIR, which makes the
slave consistent with the master in live migration, in Sec-
tion 3.4. Table 1 lists the main symbols and their defini-
tions.

3.1 Snapshot Creation
We assume that we have no blind write operation [9, 29];

it modifies a data item without reading the data in advance.
In a previous study [24], the snapshot was created by start
operation explicitly. In fact, in practical DBMSs, such as
Oracle, SQL Server, and PostgreSQL, the snapshot of trans-
action is implicitly created just before the first operation is
executed. We assume this realistic case. Considering we
have no blind write, the first operation must be a read op-
eration. Therefore, the snapshot of transaction Ti is created
just before the first read operation ri,1(xp) is executed.

3.2 Necessary Dependencies
In lazy replication, if the slave database replays all the

same dependencies as the master database, the same out-
put can be obtained; the slave is consistent with the mas-
ter. However, this naive approach is obviously inefficient
in database live migration, especially under heavy work-
loads. To achieve efficient live migration without sacrific-
ing the consistency between master and slave databases,
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we identify those dependencies that the slave database does
not need to replay. We can reduce replay overhead in the
slave database by discarding unnecessary dependencies in
the master database.

As described in Section 2.2, we have six types of de-
pendencies between operations; intra-wr-dependency, inter-
wr-dependency, intra-rw-dependency, inter-rw-dependency,
intra-ww-dependency, and inter-ww-dependency. Among these
dependencies, inter-ww-dependency and intra-wr-dependency
are unnecessary for the slave database to replay in terms of
database live migration under SI as follows.

Lemma 1 (Unnecessary inter-ww-dependency). In
lazy replication, we need not replay inter-ww-dependency to
make the slave consistent with the master under SI.

Due to space limitation, all proofs of lemmas and theorems
are located in Appendixes.

Lemma 2 (Unnecessary intra-wr-dependency). In
making the slave consistent, replay of the intra-wr-dependencies
is not necessary in lazy replication under SI.

From Lemmas 1 and 2, it is clear that the necessary de-
pendencies are the remaining four dependencies as follows.

Lemma 3 (Necessary dependencies). The slave data-
base must replay inter-wr-dependency, inter-rw-dependency,
intra-rw-dependency, and intra-ww-dependency to make the
slave consistent with the master under SI.

3.3 Dependency-Query Relationships
Section 3.2 revealed the four types of dependencies neces-

sary for database live migration. In this section, we describe
the properties that are used to replay the dependencies be-
tween transactions in the middleware level.

In our approach, the first read operation creates a snap-
shot and the other read operations read data items from
the snapshot. Furthermore, write operations modify the
snapshot. Therefore, the first read operations cause wr-
dependency and rw-dependency.

Lemma 4 (Inter-wr-dependency). Transactions Ti

and Tj have inter-wr-dependency if Ti is an update transac-
tion and ci < rj,1(xi).

Lemma 5 (Inter/intra-rw-dependency). If Tj is an
update transaction and rj,1(xk) < ci, transactions Ti and Tj

have inter-rw-dependency or intra-rw-dependency.

Lemma 6 (Intra-ww-dependency). If Ti is an up-
date transaction and wi,p(xi) < wi,p+1(xi), transaction Ti

has intra-ww-dependency.

3.4 Lazy Snapshot Isolation Rule
This section introduces the LSIR, our core innovation

for efficient database live migration without loss of consis-
tency. As described in Section 3.2, the master database
can have unnecessary transactions to be executed in the
slave database in terms of database live migration under SI.
Therefore, we identify unnecessary transactions and discard
them to reduce overhead in synchronizing the slave with the
master. To achieve efficient live migration at the middle-
ware level, the LSIR is based on the properties introduced
in Section 3.3, as they can replay the dependencies between

transactions at the middleware level. The LSIR defines the
scheduling rules for the minimum set of necessary opera-
tions from the operations of the master. Before detailing
the LSIR, we introduce a mapping function that is used
in the LSIR. The mapping function detects transactions to
be propagated to the slave. This function outputs syncsets
in the slave database from the transactions of the master
database and is defined as follows.

Definition 2 (Mapping Function). Let T m be a set
of master transactions, where each master transaction T m

i

has operations om
i ∈ {ri,1, ri,2, ..., ri,p, wi,1, wi,2, ..., wi,q, ci, ai}.

Let T s be syncsets in the slave database. The mapping func-
tion F outputs syncsets T s in the slave database from master
transactions T m as follows:

(1) If master transaction T m
i is a read-only or abort trans-

action, the mapping function F outputs an empty set,
i.e., F(T m

i ) = ∅.
(2) If master transaction T m

i is a committed update trans-
action, the mapping function F maps the first read
operation rm

i,1 of the master transaction T m
i to the first

read operation rs
i,1 of the syncsets T s

i and discards other
read operations rm

i,2, ..., r
m
i,p of the master transaction

T m
i .

(3) If master transaction T m
i is a committed update trans-

action, the mapping function F maps the write oper-
ations wm

i,1, w
m
i,2, ..., w

m
i,q , c

m
i of the master transaction

T m
i to the write operations ws

i,1, w
s
i,2, ..., w

s
i,q , c

s
i of the

syncsets T s
i .

Intuitively, from Definition 2, the mapping function ob-
tains syncsets as follows. It discards read-only and aborted
transactions. The first read operation of a committed up-
date transaction is preserved because the first read oper-
ation creates a snapshot of the database in SI and causes
intra/inter-rw-dependency. Because the others read only the
state of a data item of the snapshot, they do not cause de-
pendencies; thus, the other read operations are discarded.
It preserves all write and commit operations because they
change the database. Consequently, the mapping function
yields oi ∈ {ri,1, wi,1, wi,2, ..., wi,q, ci} in the slave database
for an operation in the master database such that om

i ∈
{ri,1, ri,2, ..., ri,p, wi,1, wi,2, ..., wi,q , ci, ai}. Based on the map-
ping function, we introduce the LSIR, which makes the slave
consistent with the master. The LSIR is defined as follows.

Definition 3 (LSIR). Let Ss be a schedule over a set
of syncsets T s in the slave database Rs. The LSIR for sched-
ule Ss is defined as follows.

(1) If T m
i is a committed update transaction in the master

database, we control the slave database by the rule such
that
(1-a) cm

i < rm
j,1 ∈ Hm ⇒ cs

i < rs
j,1 ∈ Ss and

(1-b) rm
j,1 < cm

i ∈ Hm ⇒ rs
j,1 < cs

i ∈ Ss.
(2) we control the slave to execute write operations in the

same order as the master’s history Hm, i.e.,

wm
i,p(xi)<wm

i,p+1(xi)∈Hm⇒ws
i,p(xi)<ws

i,p+1(xi)∈Ss

We have the following property of LSIR.

Theorem 1 (LSIR). The slave database Rs is consis-
tent with the master database Rm if schedule Ss in the slave
database is determined based on the LSIR under SI.
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4. MADEUS
We now explain our lazy replication pure middleware ap-

proach called Madeus, which is designed to efficiently han-
dle hot spots in DBaaS since they can trigger SLA violation
and reduce customer satisfaction with the service. Although
we can extend the current lazy replication pure middleware
approach [36, 37] for database live migration, it is not ef-
fective since the corresponding serial protocols are not de-
signed for efficient live migration. In this section, we discuss
our new protocol that concurrently propagates not only the
first read and write operations but also commit operations.
Section 4.1 describes the operations (queries) concurrently
propagated with Madeus. We explain the architecture of
Madeus in Section 4.2. In Section 4.3, we outline live mi-
gration with Madeus. We discuss the details of the algo-
rithms of Madeus in Section 4.4. In Appendix C we give an
example of the behavior of Madeus. In Section 4.5, we ar-
gue that Madeus theoretically guarantees database live mi-
gration without sacrificing consistency between master and
slave tenants.

4.1 Eff cient Concurrent Propagation
As shown in Definition 3, the LSIR is a scheduling rule

defined for the two operation pairs of (1) commit operation
cs
i and the first read operation rs

j,1 and (2) write operations
ws

i,p(xi) and ws
i,p+1(xi). Since DBMSs do not generally have

the functionality of controlling operation order, the opera-
tion pairs must be propagated serially to keep the order.
Conversely, the LSIR defines no scheduling rule for any op-
eration pairs other than the two operation pair noted above.
This indicates that, except for the two operation pairs, we
can concurrently propagate any operation pairs. Specifically,
we can concurrently propagate the following operation pairs.

• First read operations: Since the LSIR provides no re-
lationship between the first read operations, we can
propagate them concurrently. For example, if we have
rs

i,1 < cs
k and rs

j,1 < cs
k, we can propagate the read

operations rs
i,1 and rs

j,1 concurrently.

• Write operations: We can propagate write operations
belonging to different transactions concurrently since
the LSIR provides no relationship between write op-
erations. For example, we can concurrently propagate
write operations ws

i,p(xi) and ws
j,q(xj) since they come

from different transactions.

• Commit operations: We can concurrently propagate
commit operations unlike with the previous approach [24].

This is because the LSIR does not provide any rela-
tionship between commit operations. For example, if
we have cs

i < rs
k,1 and cs

j < rs
k,1, we can concurrently

propagate commit operations cs
i and cs

j .

Among the above three operation pairs, the pair of commit
operations (third pair) is most effective in terms of efficient
live migration. This is because, if we propagate commit op-
erations cs

i and cs
j concurrently, DBMSs can execute a group

commit where multiple commit operations induce only one
disk access. This can significantly reduce the high I/O cost
of database live migration.

4.2 Architecture
Figure 1 shows the model of Madeus. To receive op-

erations sent to a DBMS, Madeus lies between customers
and DBMSs. Madeus uses commodity hardware and has
no shared disk, resulting in low cost; Madeus is a so-called
shared-nothing architecture. It uses off-the-shelf DBMSs
guaranteeing SI and does not modify them. Each node
runs a single DBMS instance, and each instance has mul-
tiple databases (tenants), i.e., a shared process model. A
customer of a service uses a particular database. For exam-
ple, a cluster consists of three nodes: 0, 1, and 2 running
DBMS instances. Node 0 has tenant A (database A for cus-
tomer A), and node 1 has tenants B and C (databases B
and C for customers B and C, respectively). Node 2 has
no database. In this example, customers B and C share the
same DBMS instance.

When a customer sends an operation, Madeus receives it
and picks up necessary information by parsing the opera-
tion. Then, it transmits it to the customer’s tenant. After
receiving the response of the operation from Madeus, the
customer sends a new operation.

Figure 2 shows the architecture of Madeus with its four
types of threads: single manager, multiple workers, sin-
gle conductor, and multiple players. All the components
of Madeus run on one node because the management of
a few DBMS nodes for Madeus introduces little overhead
and does not become a bottleneck. If we managed several
hundreds of DBMS nodes, we would consider locating some
components to one node and the others to another for load
balance. When a customer sends an operation, a worker re-
ceives it and transmits it to the node that has the customer’s
database. The worker dynamically allocates its own sync-
set buffer (SSB) to store the operation as an element of a
syncset. The SSBs are linked to the syncset list (SSL). The
manager is an administration thread that controls all the
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other threads. When an operator issues a migration order,
the manager receives the order and sends it to the other
threads. The multiple players perform an important role in
concurrently propagating operations. A conductor notifies
the timing at which each player should propagate syncsets.

Figure 3 shows the architecture of an SSB. It has rooms
to store a start timestamp (STS) and end timestamp (ETS).
Additionally, an SSB has multiple entries for each element
of the syncset. It is important that the entries be held in a
first-in, first-out (FIFO) queue to maintain the query order.
Figure 4 shows the architecture of an SSL. It is the list of
pointers to SSBs. One pointer has SSBs that have the same
STS; players concurrently propagate the SSBs.

We can prepare a standby Madeus node in addition to an
active Madeus node to circumvent a single point of failure.
Since Madeus keeps a small amount of state information
for normal processing, we can smoothly switch the active
Madeus node to the standby Madeus node during normal
processing. The standby Madeus node restarts from the
first step if the active Madeus node malfunctions during mi-
gration processing. We can provide multiple slaves to avoid
stopping migration; Madeus can propagate syncsets to mul-
tiple slaves at the same time. If a slave fails, Madeus discards
the slave and continues to propagate the remaining syncsets
to the others. It can also synchronize multiple active masters
with Pangea’s protocol [33]; an eager replication middleware
approach to synchronize multiple masters.

4.3 Database Live Migration
Madeus migrates a tenant from master to slave by the

following steps.

Step 1: Creating a snapshot. When an operator issues a
database live migration order to Madeus, Madeus creates a
snapshot of the master by issuing a dump transaction. Dur-
ing creation, the master executes the customer’s operations.
Note that the snapshot does not include the customer’s op-
erations during snapshot creation. Therefore, Madeus saves
the operations as a syncset.

Step 2: Creating a slave. After the snapshot has been
created, Madeus creates a slave on the destination using the
snapshot while the master executes the customer’s opera-
tions. Madeus continues to save them as syncsets.

Step 3: Propagating syncsets. After the slave has been
created, Madeus propagates syncsets to the slave. We con-
currently propagate a minimum query set with minimum
serialization. At the same time, the master executes the
customer’s operations, and Madeus saves the syncsets.

Step 4: Conducting switch-over. Once Madeus propa-
gates all syncsets, the master and slave become consistent.
At this time, Madeus fires a switch-over operation that redi-
rects the customer’s operations from the master to the slave.

Unlike current propagation approaches [24, 36, 37], our
key idea is how to concurrently propagate a minimum query
set with minimum serialization according to the LSIR in
Step 3. Current approaches are too restrictive; serial prop-
agation of all queries [36, 37] or serial propagation of com-
mit queries [24]. Commit serialization induces serious prob-
lems: it produces the overhead of mutex lock completion
and lessens the benefit from group commit. Madeus avoids
these drawbacks and improves performance by concurrently
propagating a minimum query set with minimum serializa-
tion based on the LSIR.

Algorithm 1 Worker for update transaction
1: if first read operation then

2: enter critical region;
3: /* there is no commit operation executed */
4: send operation to master;
5: receive response from master;
6: STS := MLC;
7: allocate SSB;
8: save first operation to SSB;
9: leave critical region;

10: send response to customer;
11: else if write operation then

12: send operation to master;
13: receive response from master;
14: send response to customer;
15: save operation to SSB;
16: else if commit operation then

17: enter critical region;
18: /* there is no first read operation executed */
19: send operation to master;
20: receive response from master;
21: ETS := MLC + +;
22: save operation to SSB;
23: if during migration then

24: link SSB to SSL;
25: else
26: discard SSB;
27: end if
28: leave critical region;
29: send response to customer;
30: else
31: send operation to master;
32: receive response from master;
33: send response to customer;
34: end if

Algorithm 2 Worker for read-only transaction
1: send operation to master;
2: receive response from master;
3: send response to customer;

4.4 Algorithms
In this section, we explainthe detailed behavior of workers,

manager, conductor, and players.

4.4.1 Workers
A worker manages the master logical clock (MLC) to de-

termine the relative order of operations. The worker saves
the MLC as an STS when it stores the first read operation
in the SSB. The worker also saves the MLC as an ETS when
it stores a commit operation in the SSB.

Algorithm 1 is the behavior of a worker upon receiving
an update transaction. In this algorithm, the first read op-
eration and commit operation are executed exclusively to
determine the relative order between them (lines 2-9 and
lines 17-28). When a worker receives the first read oper-
ation, it creates its own SSB since the operation starts a
transaction (line 7). The worker stores the first operation
as an element of a syncset since the slave must replay inter-
rw/wr-dependencies or intra-rw-dependency (line 8). The
MLC increases by one whenever a commit operation is ex-
ecuted. This is because the commit operation of an update
transaction creates a new state of the database, namely, a
new snapshot (line 21). An SSB including a syncset is linked
to the SSL only during live migration (lines 23-27).

If a transaction is read-only, Madeus does not need to save
any operation (Algorithm 2).

4.4.2 Manager
Algorithm 3 describes the behavior of the manager. The

manager controls Steps 1, 2, 3, and 4 of database live migra-
tion (see Section 4.3). In this critical region, no commit op-
eration is executed; this means that the MLC is not changed
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Algorithm 3 Manager

1: /* Step 1 */
2: enter critical region;
3: CreateSnapshot();
4: MTS := MLC;
5: leave critical region;
6: WaitUntilSnapshotCreated();
7: /* Step 2 */
8: CreateDatabase();
9: WaitUntilDatabaseCreated();

10: /* Step 3 */
11: StartConductorAndPlayers();
12: WaitUntilAllSyncsetsExecuted();
13: /* Step 4 */
14: SuspendAllTransactions();
15: WaitUntilAllSyncsetsExecuted();
16: SwitchOverFromMasterToSlave();
17: ResumeAllTransactions();
18: EndConductorAndPlayers();

Algorithm 4 Conductor

1: SLC := GetSmallestSTS();
2: /* step 3 */
3: while SLC ≤ MLC do

4: OrderToPropagateTheFirstOperation();
5: WaitUntilAllTheFirstOperationPropagated();
6: oldSLC := SLC;
7: SLC := GetSmallestSTS();
8: CCN := GetConcurrentCommitNumber();
9: OrderToPropagateCommitOperation();

10: WaitUntilAllCommitOperationPropagated();
11: end while

12: WakeUpManager();

in the region (lines 1-5). For Step 1, once the Create-
Snapshot() function launches the transaction that creates
a snapshot of the master, it returns control (line 3), then
the manager waits until the snapshot has been created (line
6). For Step 2, after creation of snapshot, the manager cre-
ates a slave on the destination node using the snapshot (line
8). Step 3 conducts concurrent propagation of syncsets; to
this end, the manager creates the conductor and players
then leaves Step 3 to them (lines 11-12). When the slave
catches up with the master, i.e., all SSBs linked to the SSL
have been propagated to the slave, the manager transits to
Step 4. To ensure the slave has become consistent with the
master, the manager suspends sending operations (line 14).
After all transactions are suspended and all syncsets propa-
gated (line 15), the manager executes switch-over to change
the destination of operations from master to slave (line 16).
The manager resumes sending operations (line 17).

4.4.3 Conductor
Algorithm 4 shows the algorithm of the conductor. The

conductor plays an important role in achieving concurrent
propagation of syncsets by elegantly coordinating multiple
players. The conductor manages the slave logical clock (SLC)
to control operation propagation without violating consis-
tency. The conductor uses an important local variable, con-
current commit number (CCN), which refers to the number
of commit operations concurrently being executed. The con-
ductor obtains the SLC as the smallest STS by scanning the
SSL (line 1). While the condition SLC ≤ MLC holds, the fol-
lowing steps are repeated (lines 3-11): The conductor orders
players to concurrently propagate the first read operations
whose STS equals the SLC (line 4). The conductor waits
until all the first operations have been propagated (line 5).
The conductor obtains the next SLC (line 7) and calculates
the CCN using the next SLC (line 8). The conductor orders

Algorithm 5 Player

1: /* propagate first operation */
2: WaitUntilOrder();
3: SendOperation();
4: RecvResponse();
5: InformToConductor();
6: /* propagate write operations */
7: while write operation exists do

8: SendOperation();
9: RecvResponse();

10: end while
11: /* propagate commit operation */
12: WaitUntilOrder();
13: SendOperation();
14: RecvResponse();
15: InformToConductor();

players to concurrently propagate the commit operations
whose ETS meets the following equation (line 9):

oldSLC ≤ ETS ≤ oldSLC + CCN − 1 (1)

For example, if the current SLC is 3 and the next SLC is
5, the CCN is 2(= 5 − 3). In this case, Equation (1) is
computed as 3 ≤ ETS ≤ 3 + 2 − 1 = 4. Therefore, the
conductor gives the order of concurrent propagation to the
players if the players have the SSBs whose ETSs are 3 and
4. Note that this process can result in group commit. The
conductor waits until all the commit operations have been
propagated (line 10). When the conductor finishes the loop,
it wakes the manager up (line 12).

4.4.4 Players
Algorithm 5 shows the algorithm of a player ; players prop-

agate syncsets concurrently to the slave. Note that the con-
ductor gives orders to propagate syncsets for players, and
workers relay packets between a customer and master ten-
ant and create syncsets. A player waits until the conduc-
tor orders the propagation of the first operation (line 2).
If the player receives the order, it propagates the opera-
tion to the slave (line 3). When the player receives a re-
sponse (line 4), it informs the conductor (line 5). A player
propagates all write operations in FIFO order (lines 7-10).
The player waits until the conductor orders the propagation
of a commit operation (line 12). Upon receiving the order,
the player propagates the operation to the slave (line 13).
Since multiple players propagate commit operations, we can
benefit from group commit. After the player receives a re-
sponse (line 14), the player informs the conductor of it (line
15). See Appendix C for an example of Madeus behavior.

4.5 Theoretical Analysis
This section discusses the theoretical property of Madeus.

4.5.1 Live Migration Consistency

Theorem 2 (Live migration consistency). Madeus
conducts database live migration guaranteeing that the slave
is consistent with the master under SI.

Since the LSIR is a loose rule, Madeus provides opportuni-
ties to propagate syncsets concurrently. More importantly,
since Madeus concurrently propagates commit operations,
we can benefit from group commit for the operations. The
experiments discussed in the next section show the effective-
ness of Madeus relative to current approaches.
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4.5.2 Effectiveness of LSIR
In this section, we theoretically discuss the effectiveness

of the LSIR. Let Cr, Cw, and Cc be the cost of read, write,
and commit operations, respectively. Let Nr and Nw be
the number of read and write operations in one transaction,
respectively. Let the total number of transactions be Ntotal.
Let C′

c and N ′ be the cost of the group commit operation
and the number of group commit operations, respectively.
Then, let the total cost of Madeus be Cmadeus and the total
cost that does not include any rules of the LSIR be (CALL)
as follows3 :

Cmadeus =Ntotal(Cr+NwCw)+N
′

C
′

c+(Ntotal−N
′)Cc (2)

CALL =Ntotal(NrCr+NwCw + Cc) (3)

Therefore, the difference is as follows:

CALL − Cmadeus = Ntotal(Nr − 1)Cr + N
′(Cc − C

′

c) (4)

Considering Nr ≥ 1, N ′ ≥ 0 and Cc > C′

c, Cmadeus −
CALL ≥ 0; Cmadeus is never larger than CALL. Further-
more, as Ntotal or N ′ is larger, Cmadeus − CALL is larger.
This means that, under heavy workload, there are many con-
current operations, i.e., Ntotal and N ′ are large; therefore,
Madeus improves performance.

5. EXPERIMENTAL EVALUATION
We implemented Madeus and conducted a performance

evaluation with the TPC-W benchmark [15] to investigate
its migration time, response time, and throughput. Sec-
tion 5.3 discusses migration times for various middleware.
Section 5.4 discusses the performance with an 800-MB data-
base. Section 5.5 discusses the effect of changing database
size. Section 5.6 answers the question which database should
be migrated, heavier or lighter, in a multitenant environ-
ment.

5.1 TPC-W Benchmark
In assessing a cloud computing service, it is important

to evaluate the end-to-end performance of practical enter-
prise applications involving transaction processing. Hence,
we used the TPC-W benchmark [15]. This benchmark mod-
els customers that access an online bookstore. It simulates
three different profiles by varying the ratio of browsing re-
quests: shopping, browsing, and ordering mixes. All three
profiles consist of the same basic read-only or update in-
teractions. The difference between the three profiles is the
ratio of read-only interactions to update interactions. In
browsing, 95% of interactions are read-only. For shopping,
the percentage is 80%. For ordering, the percentage is 50%.
We selected the ordering mix for our tests since the update-
intensive workload is more severe for replication than shop-
ping or browsing.

The TPC-W benchmark allows us to study different work-
loads by varying the number of emulated browsers (EBs).
Each EB simulates one customer who issues a request to an
application server and receives a response. After receiving
a response, the EB waits for a specified time then issues
the next new request. As the number of EBs increases, the
workload becomes heavier.

3
Although there is an abort operation, the frequency is very small;

therefore, we ignore the cost.

Table 2: Difference among middleware approaches

MIN CON-FW CON-COM
B-ALL
B-MIN

√
B-CON

√ √
Madeus

√ √ √

5.2 Experimental Setup
In our experiment, a dedicated node was used for every

component, i.e., middleware, PostgreSQL, Tomcat, and load
generator of EBs. Thus, we used one node for the master,
one node for the slave, one node for middleware, one node for
tomcat, and one node for load generator for the experiments
discussed in Sections 5.3, 5.4 and 5.5. For the experiment
discussed in Section 5.6, we used one node for the master,
one node for the slave, one node for the middleware, three
nodes for tomcat, and three nodes for the load generator
to emulate a multitenant environment. We used only one
machine per middleware for all experiments. This is because
the middleware node did not become a bottleneck at any
time during our experiments. According to the percentages
of total CPU time, determined by the vmstat command, the
time spent idle was almost 100% at any time. All machines
had the same configuration of one 3.1-GHz Xeon E3-1220
CPU, 4-core, 4-thread, 8-MB-cache, 16-GB RAM and one
250-GB SATA HDD. All machines were connected through a
1-Gbps Ethernet LAN. The software used was Linux kernel
2.6.32, PostgreSQL 9.2.6, Tomcat 7.0.27. We used an open
source tool of the TPC-W benchmark [10].

We used PostgreSQL as the underlying DBMS without
modification since PostgreSQL provides SI. A customer does
not send a transaction as a unit but operations individually.
When a customer sends an operation, Madeus receives it
and picks up necessary information by parsing the operation.
To interpret the operation directly, we implement the libpq

and type 4 JDBC protocol of PostgreSQL. Then, Madeus
submits the operation to the DBMS. Next, after Madeus re-
ceives an answer from the DBMS, Madeus transmits it to
the customer. If we modify this protocol, we can use other
DBMSs. While Madeus is the first complete and practical
middleware implementation, it uses less than 5,000 lines of
C code. This is because the LSIR is simple; the implemen-
tation of Madeus is not complicated.

A preliminary experiment with one tenant was conducted
to examine how many EBs create light, medium, and heavy
workloads in the environment. As shown in Figure 5, mean
response times were less than 100 ms for 100, 200, and
300 EBs. For 400, 500, and 600 EBs, the mean response
times were over 100 ms but less than 2 s. When we in-
creased the workloads further, the mean response times were
over 2 s for 700, 800, 900, and 1000 EBs. From the 2-second-
rule [2, 3, 4], heavy workloads were set at 700, 800, 900, and
1000 EBs. Additionally, 400, 500, and 600 EBs were set
as medium workloads and 100, 200, and 300 EBs as light
workloads. Therefore, we selected 100, 400, and 700 EBs to
measure light, medium, and heavy workloads, respectively.

5.3 Migration Time
We investigated the efficiency of Madeus conducting data-

base live migration by concurrent propagation. We com-
pared the migration time of Madeus against three baseline
middleware approaches with current propagation protocols.
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5.3.1 Three Baseline Middleware Approaches
To the best of our knowledge, there are no pure mid-

dleware approaches that provide database live migration.
Therefore, we implemented three baseline middleware ap-
proaches that exploit other propagation protocols in provid-
ing database live migration. The first is baseline middleware
with all serial propagation (B-ALL). It uses a serial prop-
agation protocol of all transactions. If the master concur-
rently executes multiple transactions, B-ALL serializes them
in commit order, and the slave serially executes them in that
order. The second is baseline middleware with minimum se-
rial propagation (B-MIN). It uses a serial propagation proto-
col of minimum syncsets, the same as in previous studies [36,
37]. The difference with B-ALL is that B-MIN implements
the sending of minimum query sets of the LSIR. The third is
baseline middleware with concurrent propagation (B-CON).
It uses a similar propagation protocol of syncsets as in the
previous study [24]. Note that B-CON concurrently prop-
agates the first read operation and write operations similar
to the LSIR but does not commit operations. Therefore,
B-CON cannot benefit from group commit, unlike Madeus.
We implemented the functionality that propagates the min-
imum query set as well as the first read operation and write
operations stated in Section 3.4.

We summarize the differences among B-ALL, B-MIN, B-
CON, and Madeus in Table 2. In this table, if we implement
the functionality of propagating the minimum query set, the
abbreviation MIN is used. If we implement the concurrent
propagation of the first read operations and write opera-
tions for live migration, the abbreviation CON-FW is used.
If we implement the concurrent propagation of commit op-
erations, the abbreviation is CON-COM.

5.3.2 Results
We selected a database size of 800 MB (100 browsers,

100,000 items) based on prior studies [23, 24, 25]. Figure 6
shows the migration times. The x-axis represents different
workloads (the number of EBs) and the y-axis represents
the migration time from the start to end of the database
live migration.

Under light workload (100 EBs), the migration times of
B-ALL, B-MIN, B-CON, and Madeus were almost the same
at 110 s. Under medium workload (400 EBs), the migra-
tion times of B-ALL, B-MIN, B-CON, and Madeus were
304, 221, 703, and 104 s, respectively. Under heavy work-
load (700 EBs), the migration times of B-ALL B-MIN, B-
CON, and Madeus were 959, 332, N/A, and 101 s, respec-
tively. The migration times of B-ALL and B-MIN linearly

increased. The migration time of B-CON increased dramat-
ically under medium workload. We could not measure the
migration time of B-CON under heavy workload since the
slave could not catch up with the master. The migration
time of Madeus decreased slightly as we increased workloads.

In Madeus, the total time for database live migration un-
der heavy workload (approximately 101 s) was shorter than
those under light and medium workloads (approximately 110
and 104 s). The reasons are twofold. First, recall that the
LSIR means the minimum sequential order to synchronize
the slave with the master. The total amount of queries is
smaller under light workload, but most of them must be
propagated serially because the queries are executed seri-
ally on the master. The frequency of the queries that must
be propagated serially under heavy workload is probably
almost the same as that under light workload. However, un-
der heavy workload, because many queries besides the serial
queries are executed concurrently on the master, the queries
can be propagated concurrently to the slave. Therefore, the
total amount of queries executed concurrently during a unit
time under heavy workload is larger. Consequently, the slave
under heavy workload quickly becomes “warmer”, and this
results in shorter time to migrate. The second reason is that
Madeus can groups concurrent commit queries and benefits
from group commit because Madeus has many concurrent
commit queries under heavy workload.

By comparing B-ALL with B-MIN, B-CON, and Madeus,
we recognize the benefit of the LSIR since B-ALL does not
have any of the following three rules of the LSIR; (1) produce
a minimum operation set to synchronize the slave with the
master, (2) control the sequential order between the first
read operation and commit operations, and (3) control the
sequential order of write operations. By comparing B-ALL
with B-MIN, the migration time of B-MIN was shorter than
that of B-ALL. Therefore, we recognize that the first rule is
useful.

By comparing B-ALL with B-CON, the migration time of
B-CON was longer than that of B-ALL. Although we ben-
efit from concurrent propagation, sequential commit prop-
agation lessens this advantage. To conduct commit opera-
tions in the master’s transaction order in B-CON, all play-
ers compete for the pthead mutex lock at every commit
time; B-ALL, B-MIN, and Madeus do not include this code.
Therefore, only B-CON struggles against the competition.
This overhead increases the response time of B-CON. Con-
sequently, B-CON lessens the advantage of the concurrent
propagation of operations.

By comparing B-ALL with Madeus, we can recognize the
advantage of the LSIR because B-ALL does not implement
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any of the rules of the LSIR, but Madeus implements all the
rules. We can confirm the discussion stated in Section 4.5.2
experimentally, as shown in Figure 6. Under light workload,
the response times of Madeus and B-ALL were very simi-
lar; therefore, the LSIR results in little benefit. However,
Madeus was 9.5 times faster than B-ALL at 700 EBs un-
der heavy workload. Consequently, the LSIR was effective,
especially under heavy workload.

5.4 Performance
In this experiment, we measured the response time and

throughput of one tenant in Madeus. We selected a database
size of 800 MB (288,000 customers, 100,000 items). Figure 7
shows the response time under heavy workload (700 EBs).
The degradation between 0 and 50 s was caused by the
warming up of the TPC-W benchmark. Database live mi-
gration started and ended at approximately 150 and 250 s,
respectively. At the start of migration, the response time
was increased. This is because, to obtain the MTS, the
manager entered the critical region, which ensured that no
commit operations would be executed (lines 17-28 in Algo-
rithm 1 and lines 2-5 in Algorithm 3). The response time
was also increased at the end of migration since the manager
suspended all transactions to conduct switch-over (lines 14-
15 in Algorithm 3). Fortunately, the response time during
migration was only slightly longer than those in normal oper-
ation. There is a whisker around 290 s, which was caused by
a checkpoint of PostgreSQL. Figure 8 shows the throughput
under heavy workload (700 EBs). The degradation between
0 and 50 s was caused by the warming up of the TPC-W
benchmark. Database live migration started and ended at
approximately 150 and 250 s, respectively. At the start and
end of migration, the throughput decreased due to small sus-
pension, as stated above. During migration, the throughput
was only slightly smaller than those in normal operation.

Table 3: Database size
items emulated browsers database size [GB]
100000 100 0.8
500000 500 3.1
1000000 1000 6.2
2000000 2000 12

We observed a decrease of around 290 s because of a check-
point of PostgreSQL. Considering that the degradation of
the checkpoint was larger than those imposed by migration,
the migration overhead was quite small.

5.5 Changing Database Size
Figure 9 shows the migration time of Madeus with varing

database sizes, 0.8, 3.1, 6.2, and 12 GB with heavy workload
(700 EBs). The database sizes are determined by setting two
parameters of the TPC-W benchmark, items and emulated
browsers, as shown in Table 3. The migration times were
101, 496, 1365, and 3536 s, respectively. As database size
increased, the migration time increased. When Madeus cre-
ates databases on the slave, Madeus not only inserts data
but also alters the attributes of the databases and creates
indexes. Therefore, creating databases takes longer than
dumping databases. This longer time induces many sync-
sets and a longer time to propagate the syncsets. Generally,
all live migration approaches have this challenge because as
the size of database increases, the time to propagate the
database increases and then the data to synchronize the
slave with the master increases. Considering Madeus con-
ducts migration with real data size in realistic time, Madeus
is effective.

5.6 Performance inMulti-tenant Environment
In practical use, multiple tenants are located on the same

node, and one tenant with heavy workload can burden the
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others. Database live migration is necessary to address this
situation. The question is, which should be migrated: a light
or heavy tenant? We conducted an experiment to answer
this question. The cluster used for this experiment consisted
of two nodes: nodes 0 and 1. First, node 0 had three tenants
(databases): tenants A, B, and C. Node 1 had no tenants.
In addition, tenant B had a heavy workload (700 EBs), and
tenants A and C had light workloads (200 EBs). In this ex-
periment, node 0 was a hot spot. We evaluated the response
times and throughputs for the following two cases.

Case 1: Migrating heavy tenant. Tenant B with heavy
workload was migrated from node 0 to node 1, and we evalu-
ated the response time and throughput. The response times
of tenants A and B are shown in Figures 10 and 12, respec-
tively, and the throughputs of tenants A and B are shown
in Figures 11 and 13, respectively. We omit the response
time and throughput of tenant C since they were similar
to those of tenant A. Database live migration started at ap-
proximately 500 s and ended at approximately 600 s. There-
fore, about 100 s was needed to migrate heavy tenant B.

Although the workload of tenant A was light, as shown
in Figure 10, its response time did not decrease since the
heavy workload of tenant B burdened tenant A. We can see
the performance degradation due to checkpointing of Post-
greSQL in Figures 10 and 11. Figure 10 indicates that, in
tenant A, the maximum response time during migration was
less than that during normal processing; the response time
of tenant A was not affected by migration. After migration,
the response time of tenant A decreased since tenant B with
heavy workload had been migrated. Figure 11 indicates that
the throughput during migration is similar to that of normal
processing for tenant A.

Figure 12 shows that the response time of tenant B was
long during normal processing since its workload was heavy.

Fortunately, the response time during migration was not
longer than that during normal processing. Throughput
degradation was also small during migration, as shown in
Figure 13. This means that the overhead of migration pro-
cessing was very slight. Since the slave on node 1 executed
queries during migration, node 1 was not cold after migra-
tion. Therefore, we could only see small performance dete-
rioration just after tenant B migration. This suggests that
we can avoid a cold cache of the slave, which can lead to an
increase in response time [23]. As a result, the response time
of tenant B with heavy workload decreased after migration
to node 1, which initially had no tenant. More importantly,
we can see that throughput increased after migration.

Case 2: Migrating light tenant. Tenant C with light work-
load was migrated from node 0 to node 1. Figures 14, 16,
and 18 plot the response times of tenants A, B, and C, re-
spectively. Figures 15, 17, and 19 plot the throughputs of
tenants A, B, and C, respectively. Database live migration
started and ended at approximately 500 and 630 s, respec-
tively; migration of the light tenant took about 130 s.

Figure 14 shows that the response time of light tenant A
did not decrease due to migration. There are two reasons for
this. First, the heavy workload of tenant B still burdened
tenant A after migration. Second, the migration time of
tenant C was longer than that of tenant B (130 s in Case 2
vs. 100 s in Case 1). This confirms the experimental results
on migration time in Section 5.3.2 (Figure 6). In addition,
as shown in Figure 16, the response time of tenant B did not
decrease since its workload was still heavy after migration of
the light tenant; the total workload of node 0 was 900 EBs
(200 EBs + 700 EBs) after migration. Figure 18 indicates
that the response time of tenant C before migration was
similar to that of tenant A (Figure 14). After migration, the
response time was very short since node 1 had only tenant C.
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Which migration is better?. Which is better, migrating
a tenant with light workload or one with heavy workload
in a multitenant environment? Our answer is that heavy
workload tenants should be migrated. There are two reasons
for this; first, we can effectively reduce the response time of a
hot spot by eliminating the heavy workload. Second, we can
achieve short migration time under heavy workload because
of “warm” cache effect and benefit of group commit. The
experimental results indicate that Madeus is very useful,
especially in heavy workload environments.

6. RELATED WORK
Several related approaches have been proposed for data-

base live migration. However, to the best of our knowledge,
there is no efficient migration approach supporting DBaaS.

Live Migration for Virtual Machines. Clark et al. pro-
posed the first approach for live migration of VMs [20]. It
uses a pre-copy approach in which pages of memory are it-
eratively copied from the source machine to the destination
host. Bradford et al. proposed an approach for WAN en-
vironment [18]. It propagates not only memory image but
also data on disks. Hines et al. propopsed post-copy ap-
proach [28]. Sväard et al. propose an approach to transfer
compressed memory pages to increase migration through-
put [39]. Song et al. proposed to transfer pages in pararell [38].
Mashtizadeh et al. proposed to propagate memories and
disk image effectively for local and wide area network [31].

Database Live Migration Systems. Minhas et al. pro-
posed RemusDB, a high availability DBMS approach that
modifies Remus [21] for DBMS workloads [32]. All migration
functionalities are implemented in the VM layer. Further-
more, RemusDB needs modification of DBMSs. Two built-
in replication approaches have been proposed. Das et al.
proposed to iteratively copy the cache during migration [23].
Their approach starts the slave with a warm cache after mi-
gration. Furthermore, it relies on shared disks. Elmore et al.
proposed another built-in replication approach [25] in which
pages are transmitted according to the index structure. It
relies on the impractical assumption that the index struc-
ture is immutable during migration. Therefore, if a client
requests a transaction to change the index structure, the
transaction fails and aborts. Both also involve modification
of the DBMS engine, as opposed to our middleware-based
approach.

Lazy Replication Middleware. Several approaches have
been proposed that use lazy serial propagation [36, 37]. How-
ever, such approaches exhibit the problem in which the slave
may not catch up with the master. Therefore, serial-propa-
gation-based approaches have low efficiency in propagating
queries. The typical and well known solution for this prob-
lem is to slow the master by throughput restrictions so that
the slave can keep up with the master [19]. Unfortunately,
this prevents the efficient use of computing resources.

Lazy Replication Systems. Daudjee et al. proposed a lazy
replication system with a similar rule to the LSIR [24]. Their
approach is not middleware; it requires the modification of
existing DBMSs. Because they assume the first-committer-
wins rule4, as written in a previous paper [17], their pro-
posed rules are too restrictive; the master and slave must

4
When two transactions attempt to modify the same data item, only

the first committed transaction modifies successfully and the other
aborts.

execute commit operations in exactly the same order. In
fact, practical DBMSs, such as Oracle, SQL Server, and
PostgreSQL, adopt the first-updater-wins rule instead of
the first-committer-wins rule. Because we assume the first-
updater-wins rule, we can propose a relaxed rule, LSIR.
Madeus groups concurrent commit operations and benefits
from group commit. Moreover, it is based on unrealistic
assumptions, i.e., a master’s operations are broadcasted in
the time-stamped order to slaves and the existence of start
operation that creates a snapshot (in fact, a snapshot is
created just before the first operation is executed.). Be-
cause of these unrealistic assumptions, this approach does
not include a practical prototype; evaluation was conducted
through simulation.

Log-based Replication Systems. Barker et al. proposed
the database live migration middleware called Slacker [16].
It uses a well known PID controller [11]. Slacker creates
syncsets by parsing binary transaction logs. Slacker, there-
fore, is specific to particular versions and types of DBMSs.
In addition, it is not based on the shared process model;
it requires a DBMS instance for each tenant, the same as
with the VM-based model. Therefore, this approach fails to
share resources efficiently and degrades performance. Post-
greSQL provides log-based replication that uses transaction
logs as syncsets [35]. In this approach, all databases (ten-
ants) share the transaction logs; thus, it cannot be used for
the shared process model. Furthermore, since the log format
is different for a particular version, this does not permit a
heterogeneous environment that has multiple versions and
multiple types of DBMSs. If we constracted DBMS systems
with heterogeneous versions, we could avoid that one bug
shut down whole systems.

High Availability Replication Systems. Oracle Real Ap-
plication Cluster (RAC) [12], IBM DB2 pureScale [13] and
Microsoft Windows Server Failover Cluster (WSFC) [14] are
commercial high availability systems. Unlike Madeus, they
rely on a shared disk, which is not only expensive but also
a single point of failure.

7. CONCLUSION
We proposed a middleware approach called Madeus that

provides efficient database live migration in DBaaS. Madeus
is pure middleware that is transparent to a DBMS, uses com-
modity hardware and software, and is independent of any
dedicated tool. Madeus uses a novel concurrent propagation
protocol that makes the slave consistent with the master un-
der SI. This protocol concurrently propagates the first read,
write, and commit operations. As a result, our approach
can benefit from concurrency and group commit. We imple-
mented Madeus on top of PostgreSQL. The code size is less
than 5,000 lines in C language. We conducted experimental
evaluations with the TPC-W benchmark. Madeus exhibited
shorter migration times than current approaches, especially
for heavy workloads. Furthermore, it could resolve a hot
spot in a multitenant environment. Madeus is a very prac-
tical and effective approach for achieving DBaaS. We can
consider an alternative that combines primary/secondary
DBMS replication and migration. We will compare this set-
ting to our approach for future work.
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APPENDIX
A. PROOF OF LEMMA

A.1 Lemma 1
Proof. Let Hm be a history of committed transactions

on master database Rm. If master database Rm is exe-
cuted under SI, the history of the master database Hm does
not include any inter-ww-dependencies. This is because the
first-updater-wins rule permits only the first-update trans-
action to commit; the other transactions must abort. If the
first-update transaction aborts, the second-update transac-
tion can commit, but the other transactions must abort.
In short, only one transaction can commit while the other
transactions must abort. Therefore, the history of mas-
ter database Hm does not include inter-ww-dependencies.
Thus, slave database Rs does not need to replay any inter-
ww-dependencies. ✷

A.2 Lemma 2
Proof. We need read operations ri,p(p > 1) to obtain the

state of a database. These read operations do not conflict
with any operations. In addition, they do not change the
state under SI; they read only the snapshot created by ri,1.
Therefore, slave database Rs does not need to replay any
intra-wr-dependencies. ✷

A.3 Lemma 3
Proof. This is obvious from Lemmas 1 and 2. ✷

A.4 Lemma 4
Proof. Since Ti is an update transaction, we have wi,p(xi) <

ci. Therefore, wi,p(x) < ci < rj,1(xi). From definition 1,
this equation corresponds to inter-wr-dependency. ✷

A.5 Lemma 5
Proof. Since Tj is an update transaction, we have rj,1(xk) <

wi,q(xi) < ci or wi,q(xi) < rj,1(xk) < ci. If i = j and
rj,1(xk) < wi,q(xi) < ci, we have ri,1(xk) < wi,q(xi). This
indicates that transactions Ti and Tj have intra-rw-dependency.
If i = j and wi,q(xi) < rj,1(xk) < ci, we have wi,q(xi) <

rj,1(xk). This indicates that transactions Ti and Tj have
intra-wr-dependency. From Lemma 2, we can ignore this
case. If i 6= j, the equation corresponds to inter-rw-dependency.
Note that in both cases rj,1(xk) < wi,q(xi) < ci and wi,q(xi) <

rj,1(xk) < ci, the snapshot of transaction Tj does not in-
clude the modification of wi,q(xi). Therefore, we have intra-
rw-dependency or inter-rw-dependency if Tj is an update
transaction and rj,1(xk) < ci. ✷

A.6 Lemma 6
Proof. If we have wi,p(xi) < wi,p+1(xi), it is clear that

transaction Ti has intra-ww-dependency from the definition
of 1. ✷

B. PROOF OF LSIR
Proof. From Lemma 3, we can make the slave consistent

with the master if we replay the same four dependencies
as the master on the slave: inter-wr-dependency, inter-rw-
dependency, intra-rw-dependency, and intra-ww-dependency.
The rule of cm

i < rm
j,1 ∈ Hm ⇒ cs

i < rs
j,1 ∈ Ss in rule

(1-a) indicates that the scheduler replays the same inter-
wr-dependency on the slave database as the master from

Lemma 4. In addition, from Lemma 5, the rule rm
j,1 <

cm
i ∈ Hm ⇒ rs

j,1 < cs
i ∈ Ss in rule (1-b) indicates that

the scheduler replays the same inter/intra-rw-dependencies
on the slave as the master. The rule wm

i,p(xi) < wm
i,p+1(xi) ∈

Hm ⇒ ws
i,p(xi) < ws

i,p+1(xi) ∈ Ss in rule (2) indicates that
the scheduler replays the same intra-ww-dependency on the
slave as the master from Lemma 6. As a result, the LSIR
can make the slave consistent with the master under SI. ✷

C. EXAMPLE OFMADEUS BEHAVIOR
This section gives an example of how Madeus handles op-

erations. We assume that the set of transactions is T =
{Ti = ri,1(xp), wi,1(xi), ci, Tj = rj,1(yq), wj,1(yj), cj , Tk =
rk,1(xi), wk,1(xk), ck}. First, the MLC is 3. Figure 20 shows
the behavior of workers. When workeri receives the first
read operation ri,1(xp), it stores the current MLC as an STS
and the first read operation ri,1(xp) in its SSB. Worker j re-
ceives the first read operation rj,1(yq) and stores the current
MLC as an STS and the first read operation rj,1(yq). When
workeri receives write operation wi,1(xi), it stores the oper-
ation in its SSB. Worker j receives write operation wj,1(yj)
and stores the operation in its SSB. When workeri receives
commit operation ci, it stores the current MLC as an ETS
and operation ci in its SSB. Furthermore, it increases the
MLC by 1 to 4. Since commit operation cj goes to workerj ,
it stores the current MLC as an ETS and operation cj in its
SSB. It also increases the MLC by 1, to 5. When workerk

receives the first read operation rk,1(xi), it stores the cur-
rent MLC as an STS and the first operation rk,1(xi) in its
SSB. Workerk receives write operation wk,1(xk) and commit
operation ck and stores them in the SSB. It also stores the
current MLC as an ETS and increases the MLC by 1, to 6.
Figure 21 shows the current SSL. Note that transactions Ti

and Tj were executed concurrently but transaction Tk was
executed after transactions Ti and Tj have committed.

Figure 22 shows an example of the behavior of the con-
ductor and players. The conductor sets the SLC to 3 since
the smallest STS in the SSL is 3. The conductor desig-
nates playeri and playerj to propagate the first read op-
erations ri,1(xp) and rj,1(yq) concurrently. Subsequently,
they propagate write operations wi,1(xi) and wj,1(yj) con-
currently. Since the current SLC is 3 and the next SLC is
5, CCN is 2. Therefore, the two commit operations whose
ETS are 3 and 4 can be propagated concurrently. Player i

and playerj propagate commit operations ci and cj con-
currently. Since both commit operations are propagated at
the same time, we can benefit from group commit. Since
playeri and playerj increase the SLC by 1, SLC becomes
5. P layerk then propagates the first read operation rk,1(xi)
since the STS of playerk is 5. Then, playerk propagates
write operation wk,1(xk) and commit operation ck. Note
that transactions Ti and Tj are executed concurrently. It is
especially important to execute the two commit operations
concurrently since this is to receive the benefits of group
commit.

D. PROOFOFLIVEMIGRATION
CONSISTENCY

Proof A worker does not create any SSBs when execut-
ing a read-only or abort transaction. When worker receives
the first read operation of an update transaction, it saves the
operation in its SSB (lines 1-10 in Algorithm 1). It discards
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the other read operations except for the first operation; it
does not save the read operations in the SSB (lines 30-34 in
Algorithm 1). If it receives an write operation, it saves the
operation in its SSB (lines 11-15 in Algorithm 1). There-
fore, the worker provides the mapping function F , which is
described in Definition 2. With regard to processing opera-
tions, Madeus has the following three cases:
(1) For the operations such that cm

i < rm
j,1 ∈ Hm, we have

ETSi < STSj because the MLC is increased by 1 after
commit operation cm

i is executed (line 21 in Algorithm 1).
The players propagate the first read operation and commit
operations of syncsets with a smaller STS and ETS, as
shown in Algorithms 4 and 5. Therefore, if we have cm

i <

rm
j,1 ∈ Hm in the master database, we have cs

i < rs
j,1 ∈ Ss

in the slave database.
(2) For rm

j,1 < cm
i ∈ Hm, we have two cases; there is or is

not a commit operation between the first read operation rm
j,1

and commit operation cm
i . If there is no commit operation

cm
k such that rm

j,1 < cm
k < cm

i , we have STSj = ETSi be-
cause MLC is increased by 1 only after commit operation
cm
i has been executed (line 21 in Algorithm 1). The first

read operation rm
j,1 and commit operation cm

i are replaced
with the first read operation rs

j,1 and commit operation cs
i ,

respectively (lines 8 and 22 in Algorithm 1). We propagate
the first read operation rs

j,1 and commit operation cs
i (lines

3-10 in Algorithm 4). The conductor makes a player propa-
gate the first read operation rs

j,1 (line 4 in Algorithm 4). The
conductor then makes sure that the first read operation rs

j,1

has been executed (line 5 in Algorithm 4). The conductor
permits the player to propagate commit operation cs

i (line
9 in Algorithm 4). Therefore, if we have rm

j,1 < cm
i ∈ Hm in

the master, we have rs
j,1 < cs

i ∈ Ss in the slave if there is no
commit operation cm

k such that rm
j,1 < cm

k < cm
i .

In addition, if there exists commit operation cm
k such that

rm
j,1 < cm

k < cm
i , we have STSj < ETSi because the MLC

is increased by 1 after commit operation cm
k has been exe-

cuted (line 21 in Algorithm 1). The players propagate the
first read operation and commit operations in syncsets of a
smaller STS and ETS, as shown in Algorithms 4 and 5. As
a result, if we have rm

j,1 < cm
i ∈ Hm in the master, we have

rs
j,1 < cs

i ∈ Ss in the slave if there exists commit operation
cm
k such that rm

j,1 < cm
k < cm

i .
(3) Since an SSB uses an FIFO queue and the player propa-
gates syncsets in order, the player propagates the k-th write
operation before the k+1-th write operation. Therefore, we

have ws
i,k(xi) < ws

i,k+1(xi) ∈ Ss in the slave if we have
wm

i,k(xi) < wm
i,k+1(xi) ∈ Hm in the master.

It is clear that Madeus processes the operations by strictly
obeying the LSIR described in Definition 3. As shown in
Theorem 1, if the schedule in the slave is determined based
on the LSIR, the slave is consistent with the master under
SI. Therefore, it is clear that Madeus achieves consistent live
migration between master and slave under SI.

✷
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