
The PH-Tree – A Space-Efficient Storage Structure and
Multi-Dimensional Index

Tilmann Zäschke
zaeschke@inf.ethz.ch

Christoph Zimmerli
zimmerli@inf.ethz.ch

Moira C. Norrie
norrie@inf.ethz.ch

Institute for Information Systems, Department of Computer Science
ETH Zurich, Switzerland

ABSTRACT
We propose the PATRICIA-hypercube-tree, or PH-tree, a
multi-dimensional data storage and indexing structure. It
is based on binary PATRICIA-tries combined with hyper-
cubes for efficient data access. Space efficiency is achieved
by combining prefix sharing with a space optimised imple-
mentation. This leads to storage space requirements that are
comparable or below storage of the same data in non-index
structures such as arrays of objects. The storage structure
also serves as a multi-dimensional index on all dimensions
of the stored data. This enables efficient access to stored
data via point and range queries. We explain the concept
of the PH-tree and demonstrate the performance of a sam-
ple implementation on various datasets and compare it to
other spatial indices such as the kD-tree. The experiments
show that for larger datasets beyond 107 entries, the PH-
tree increasingly and consistently outperforms other struc-
tures in terms of space efficiency, query performance and
update performance. For some highly skewed datasets, it
even shows super-constant performance, becoming faster for
larger datasets.

Categories and Subject Descriptors
E.1 [Data Structures]: Trees; E.2 [Data]: Data Storage
Representations; H.3.1 [Information Storage and Re-
trieval]: Content Analysis and Indexing—Indexing meth-
ods

General Terms
Algorithms, Experimentation, Performance

Keywords
Multi-dimensional index, space efficiency, spatial index,
patricia-trie, hypercube, quadtree, skewed data

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
SIGMOD’14, June 22–27, 2014, Snowbird, UT, USA.
Copyright is held by the owner/author(s). Publication rights licensed to ACM.
ACM 978-1-4503-2376-5/14/06 ...$15.00..
http://dx.doi.org/10.1145/2588555.2588564.

1. INTRODUCTION
Multi-dimensional numerical data is used in many applica-

tions, for example in spatial contexts such as geo-information
systems, astronomy or ray-tracing. The data often has two
or three spatial dimensions plus any number of additional di-
mensions such as a possible node identifier in geo-information
systems.

In this paper we present the PATRICIA-hypercube-tree
(PH-tree) which combines binary PATRICIA-tries [16, 17]
with a multi-dimensional approach similar to quadtrees while
being navigable through hypercubes. The prefix sharing
used in PATRICIA-tries leads to reduced space requirements,
while the use of hypercubes allows navigation to sub-nodes
and entries much more efficiently than binary trees because
it is largely independent of the number of dimensions.

The internal structure of the PH-tree is determined only
by the data, not by order of insertion or deletion of entries.
Rebalancing is conceptually not possible but imbalances are
inherently limited. For updates to the tree, having no rebal-
ancing allows the changes required on the tree to be confined
to at most two nodes. One node is updated and possibly a
second one is either created or deleted, while at most one en-
try is moved between the two nodes. Our approach is mainly
aimed at in-memory storage with integrated indexing and
query requirements. However, in the case of datasets with
many dimensions, the PH-tree is also suitable for persistent
storage because the nodes of the PH-tree get large enough to
be split efficiently to fit into disk-pages. With many dimen-
sions, the efficiency for updates, queries and storage space
makes the PH-tree suitable to be used not only as an exten-
sion for indexing data, but also as a primary storage layout
for databases.

To evaluate our approach, we compared its performance
with freely available implementations of other structures
such as kD-trees and critical-bit-trees. We measured inser-
tion, deletion, range queries and point queries on both syn-
thetic data and real-world data with the the result that the
PH-tree outperforms other solution consistently in terms of
space and performance for datasets with 107 entries or more.

2. RELATED WORK
Starting from the simple binary search tree, the list of al-

gorithms and data structures devised for various use-cases
is long and differences are often only found in the details.
In the domain of multi-dimensional data, we can differenti-
ate between point access methods (PAM) and space access
methods (SAM) as proposed in the survey by [8]. A more
recent survey with fine-grained classification is given in [15].

397

The main representatives of the PAM category are kD-
trees and quadtrees. kD-trees [2] are k-dimensional binary
trees where the inner nodes of the tree describe axis-aligned
hyper-planes that divide the space into two half-spaces cor-
responding to its child-nodes. The axis along which the
split is performed is the same for all nodes on a certain
tree level. Usually, dimensions are then switched between
levels in a round-robin fashion. Since each node represents
an inserted point, the tree’s structure is dependent on the
order of insertion and deletion operations and prone to de-
generation. Rebalancing the tree is tricky since the usual
rotation operations of other binary trees are not applica-
ble to the relation between split-dimension and tree level.
Extensions to the basic kD-tree have been proposed for ex-
ternalisation through combination with B-tree ideas (kD-B-
tree [20]), avoiding empty nodes by avoiding splitting nodes
that are not full on insertion (hB-tree [14]) or by the loga-
rithmic method of a forest of kD-trees (Bkd-tree [19]). Other
versions of the kD-tree extend its capabilities into the SAM
area by handling the problem of regions overlapping split-
planes in different ways, for example the SKD-tree [12] or
the Extended kD-tree [4].

In contrast to the popular kD-tree, the quadtree [6] splits
the space in all dimensions at each node. This means that,
in the 2-dimensional case, each inner node has 4 children,
one for each quadrant. In our PH-tree, we take the same
approach of splitting the space in all dimensions at each
node in the tree. One recent extension to the quadtree is the
IQ-tree [5], an indexing mechanism for filtering geo-textual
data by combining a 2D quadtree with an inverted file for
keywords, which allows them to efficiently perform localised
searches for tagged geo data. Quadtrees are rarely used
outside 2D or 3D problems because they tend to require a
lot of memory due to their propensity for requiring many
and large nodes. In the PH-tree, we counter this by using a
combination of other approaches.

One of these other approaches is the PATRICIA-trie [16],
where strings are stored in a prefix-sharing method which is
usually much more space efficient than storing each key indi-
vidually. PATRICIA-tries also have the advantage that they
do not depend on insertion order. In general, any kind of
data can be stored in such a tree by taking the bit represen-
tation of the data and using the tree to manage bit-strings.
Such bit-tries are also known as crit(ical)-bit-trees.

In order to store keys with multiple dimensions, the values
of the different dimensions can be interleaved into a single
bit-string in a round-robin fashion as discussed in [17, 13].

While [13] provides a thorough complexity analysis of que-
ries in binary tries, [17] extend this idea by allowing keys
that consist of variable length text as well as numeric data.
Furthermore, they implement an approximate range search
algorithm that reduces the number of visited nodes by up to
50% by slightly reducing query accuracy close to the edges
of the query hyper-rectangle. While their approach is pre-
sented for a binary tree, it should also work for the PH-tree
and we see it as a desirable future extension.

The PH-tree is also based on the idea of prefix-sharing.
However, unlike other PATRICIA-tries, the PH-tree is not
a binary tree but a quadtree. This reduces the number of
nodes in the tree by allowing up to 2k entries per node.
Within these nodes, a hypercube-based addressing scheme
for the sub-nodes provides efficient access for higher dimen-
sional data. For example, locating a key in a 16-dimensional

boolean dataset requires visiting up to 16 nodes in a binary
tree. In a hypercube quadtree, because the interleaved bit-
string directly represents the array position, locating a key
requires accessing only one node followed by a simple array
look-up inside the node.

Another approach to reducing space requirements is to
serialise the indexing structure into a single bit stream [9],
which significantly reduces the storage overhead for man-
aging objects in memory. Unlike the referenced paper, we
apply such serialisation, not to the whole storage structures,
but to each node separately.

Finally, there are PAM structures such as the LSM-tree
proposed in [18] which are optimised for high update rates
as they occur in transaction processing systems. However,
the LSM-tree supports only 1-dimensional data and is opti-
mised for persistent storage while the k-dimensional PH-tree
is mainly aimed at in-memory indexing.

The most prominent SAM structure is the R-tree [10].
Modern forms of the R-tree include the PR-tree [1] and
the Hilbert-tree [11], which optimise disk-IO, and the X-
tree [3], which improves performance for high-dimensional
data. SAM structures are primarily aimed at handling re-
gion data. While they can also be used to store points by
using regions with size 0, they can not compete with PAM
structures in this domain.

3. THE PH-TREE
The PH-tree is essentially a quadtree [6] that uses hyper-

cubes, prefix-sharing [16] and bit-stream storage [9]. The
approach of the PH-tree avoids the need for several con-
cepts that are often considered necessary for efficient multi-
dimensional trees.

First, many proposed structures split the space in each
node in only one dimension in a round-robin fashion. Con-
trary to that, we build on the quadtree and split the space
in each node in all dimensions, which makes the access, such
as queries, virtually independent of the order in which the
dimensions are stored. This also tends to reduce the number
of nodes in the tree, because each node can contain up to
2k children instead of 2. At the same time, the maximum
depth of the tree is independent of k and equal to the num-
ber of bits in the longest stored value, i.e. 8 when storing
byte values.

Second, many structures aim to balance the tree in order
to avoid degenerated trees which are inefficient in terms of
performance and space requirements. The PH-tree however
is unbalanced (see also the BV-tree [7]), which has the ad-
vantage that there is no need for rebalancing and the tree
is stable with respect to insert or delete operations. This is
useful for concurrency and when stored on disk, because it
limits the number of pages that need to be rewritten. The
PH-tree avoids problems with degeneration by inherently
limiting imbalance, i.e. the maximum depth of the tree, dur-
ing construction.

Third, the PH-tree does not aim for maximum node oc-
cupancy in order to reduce the number of required nodes.
Instead of avoiding nodes, the PH-tree efficiently reduces the
size overhead of nodes.

Trees of the kD-tree family split the space in each node
into two subspaces along one of the dimensions. Contrary to
these, the PH-tree splits the space in each node in all dimen-
sions and uses hypercube navigation within a node to locate
sub-nodes and entries. One advantage of hypercubes is that,

398

once the values of a k-dimensional point have been inter-
leaved into a bit-stream, they require only a constant time
operation, i.e. an array look-up, to navigate to the sub-node
or stored entry. This is useful for point queries, insertion,
deletion and locating the starting point of range queries. For
comparison, binary trees have to traverse up to k nodes in
order to progress one bit in every dimension.

While hypercubes provide superior performance for nav-
igation inside a node, their space complexity of O(2k) be-
comes increasingly prohibitive for large k. Since we prioritise
space efficiency over performance, the PH-tree uses hyper-
cubes only when they do not negatively impact on space
requirements.

Compared to some other tree structures, another advan-
tage is that the PH-tree can store non-metric spaces in the
sense that all dimensions are treated independently and that
it has no notion of distance. This makes it also suitable for
discrete non-floating point data.

In order to explain the PH-tree, we start with a simple
one-dimensional example in Sect. 3.1, which we extend to
higher dimensions in Sect. 3.2. Section 3.3 discusses the
storage of floating point values. Then we discuss space ef-
ficiency, query efficiency and update efficiency in Sect. 3.4,
Sect. 3.5 and Sect. 3.6 respectively.

3.1 The 1D-PH-Tree
The PH-tree stores entries, which are sets of values. For

example, a 2D point is stored as one entry with two values,
each representing one dimension of the point. We first con-
sider a 1D entry with just one value. The value is stored
in its binary representation as a bit-string. For example,
Fig. 1a shows the bit-string 0010 representing the number 2
when stored as a 4-bit value. In practice, the length of val-
ues is typically 8, 16, 32 or 64 bits for common data types.
The first bit of any value in the tree is stored in the root
node. Subsequent bits are stored in nodes further down the
tree. For 4-bit values, the depth of the trees is thus limited
to 4. Generally, the maximum node-depth zn,max of the
tree is limited to the number of bits per value, the bit-width
w ≥ zn,max. Besides the node-depth, we will also use the
bit-depth zb with 1 ≤ zb ≤ w to refer to a bit-position. For
example, zb = 1 refers to the first bit of a value, zb = w to
the last bit.

The split-box on top of Fig. 1a represents an array for
fast look-up of references to entries and sub-nodes. Each
array element is empty or holds either one entry or one sub-
node. In the 1D-case, all entries starting with a 0 can be
found below the left box, all starting with a 1 can be found
below the right box. Entries that are attached to an array
field without further sub-nodes, such as the 010, are called
a postfix.

In Fig. 1b we see an example where a second value 0001
has been added to the tree. Since it starts with 0, it is also
inserted below the left box in the root node. Since any node
can hold only one reference in each position, the postfix is
replaced by a sub-node. Because the two values differ only
at zb = 3, the common 0 at zb = 2 is stored in the prefix of
the sub-node. The sub-node also has two postfixes, 1 and 0.

3.2 The kD-PH-Tree
For the 1D case, our approach resembles the binary PA-

TRICIA trie [17]. For trees with dimensionality k > 1 how-
ever, we do not interleave the bits from the k values of each

0
0
1
0

0
0

0
1

1
0

(a) (b)

0
1

0
0

0
0

1
0

1
1

1
0

1
1

0
0

post-fix
1,0

post-fix
1,0

00

post-fix
1,0

null

01

10 11

post-fix 1,000

post-fix 1,010

post-fix 1,011

ó

1
0
0
0

0 1
0
0

0
0
1
1

0
0
0
0

0
0
1
1

1
0
0
0

1
0
0
1

0
1
1
0

1
1
1
1

1
1
1
1

0

0 1
00 1

0 0

0
0
1

1
0
0

0 1 1 0 1 1

0-0-1-0

0-0- 0-1
1-0

0-0-
1-0-

0-1
0-0

1-1
0-0
1-1
1-0

0
1

0
0

0
0

1
0

1
1

1
0

1
1

0
0

0 0

…

1 0

…

1 1

…

ro
o

t-
n

o
d

e

p
o

st
fi

x

su
b

-n
o

d
e

root node

su
b

-n
o

d
e

root node

sub-node prefix

sub-node HC/LHC

sub-node postfixes

prefix

HC/LHC

postfixes

Figure 1: A sample 1D PH-tree with one 4-bit entry (a) and
two 4-bit entries (b)

0
0
1
0

0
0

0
1

1
0

(a) (b)

0
1

0
0

0
0

1
0

1
1

1
0

1
1

0
0

post-fix
1,0

post-fix
1,0

00

post-fix
1,0

null

01

10 11

post-fix 1,000

post-fix 1,010

post-fix 1,011

ó

1
0
0
0

0 1
0
0

0
0
1
1

0
0
0
0

0
0
1
1

1
0
0
0

1
0
0
1

0
1
1
0

1
1
1
1

1
1
1
1

0

0 1
00 1

0 0

0
0
1

1
0
0

0 1 1 0 1 1

0-0-1-0

0-0- 0-1
1-0

0-0-
1-0-

0-1
0-0

1-1
0-0
1-1
1-0

0
1

0
0

0
0

1
0

1
1

1
0

1
1

0
0

0 0

…

1 0

…

1 1

…

ro
o

t-
n

o
d

e

p
o

st
fi

x

su
b

-n
o

d
e

su
b

-n
o

d
e

root node

su
b

-n
o

d
e

root node

sub-node prefix

sub-node HC/LHC

sub-node postfixes

prefix

HC/LHC

postfixes

prefix

HC/LHC

postfixes

Figure 2: A sample 2D PH-tree with three 4-bit entries:
(0001, 1000), (0011, 1000), (0011, 1010)

entry, but use a different approach. The bit-strings of the
values of one entry are stored in parallel as depicted in Fig. 2.
On the top is the root node with a single reference at the
second position. The position is calculated from the first bit
(0 and 1) of each of the two values of the 2-dimensional en-
try. Using this approach, the array of references effectively
becomes a hypercube (HC) and the position numbers are
hypercube addresses. Below the root node is the prefix of
the sub-node, consisting of a 0 for both values at zb = 2.
The HC of the sub-node references three postfixes, which
represent the three entries in the tree.

The size of the HC is 2k for a k-dimensional tree. For
high dimensionality, it is likely to be only sparsely filled, for
example for k = 64 the HC has 264 fields. In order to reduce
memory requirements for high values of k, we store sparsely
filled HCs not directly but create a linear representation
(LHC). Figure 3 shows on the left the HC representation of
the sub-node of Fig. 2 and on the right the equivalent LHC
representation. The LHC representation consists of a table
of value pairs that map <address in HC> → <postfix/sub-
node>. The table is sorted by the HC address to allow
binary searches. In the example, the stored postfixes all
contain two bits, 0 and 1, which represent the last bit of
each value from each entry.

The PH-tree switches automatically between LHC- and
HC-representation depending on which requires less space.
For example, in Fig. 2 the root node on top has a reference
to a sub-node at HC address 01. The bottom node has three
references to postfixes at the HC addresses 00, 10 and 11.
The top-node would be stored in LHC representation be-
cause it is sparsely filled, the bottom node would be stored
in HC representation, because it is almost completely filled
and requires less space than the equivalent LHC represen-
tation. To determine whether HC or LHC representation is
used, we calculate and compare the size of both. We de-
fine ns with 0 ≤ ns ≤ 2k as the number of sub-nodes, np

with 0 ≤ np ≤ 2k as the number of postfixes and lp with
0 ≤ lp ≤ w as the length (in bits) of the postfixes in a
node. The HC representation has fixed space requirements
of O(2k) bits for sub-nodes and O(lp ∗ 2k) bits when storing

399

0
0
1
0

0
0

0
1

1
0

a) b)

R R

1

0
0
1
0

0
0

0
1

1
0

(a) (b)

0
1

0
0

0
0

1
0

1
1

1
0

1
1

0
0

post-fix
1,0

post-fix
1,0

00

post-fix
1,0

null

01

10 11

post-fix 1,000

post-fix 1,010

post-fix 1,011

ó

root node

sub-node

Figure 3: HC (left) and LHC (right) representation of refer-
ences in a node

postfixes. LHC representation requires space in the order of
O(ns ∗ k) for sub-nodes and O(np ∗ k ∗ lp) for postfixes. In a
future implementation, a relaxed switching condition could
prevent nodes from oscillating between HC and LHC with
each insert/delete operation.

Considering look-up speed, locating an element with known
HC address is effectively an array look-up with O(1). LHCs
are sorted arrays that can be accessed via binary search,
allowing random access with O(lognp) ≤ O(k).

3.3 Floating Point Values
All datasets used in the following experiments store 64

bit floating point values. However, the PH-tree understands
only bit-strings, which it sorts as if they were integer val-
ues. In order to store floating point values, these have to
be converted such that sorting the bit-string representation
results in the same order as ordering the floating point val-
ues directly. Since floating point numbers are stored using
the IEEE 754 format, we applied the following conversion
function (Java code):

long c(double value) {

if (value == -0.0) {

value = 0.0;

}

if (value < 0.0) {

long lb = Double.doubleToRawLongBits(value);

return (~lb) | (1L << 63);

}

return Double.doubleToRawLongBits(value);

}

This conversion function has the property that for i1 =
c(f1) and i2 = c(f2), i1 > i2 will be true if and only if
f1 > f2, except for -0.0, which is eliminated. This sortability
property allows the PH-tree to perform search operations on
stored entries independent of whether they represent floating
point numbers or not. When reading entries from the PH-
tree, the inverse conversion can be applied to turn the result
back into an IEEE floating point value.

3.4 Space Efficiency
The PH-tree serialises most of the data of each node into

a single bit-string [9]. This has two advantages. First, it
reduces space needs by avoiding multiple arrays for different
purposes, each of which is an object with its own memory
management overhead. Second, values can be stored such
that they use exactly the number of bits that they require.
For example storing a boolean requires only a single bit.

With respect to space requirements, there are two effects
that degrade space efficiency and cause worst case scenarios.
One effect is a lack of prefix-sharing which prevents space-
reduction. The other effect is a bad node-to-entry ratio. A

0
0
1
0

0
0

0
1

1
0

(a) (b)

0
1

0
0

0
0

1
0

1
1

1
0

1
1

0
0

post-fix
1,0

post-fix
1,0

00

post-fix
1,0

null

01

10 11

post-fix 1,000

post-fix 1,010

post-fix 1,011

ó

1
0
0
0

0 1
0
0

0
0
1
1

0
0
0
0

0
0
1
1

1
0
0
0

1
0
0
1

0
1
1
0

1
1
1
1

1
1
1
1

0

0 1
00 1

0 0

0
0
1

1
0
0

0 1 1 0 1 1

root node

sub-node

(a) No prefix sharing

0
0
1
0

0
0

0
1

1
0

(a) (b)

0
1

0
0

0
0

1
0

1
1

1
0

1
1

0
0

post-fix
1,0

post-fix
1,0

00

post-fix
1,0

null

01

10 11

post-fix 1,000

post-fix 1,010

post-fix 1,011

ó

1
0
0
0

0 1
0
0

0
0
1
1

0
0
0
0

0
0
1
1

1
0
0
0

1
0
0
1

0
1
1
0

1
1
1
1

1
1
1
1

0

0 1
00 1

0 0

0
0
1

1
0
0

0 1 1 0 1 1

root node

sub-node

(b) Storing powers of 2

Figure 4: The two space worst cases of the PH-tree

large ratio is bad because it means having a large overhead
of nodes stored in memory compared to stored values.

The first worst case scenario is that no prefix-sharing hap-
pens, for instance in a tree that has only a root node and
no sub-nodes as shown in Fig. 4a. In this case all values are
stored without prefix-sharing plus the overhead of the root
node itself. In this case, the size of the tree is the size of the
stored data n∗k∗w plus the size overhead of the node. With
the results from Sect. 3.2, the number of sub-nodes ns = 0,
np = n and a postfix length lp = w−1 we get O(w ∗2k) bits
for HC and O(n ∗ k ∗w) for LHC as the overhead for nodes.
Since we assume a fully filled root node, we use the HC repre-
sentation with n = 2k which results in a total space require-
ment of O(n∗k∗w+w∗2k) = O(n∗k∗w+w∗n)+O(n∗k∗w)
which is equivalent to the O(n) of kD-trees.

The second worst case scenario is that the tree has a low
entry to node ratio re/n = n/nnode which results in sig-
nificant memory consumption from the storage overhead of
nodes. Each node has at least two sub-references such as
sub-nodes or locally stored entries in the form of postfixes.
Since every tree with n > 1 has more entries than nodes,
we get re/n > 1.0 for n > 1. For example Fig. 4b shows a
1D PH-tree with re/n = n/nnode = 5/4 = 1.25 (the bottom
node contains two entries). However, for this extreme sce-
nario to occur, two conditions apply. First, the depth of the
tree is constrained to w, which is typically 16, 32 or 64 bit.
This means that this scenario gets increasingly unlikely with
growing n. Second, this scenario requires the data to have
a special property that every entry deviates from a common
shared prefix at a different bit position. This requirement is
for example fulfilled in Fig. 4b which shows a tree with the
entries {0000, 0001, 0010, 0100, 1000} = {0, 1, 2, 4, 8}, where
each value deviates at a different position from the maximum
shared prefix 000. If data does not have this power-of-two
property or something equivalent, the worst case cannot oc-
cur. This scenario is more likely to occur in trees with large
k, because it is sufficient if an entry deviates in one dimen-
sion from all other entries to cause the creation of a separate
node. This can be seen in one of the experiments that we
present in Sect. 4. The combination of a lack of prefix shar-
ing and a bad entry-to-node ratio is also unlikely, because
the first requires a flat tree and the second requires few en-
tries per node which can only be fulfilled in a minimum tree
with one entry that consists of a single boolean value.

The best case occurs when all sub-nodes in a tree are fully
filled and have the longest possible prefix, as the sub-node
shown in Fig. 5. The root node on the top has 2k = 4
sub-nodes, where one is shown only, which have a prefix of
length 2 and contain 4 entries, one in each position of their
2D hypercubes. The length of the postfixes is 0. All values
of the sub-node share the same prefix and differ from each
other only in the last bits. Generally, each sub-node has

400

0
0
1
0

0
0

0
1

1
0

(a) (b)

0
1

0
0

0
0

1
0

1
1

1
0

1
1

0
0

post-fix
1,0

post-fix
1,0

00

post-fix
1,0

null

01

10 11

post-fix 1,000

post-fix 1,010

post-fix 1,011

ó

1
0
0
0

0 1
0
0

0
0
1
1

0
0
0
0

0
0
1
1

1
0
0
0

1
0
0
1

0
1
1
0

1
1
1
1

1
1
1
1

0

0 1
00 1

0 0

0
0
1

1
0
0

0 1 1 0 1 1

0-0-1-0

0-0- 0-1
1-0

0-0-
1-0-

0-1
0-0

1-1
0-0
1-1
1-0

0
1

0
0

0
0

1
0

1
1

1
0

1
1

0
0

0 0

…

1 0

…

1 1

…

root node

sub-node

su
b

-n
o

d
e

root node

sub-node prefix

sub-node HC/LHC

sub-node postfixes

Figure 5: Best case for a sub-node with maximum prefix-
sharing and maximum entries per node. Only the second
sub-node is shown in full

a k-dimensional prefix of w − 2 bits and is filled with the
maximum of n = 2k entries in HC representation. In this
case, the space requirement for the node and the tree as a
whole is O(k∗(w−2))+O(2k) which results in O(w∗k+n).
For comparison, a plain array requires O(w ∗ k ∗ n).

In summary, with the number of entries being n, all worst
cases result in space requirements of O(w∗k∗n). Both worst
cases and the best case can occur only with a very limited
number of elements and very specific data characteristics.
For higher numbers of entries and real-world data, they are
unlikely to be approached.

The average case cannot be established as a simple func-
tion of n because it not only depends on the type of distribu-
tion, such as uniform distribution or Gaussian distribution,
but also on the value range in each dimension. For exam-
ple, if we assume a constant w = 32, data ranging from 0
to 1, 000, 000 has a different storage requirement from data
that ranges from 0 to 1, 000 because the latter allows bet-
ter prefix-sharing. Furthermore, not only the width of the
range affects storage requirements, but also the location.
Storing data between 0.09999 and 0.10001 is more efficient
than storing data between 0.49999 and 0.50001, even though
the range is the same. The reason is that, in IEEE floating
point representation, the latter causes a change in the expo-
nent which is encoded in the higher order bits. This reduces
prefix sharing and, for higher dimensions, reduces the like-
lihood of multiple entries sharing one node which leads to
a worse entry-to-node ratio and thus requires more storage
space. This example is discussed in detail in Sect. 4.3.6.

3.5 Query Efficiency
The PH-tree supports two types of queries, point queries

and range queries. Point queries take an entry as parameter
and check whether an equivalent entry already exists or not.
Range queries take as parameter a query-rectangle defined
by a ’lower left’ point and an ’upper right’ point. The query
returns an iterator over all points in the query-rectangle.
Query efficiency depends as much on the type of query as
on the characteristics of the stored data.

For point queries, the values of the entry first need to be
interleaved into a single bit-string. The PH-tree uses a naive
algorithm for interleaving that requires O(w∗k). During the
actual search, point queries require the traversal of at most
w nodes, which is the maximum depth of the tree. In HC
nodes, the sub-node or postfix can be found in O(1), because
the relevant k bits of the interleaved value directly represent
the position in the HC array of the node. In the case of
LHC, a binary search is done over at most log2(2k) = k
elements, resulting in a total worst case complexity of O(w∗
k + w ∗ k)) = O(w ∗ k) for locating the sub-node or postfix.
The query either extracts and compares the postfix or enters
the sub-node, checks the sub-node’s prefix and continues

the search in the sub-node. The sum of bits extracted for
prefixes and postfix is less than w ∗ k which we simplify to
O(w ∗ k). When we add interleaving, query-internal search
and prefix/postfix extraction, we get O(w ∗k+w ∗1+w ∗k)
for HC and O(w ∗ k + w ∗ log k + w ∗ k) for LHC, resulting
in O(w ∗ k) for both approaches.

It should be noted that the binary search for LHC requires
extracting the keys from the bit-stream for each search step.
The length of the key is k, which means that, for k ≤ 64,
the key can be extracted in constant time on a 64bit CPU,
or, using modern SIMD instruction sets, the 64 bit limit can
be extended to 512 bits. This means, if k is much larger
than 64 (512) bits, the extraction approaches O(k) resulting
in a search effort of O(k2) per binary search and a total
complexity of O(w ∗ k2) for point queries.

Range queries start with a point query that locates the
starting node, defined as the ’lower left’ corner of the query
range. Then, for each candidate node, all postfixes and sub-
nodes that potentially intersect with the query need to be
traversed. Even if the point query fails, the last visited node
is the starting point for the query. Moreover, the HC address
of the failed check can be used as starting address inside the
node’s HC or LHC.

The worst case occurs when a query restricts only one
or few dimensions out of k and if the values in these di-
mensions share long prefixes compared to other dimensions,
because all their higher bits are the same. An extreme ex-
ample would be a query on a dimension whose only values
are 00000000 and 00000001 which is equivalent to storing
boolean values. If the query constrains only this dimension,
for example to 00000001, then, in order to see whether any
entry matches the query, the algorithm has to fully read this
value for all entries which means traversing all nodes in the
tree. This results in a full scan with O(n). This is the same
as the worst case of kD-trees.

Another worst case occurs when many entries are postfixes
of the same node. The most extreme case is the same as one
of the space complexity worst cases, as depicted in Fig. 4a.

In the best case, location of the starting node is followed
by a series of matches until the upper range of the query is
reached. In this case the effort consists of locating the start-
ing node and decoding the matching entries which results
in O(w ∗ k) + O(w ∗ k ∗ nmatches) = O(w ∗ k ∗ nmatches) or
O(w ∗ k) per resulting entry.

Similar to space-complexity, the average query complexity
cannot be established as a simple function of n, because it
depends on different characteristics of the data. However, as
the experiments in the next section show, query complexity
tends to vary between O(logn) and O(1) for low k.

Conceptually, the PH-tree differs from binary trees such
as kD-trees or PATRICIA-tries in that it splits in each node
in all k dimensions. This has several consequences. First,
the maximum depth of the tree in terms of nodes is limited
to w instead of w ∗ k for binary trees. Second, for large k,
the maximum number of nodes in a PH-tree approximates
nnode = 2k+w whereas it approaches 2k∗w for binary trees.
These two effects reduce the number of nodes that can exist
and at the same time the number of nodes that need visiting
during a query.

Third, the hypercube representation allows very efficient
range queries inside a node. If the node lies completely in-
side the query range, then the query iterator can simply
iterate through all elements of the HC or LHC. In the case

401

of HC, some slots may be empty, but the empty slots are lim-
ited to usually ≈ 30% or less, because otherwise the node
would switch to LHC representation. Finding the next post-
fix or sub-node is thus a constant time operation. If the
node is only partly inside the query range then the follow-
ing algorithm assures that matching elements can be found
efficiently. First we calculate two bit masks mL and mU

that encode the lower and upper boundary of the intersec-
tion with the query range. The masks each consist of k bits
where any bit bi with 0 ≤ i < k of mL is set to 0 iff the
query range is less or equal to the lower left corner of the
node in the dimension i. Inversely, any bit bi in mU is set to
1 iff the query range is equal to or larger than the top right
corner of the node. The resulting masks mL and mU have
several useful properties. First, the masks are effectively the
HC addresses of the minimal and maximal possibly match-
ing slots in the HC/LHC. That means mL and mU can be
used as start and end values for HC address iteration. This
avoids iterating over many slots in the LHC/HC which can
not possibly contain an entry that matches the query. Sec-
ond, during iterations, they can be used on each HC address
to simply check whether it fits the query range or not. An
HC address h fits if (h|mL) == h && (h&mU) == h.

In summary, the masks allow verification of slot validity in
all dimensions in a single operation, assuming k is smaller
than the register width of the CPU. This is considerably
more efficient than binary trees which, in order to achieve
the same, need to traverse a sub-tree that consists of up to
2k nodes and that is up to k − 1 nodes deep.

3.6 Update Efficiency
The structure of the PH-tree is determined solely by the

characteristics of the stored data, not by the order of up-
dates that are performed. Upon modification, at most two
nodes of the tree need to be modified. For example, inser-
tion requires location of the insertion node which is essen-
tially a point query with O(w ∗ k), see Sect. 3.5. If there
is already a postfix at the insertion position, the insertion
requires creation of a sub-node (O(1)) which will contain the
new entry. Encoding the new entry and possibly copying an
existing postfix from the parent node takes O(w ∗ k). In the
case of LHC, inserting values requires shifting parts of the
LHC table which consists of up to w ∗ 2k bits, resulting in
O(w ∗ k+ 1 +w ∗ k+w ∗ 2k) = O(w ∗ (2k + k)) for inserts if
all nodes use LHC. Insertion in HC nodes does not require
shifting data, therefore the resulting worst case is O(w ∗ k).

Update complexity is usually measured on the number of
entries. For the PH-tree, which currently does not allow
duplicates, the maximum number of entries nmax is 2k∗w,
encompassing all possible combinations of w bits in k di-
mensions. The worst case insertion complexity of O(w ∗ k)
can therefore be seen as O(lognmax). For comparison, kD-
trees have an average update complexity of O(logn) and a
worst case complexity of O(n).

In summary, it can be seen that any modifications to the
tree are largely independent of the number of entries in the
tree. The number of entries in the affected nodes does play
a role, but this could be improved by splitting the node into
chunks, which is work in progress. The tree is not balanced,
which has the advantage that no costly rebalancing can oc-
cur. At the same time, degeneration of the tree is inherently
limited to w, the bit-width of the stored values. For exam-
ple, when storing 32 bit integer values, the maximum depth

of the tree is 32. Finally, each update affects at most two
nodes, one being modified and possibly a second one being
added or removed, which is useful for concurrent processing.

4. EXPERIMENTAL EVALUATION
In this section we first explain our experimental set-up,

then present the experiments together with an analysis of
the results.

4.1 Experiment Set-Up
The experiments were executed in order to measure inser-

tion speed, memory consumption, point queries and range
queries. As hardware we used a desktop PC with 32GB
RAM and an Intel i7-3770K 3.50GHz CPU. All tests were
executed in main memory. All algorithms are implemented
in Java and ran on Oracle JDK 1.7.0 25 64bit with -Xmx28G
-XX:+UseConcMarkSweepGC. The JVM process contained
the tested algorithm as well as the set of raw data in the
shape of an array of floating point values. However, the
figures below always refer to the memory consumption of
the tree alone, measured using Java’s internal memory fig-
ures1. Each test was executed in its own JVM, however
each test was preceded by a warm-up run that executed all
operations on a separate instance of the tested index with
100,000 random entries. After the loading phase, a series
of System.gc() calls was performed to avoid interference of
garbage collection with the following query tests.

For comparison we used two freely availably kD-tree im-
plementations which we call KD12 and KD23. While they
have very similar behaviour, each has its own strengths and
neither was consistently better than the other. We also
measured the performance of two critical-bit-trees (bit-wise
PATRICIA-tries) which we call CB14 and CB25. In order
to store k-dimensional entries, we interleaved the k values
of each entry into a single bit-stream as for example done
in [13]. The two implementations were not prepared for effi-
cient range queries on interleaved values which we therefore
did not measure. All algorithms, including the PH-tree, are
single-threaded.

Each test was executed three times, the diagrams show
the statistical averages of these three runs.

4.2 Datasets
For experimental validation of the PH-tree we used a 2D

real-life dataset and several synthetic datasets based on the
performance tests by [1].

As a real-life dataset we used the United States Census
Bureau 2010 TIGER/Line KML dataset6. It consists of
poly-lines that describe map features of the United States of
America. For the tests, we extracted all points from coun-
ties belonging to mainland USA, which resulted in 36.8∗106

points. Then we removed all duplicates, resulting in 18.4 ∗
106 unique points. The resulting x/y coordinates ranged be-
tween about −125 ≤ x ≤ −65 and 24 ≤ y ≤ 50. We ignored

1We compared Runtime.getRuntime().totalMemory() -
Runtime.getRuntime().freeMemory(); before and after
tree loading
2http://home.wlu.edu/~levys/software/kd/
3http://www.savarese.com/software/libssrckdtree-j/
4https://github.com/rkapsi/patricia-trie
5https://github.com/jfager/functional-critbit/
6https://www.census.gov/geo/maps-data/data/tiger.
html

402

(a) 2D CUBE

0
0
1
0

0
0

0
1

1
0

(a) (b)

0
1

0
0

0
0

1
0

1
1

1
0

1
1

0
0

post-fix
1,0

post-fix
1,0

00

post-fix
1,0

null

01

10 11

post-fix 1,000

post-fix 1,010

post-fix 1,011

ó

1
0
0
0

0 1
0
0

0
0
1
1

0
0
0
0

0
0
1
1

1
0
0
0

1
0
0
1

0
1
1
0

1
1
1
1

1
1
1
1

0

0 1
00 1

0 0

0
0
1

1
0
0

0 1 1 0 1 1

0-0-1-0

0-0- 0-1
1-0

0-0-
1-0-

0-1
0-0

1-1
0-0
1-1
1-0

0
1

0
0

0
0

1
0

1
1

1
0

1
1

0
0

0 0

…

1 0

…

1 1

…

ro
o

t-
n

o
d

e

p
o

st
fi

x

su
b

-n
o

d
e

su
b

-n
o

d
e

root node

su
b

-n
o

d
e

root node

sub-node prefix

sub-node HC/LHC

sub-node postfixes

prefix

HC/LHC

postfixes

prefix

HC/LHC

postfixes

(b) 3D CLUSTER

Figure 6: The CUBE and CLUSTER datasets

the third dimension in which all points were at 0.0. While
the dataset appears to be aimed at 32bit single precision,
we use 64bit double precision because one of the kD-tree
implementations supported only double precision.

We also used two types of synthetic datasets. The CUBE
dataset is a set of up to 100,000,000 points distributed uni-
formly at random between 0.0 and 1.0 and independently
in every dimension. An example is shown in Fig. 6a. The
coordinates are 64 bit double precision floating point values
that were converted to 64 bit integers using the conversion
function from Sect. 3.3.

The CLUSTER is an extension of the 2D synthetic dataset
described in [1]. The dataset consists of a line of 10000
evenly spaced clusters of points. Each cluster extends 0.00001
in every dimension and is filled with evenly distributed points.
The line of clusters stretches from 0.0 to 1.0 on the x-axis
and is parallel to the axis of every other dimension with
an offset of 0.5, except for space measurements where we
also test with an offset of 0.4. In total, the CLUSTER
dataset contains up to 50,000,000 points. An illustration
of the CLUSTER dataset is depicted in Fig. 6b.

All points are generated randomly, however all tests use
the same set of randomly generated data.

In the following figures, CLUSTER is abbreviated to CL
and CUBE to CU.

4.3 Experimental Results

4.3.1 Loading
For each test, an empty tree was loaded with the amount

of entries indicated on the x-axis, the resulting total time
was divided by the number of entries. The diagrams there-
fore show the average loading time per entry in µs (10−6

seconds).
For the TIGER/Line datasets in Fig. 7a, the kD-trees

show a somewhat irregular performance which is probably
caused by the fact that the data is loaded for US-county af-
ter US-county, where different counties have very different
data distribution properties that affect loading performance.
The PH-tree and the CB-trees, however, show almost identi-
cal and consistently decreasing insertion times for a growing
tree. This is owed to the increasing prefix-sharing, which
means that, with a growing tree, the postfix gets smaller
and can be serialised more quickly. The PH-tree improves
even slightly faster than the CB-trees, which is owed to the
increasing switching from LHC to HC in most of the nodes
which happens due to the small dimensionality of k = 2.
For HC nodes the point query performance and update per-
formance are both O(k ∗ w).

Loading was also tested using the CUBE dataset with
varying amounts of 3D 64bit entries as shown in Fig. 7b.

The figure shows that the PH-tree is on par with the kD-
trees and about 50%-80% faster than CB-trees when loading
106 entries. However, when loading more entries, the load-
ing time per entry of the PH-tree increases only slightly in
parallel to the CB-trees, while the kD-trees get increasingly
slower.

For the CLUSTER dataset in Fig. 7c, the performance of
the PH-tree is similar to the TIGER/Line dataset and shows
virtually constant behaviour.

These results are in line with the prediction in Sect. 3.6
that insertion time is largely independent of the number of
objects and only depends on the number of nodes, which is
limited by w and the number of dimensions k, which are both
constants. The resulting insertion complexity is O(w ∗ k).

4.3.2 Point Queries
For the TIGER/Line data, all point queries are located

inside the minimum and maximum values of each coordi-
nate. For the synthetic data, all queries are located between
0.0 and 1.0 in each dimension. Point queries were created
randomly, having a 50% chance of querying an existing data
point or otherwise querying a random coordinate in the al-
lowed query range. Each test performed 1,000,000 point
queries.

Fig. 8a, 8b and 8c show the query performance for the
TIGER/Line, CUBE and CLUSTER datasets for varying
amounts of entries. For better visualisation, Fig. 8a also
shows the times of the PH-queries multiplied by 10. Com-
pared to the other trees, the PH-tree performs consistently
better, except for very small datasets, showing very little
decrease in performance for large datasets.

4.3.3 Range Queries
For the TIGER/Line and CUBE datasets, range queries

are rectangles or k-dimensional cuboids where all edges have
random length, except one randomly chosen edge that is ad-
justed so that the query covers 1% of the area of TIGER/Line
data or 0.1% of the volume of CUBE data. The CLUSTER
queries are cuboids that extend from 0.0 to 1.0 in every di-
mension except for the x-axis where they have an extension
of 0.01% and are randomly located between 0.0 and 0.1.
This was done because, with growing k, it becomes increas-
ingly unlikely that a random cuboid intersects with the row
of clusters in the centre of the data space. Having the query
cuboids extend from 0.0 to 1.0 in most dimensions solves this
problem. The diagrams show the average query execution
time divided by the number of returned entries.

In Fig. 9a, the KD1 and KD2 trees show slightly irregular
but decreasing performance by a factor of 5 to 10 for the
TIGER/Line dataset. The PH-tree starts with 0.25µs about
20 times faster than the KD-trees and slows down only by a
factor of 2 to 0.5µs per returned entry for 1.8 ∗ 107 entries.
For the CUBE dataset, all three trees show linear scaling
with growing tree size as shown in Fig. 9b. However, while
the PH-tree shows initially the same performance as the kD-
trees, it progresses at a different angle and is about 2.5 times
faster for n = 108.

Figure 9c finally shows the CLUSTER dataset for which
we tested the queries in kD-trees only for up to 5∗106 entries
because of the long query execution time. The performance
of the KD-trees decreases from ≈ 300 or 440 to 25‘000µs =
25ms per returned entry, while the performance of the PH-
tree increases with the number of elements in the tree, in

403

0 5 10 15 20

0

5

10

106 entries

µ
s
p
e
r
e
n
tr
y

PH

KD1

KD2

CB1

CB2

(a) 2D TIGER/Line

0 50 100

0

1

2

3

106 entries

µ
s
p
e
r
e
n
tr
y

PH KD1 KD2

CB1 CB2

(b) 3D CUBE

0 20 40
0

1

2

3

106 entries

µ
s
p
e
r
e
n
tr
y

PH KD1 KD2

CB1 CB2

(c) 3D CLUSTER

Figure 7: Insertion times per entry for the TIGER/Line, CUBE and CLUSTER datasets

0 5 10 15 20
0

10

20

106 entries

µ
s
p
e
r
q
u
e
ry

PH

KD1

KD2

CB1

CB2

PH*10

(a) 2D TIGER/Line

0 50 100

0

2

4

106 entries

µ
s
p
e
r
q
u
e
ry

PH KD1 KD2

CB1 CB2

(b) 3D CUBE

0 20 40

0

2

4

106 entries

µ
s
p
e
r
q
u
e
ry

PH KD1 KD2

CB1 CB2

(c) 3D CLUSTER

Figure 8: Point query times for the TIGER/Line, CUBE and CLUSTER datasets

this case from from 0.40µs to 0.19µs, which is comparable to
the performance with the TIGER/Line dataset. Similar to
the update performance, we attribute this to the increasing
use of HC-nodes which provide excellent performance.

Range queries on CB-trees are not shown because they
resulted in nearly full scans approaching O(n) complexity
for the available implementations. While it is possible to
provide more efficient range queries, there are some inherent
limitations with such queries in CB-trees, for example the
susceptibility to the ordering of dimensions because they
split the space in each node along one dimension. For high
k, if a query has low selectivity on the dimensions of the
upper nodes, then all sub-nodes must be searched to the
depth where the query has a high selectivity. This makes
it difficult to find the correct starting node and may result
in traversing many nodes unnecessarily when building the
result set. This is also visible from the high-k point query
performance of CB-trees discussed in Sect. 4.3.7. For large
k, the nodes that need to be searched can be significant,
especially because the CB-tree has up to 2k∗w nodes on up
to k ∗ w levels and cannot rebalance itself as the kD-tree
can. For comparison, as mentioned before, the HC/LHC
approach of the PH-tree is more independent of the ordering
of dimensions and limits the tree depth to w.

4.3.4 Unloading
Due to space limitations, we do not show the results for

tree unloading. The results are very similar to tree load-

ing, but a bit faster. The only exception is the KD2-tree,
which appears to have a slightly faulty implementation as it
scales exponentially with k, which became apparent in high
dimensional tests.

The PH-tree is consistently about 10% faster for delete
operations compared to insert operations. At least two prop-
erties contribute to this speed-up. First, compared to insert
operations, delete operations require allocation of smaller
objects (byte[]), if at all, to hold smaller amounts of data.
Second, our implementation of shift-left (used by deletion)
copy operation is faster than shift-right (used by insertion).

4.3.5 Space
The space consumption is measured by comparing the

memory consumption of the JVM process before and after
index creation. The resulting numbers consistently differed
less than 5% from the space calculated by summing up the
required bytes of all nodes. For reference the following fig-
ures also show two naive storage approaches, the plain array
and the object array. In the plain array, all data is stored in
a single double[] (C/C++: long float[]) of size k ∗ 8 ∗ n
bytes. In the object array, every entry has its own object in
memory with k attributes of type double. Including mem-
ory alignment and an array of references to these objects,
the required space is (k ∗ 8 + 16 + 4) ∗ n bytes.

Table 1 shows the memory consumption in bytes per en-
try for different datasets and storage structures. The table
shows the results from the 2D TIGER/Line 64 bit dataset

404

0 5 10 15 20

0.1

1

10

100

106 entries

µ
s
p
e
r
re
tu

rn
e
d

e
n
tr
y

PH

KD1

KD2

(a) 2D TIGER/Line

0 50 100

0

20

40

106 entries

PH

KD1

KD2

(b) 3D CUBE

0 20 40
0.1

1

10

100

1,000

106 entries

PH

KD1

KD2

(c) 3D CLUSTER

Figure 9: Range query time for the TIGER/Line, CUBE and CLUSTER datasets

PH KD1 KD2 CB1 CB2 d[] o[]

TIGER 68 87 95 79 61 16 36
CUBE 46 95 103 88 69 24 44
CLUST. 43-55 95 103 88 69 24 44

Table 1: Required bytes per entry for n ≥ 5, 000, 000 64 bit
entries (d[]=double[], o[]=object[])

106 entries 1 5 10 15 25 50

CLUSTER0.4 48 45 44 44 43 43
CLUSTER0.5 55 48 46 45 44 43

Table 2: Required bytes per entry for the CLUSTER
datasets at k = 3

and the 3D CUBE and CLUSTER 64 bit datasets, which
were constant for trees between 5 ∗ 106 ≥ n ≥ 108. The
only exception is the PH-tree when storing the CLUSTER
dataset, which showed significant variation, improving from
55 bytes per entry for n = 1, 000, 000 to 43 bytes per entry
at n = 50, 000, 000. This behaviour is discussed in detail in
Sect. 4.3.6. For the larger CUBE and CLUSTER datasets,
the PH-tree requires about the same amount of memory as
a plain object[] which is about half the space of the two
kD-trees. The two CB-trees require between 50% and 80%
more space than the PH-tree.

4.3.6 CLUSTER0.4 vs CLUSTER0.5

As in the original test proposed by [1], the point clusters
of the CLUSTER test centre around 0.5 on every axis except
the x-axis. However, this is something of a worst case for the
PH-tree in terms of space requirements. For comparison, we
performed the same tests with the clusters located at 0.4,
which we henceforth call CLUSTER0.4. The original version
will be called CLUSTER0.5. Table 2 shows how the required
bytes per entry develop for increasing n. For few entries,
the CLUSTER0.5 dataset requires 55 bytes per entry, which
is 15% more than is needed for CLUSTER0.4. It is only
for high n that the two datasets approach the same space
requirement of 43 bytes per entry.

A difference of 15% does not appear significant, but it is
critical for two reasons. First, it shows that the PH-tree
differs from kD-trees and CB-trees in that its behaviour de-
pends on the absolute coordinates of the data. Second, if we

k 2 3 5 10 15

CUBE 623 450 284 199 138
CLUSTER0.4 684 534 397 139 54
CLUSTER0.5 718 629 743 995 932

Table 3: Number (thousands) of nodes in a PH-tree with
varying k holding 106 64 entries

look at datasets with increasing k, as shown in Fig. 10, we
see that the 15% for k = 3 increases dramatically for larger
k. The CUBE dataset is shown for reference.

0 5 10 15

0

100

200

k

b
y
te
s
p
e
r
e
n
tr
y
fo
r
1
0
6
e
n
tr
ie
s

PH-CL0.4

PH-CL0.5

PH-CU

Figure 10: Required bytes per 64 bit entry for n = 106 and
increasing k for the CLUSTER0.4, CLUSTER0.5 and CUBE
datasets for the PH-tree

This increase in required bytes per entry occurs due to
the node count of PH-trees with the different CLUSTER
datasets. As Tbl. 3 shows, the CLUSTER0.5 data set has
932,000 nodes for 1,000,000 entries and k = 15, whereas the
CLUSTER0.4 requires only 54,000 nodes.

This sensibility to coordinate position can be explained
with the way that floating point numbers are represented
in the PH-tree. As discussed in Sect. 3.3, floating point
numbers are converted to integers in order to store them
in the PH-tree. The converted numbers are similar to the
IEEE representation which stores the sign in the highest bit,
followed by the exponent, followed by the fraction.

If we look at the two CLUSTER datasets, they contain
point clusters of length 0.00001, which means that they

405

float IEEE 64 bit integer sign exponent fraction

0.39999 4600877199177713619 0 0111111.1101 1001.10011001.01101111.10101000.00101110.10000111.11010011
0.40000 4600877379321698714 0 0111111.1101 1001.10011001.10011001.10011001.10011001.10011001.10011010

0.49999 4602678639028661817 0 0111111.1101 1111.11111111.11010110.00001110.10010100.11101110.00111001
0.50000 4602678819172646912 0 0111111.1110 0000.00000000.00000000.00000000.00000000.00000000.00000000

Table 4: IEEE Binary64 bit representation of different floating point values. The ‘.’ mark every 8th bit for easier reading

reach from 0.49995 to 0.50005 for CLUSTER0.5 and from
0.39995 to 0.40005 for CLUSTER0.4. The important differ-
ence, as illustrated in Tbl. 4, is that in the floating point rep-
resentation, going from 0.4999999 to 0.5 causes a change in
the exponent. This means that all points in the CLUSTER0.5

dataset may differ in at least one dimension in the exponent,
i.e. at the 11th or 12th bit from the left. In the CLUSTER0.4

dataset, all points have the same exponent and differ only
at the 25th bit. If values differ in their high bits in this
way, we get a scenario that resembles the worst case sce-
nario discussed in Sect. 3.4. For k = 3, the tree is split at
the level of the changed exponent bit into 2k = 23 = 8 sub-
trees. This reduces the density of the sub-trees which causes
a worse entry-to-node ratio and reduces prefix-sharing. For
k = 3 the effect is only marginally noticeable. However for
k = 15 we get 2k = 215 = 32768 sub-trees which results in
significantly increased space requirements.

One way to counter this effect is obviously to move data
coordinates before storing them in the PH-tree. Another ap-
proach is to use integer representation, for example instead
of storing floats that represent [meters] one could store in-
tegers that represent [nm] = 10−9[m].

In terms of performance, the two CLUSTER variants be-
have very similarly with less than 10% difference for k = 3.
For larger k, some differences emerge as we will show in the
next section.

4.3.7 Datasets with k > 3

The Figures 11 and 12 show the insertion performance
for trees with n = 107 elements and various k ≤ 10. The
PH-tree scales well until about k = 8 dimensions, but then,
as expected, the large node size inhibits efficient updates to
the tree. Element deletion performance is not shown but
has very similar behaviour with the exception of test case
KD2-CL0.5, where the KD2 tree showed exponentially de-
grading performance for increasing k. To keep the following
diagrams simple, we show as reference only the KD2 tree,
which performed best from the two kD-trees. Also, as the
two diagrams show, the CB-trees, where we show only the
best performing CB1-tree, scaling linearly with growing k.

Point query performance is, as shown in Fig. 13a and
Fig. 13b, rather independent of k for the PH-tree and the
kD-trees, however the PH-tree is consistently faster. Again,
the CB-trees scale linearly and cannot compete with the
other trees for increasing k.

As shown in Fig. 13c, range query performance depends
on the dataset. CLUSTER range query time for the kD-
trees is not shown as it was orders of magnitude slower
than the PH-tree. This behaviour is expected from the re-
sults shown earlier in Fig. 9c. The PH-tree shows linear
scaling with the CUBE dataset due to the prevalent LHC
representation. While range query times for CLUSTER0.5

grow exponentially for k > 10, the better prefix sharing in
the CLUSTER0.4 dataset requires much less nodes and in-

2 4 6 8 10

0

2

4

k

µ
s
p
e
r
e
n
tr
y

PH-CL0.4

PH-CL0.5

KD2-CL0.5

CB1-CL0.5

CB1-CL0.4

Figure 11: Insertion times for varying k and 107 64 bit en-
tries for CLUSTER datasets

2 4 6 8 10

0

2

4

k

µ
s
p
e
r
e
n
tr
y

PH-CU

KD2-CU

CB1-CU

Figure 12: Insertion times for varying k and 107 64 bit en-
tries for the CUBE dataset

creased HC representation which allows near constant scal-
ing which consistently requires between 0.19 and 0.25 µs per
returned entry.

The test results in Fig. 14 and Fig. 15 show the mem-
ory consumption per entry when filling the trees with 107

entries, using varying numbers of dimensions. The two kD-
trees and CB-trees show virtually no difference in space effi-
ciency between storing CUBE and CLUSTER datasets. Un-
like the other trees, the space requirements of the PH-tree
vary significantly. After starting around 50 bytes per entry
for 2D entries, it drops to a low at 4D, which means that stor-
ing 107 3D, 4D or 5D entries takes less space than storing the
same amount of 2D entries. Then, depending on the dataset,
space requirements rise again. The best performance is
shown with the CLUSTER0.4 dataset which requires only
60% of the space required by a double[] at k = 15. The
worst performance is caused by the CLUSTER0.5 dataset
due to its bad entry-to-node ratio which requires 9,901,854
nodes for 10,000,000 entries. However, even in this case, the

406

0 5 10 15
0

2

4

k

µ
s
p
e
r
q
u
e
ry

PH-CL0.4

PH-CL0.5

KD2-CL0.5

CB1-CL0.5

(a) CLUSTER point queries

0 5 10 15

0

2

4

6

k

µ
s
p
e
r
q
u
e
ry

PH-CU

KD2-CU

CB1-CU

CB2-CU

(b) CUBE point queries

2 4 6 8 10

0

5

10

15

20

k

µ
s
p
e
r
re
tu

rn
e
d

e
n
tr
y

PH-CL0.4

PH-CL0.5

PH-CU

KD2-CU

(c) CLUSTER range queries

Figure 13: Query execution times for varying k and 107 64 bit entries. KD-CL times in (c) are not shown as they range
between 500 and 1000 µs per returned entry

PH-tree requires over 15% fewer bytes per entry than the
KD1 tree, which is also smaller than the KD2 tree.

0 5 10 15

0

50

100

150

200

k

b
y
te
s
p
e
r
e
n
tr
y

PH-CL0.4

PH-CL0.5

KD1-CL

CB1

CB2

double[]

object[]

Figure 14: Space requirements per 64bit entry depending on
k for 107 entries for the CLUSTER datasets

0 5 10 15

0

50

100

150

200

k

b
y
te
s
p
e
r
e
n
tr
y PH-CU

KD1-CU

CB1

CB2

double[]

object[]

Figure 15: Space requirements per 64bit entry depending on
k for 107 entries for the CUBE dataset

In summary, the PH-tree performs well with respect to
space requirements and can easily compete with un-indexed
structures such as object[] or even double[]. However,
the space consumption depends on the characteristics of the
dataset. This is different from the other trees where the
required bytes per entry were virtually independent of the
dataset.

4.4 Results
The results clearly show that the PH-tree is very space ef-

ficient, especially for larger datasets. This is not surprising,
since neither kD-trees nor the CB-tree use serialisation to
save space. What is relevant however is that despite using
prefix-sharing and serialisation to a bit-stream, the PH-tree
shows excellent performance properties. Update and query
performance appears almost independent from the number
of entries in the PH-tree. For larger datasets, this results
in better performance than the tested kD-tree implementa-
tions. However, query performance clearly does depend on
the type of data in the tree.

While the PH-tree works well with all tested datasets, it
shows its strength with datasets such as TIGER/Line or
CLUSTER, where data points are not evenly spread but
concentrated in some areas. If such dense datasets are large,
the PH-tree can benefit from the increasing prefix-sharing,
which saves space, and the increasing prevalence of hyper-
cubes in the nodes, which provide superior performance for
navigation and updates. Furthermore, allowing up to 2k

children per node and limiting the maximum tree depth to
w reduces the overall number of nodes as well as the num-
ber of nodes visited for any kind of queries. The only draw-
back is that certain dense datasets, such as the CLUSTER0.5

dataset, can cause less than ideal space requirements for high
values of k. However, the resulting space requirements are
still not worse than the space requirements of kD-trees.

It should be noted that we compared our implementation
of the PH-tree with publicly available free implementations
of kD-trees and CB-trees. We acknowledge that the per-
formance of the trees depends partly on the effort of their
respective developers. This may affect some of the measure-
ments but should not change the overall trends.

5. OUTLOOK
While the current implementation of the PH-tree works

well for a number of scenarios, there are a number of more
or less obvious extensions that we would like to investigate
in the future.

First, currently all node-data is stored in a single bit-string
which makes insert and delete operations slow for k > 8.
Splitting these bit-strings into sizeable chunks would im-
prove update performance. At the same time, the chunk
size could be chosen so that a chunk fits on a disk-page,

407

which would improve performance for a persistently stored
PH-tree.

Second, support for nearest-neighbour searches would be
desirable. An early prototype implementation indicates that
such searches can be efficiently performed.

Third, the fact that at most two nodes are modified with
each update makes the PH-tree suitable for concurrent ac-
cess and updates.

Fourth, it would be desirable to verify the PH-tree further
with real world k-dimensional data.

Finally, one of the next steps is to allow different bit-width
w for each dimension of an entry. At the same time, the
current limit of w = 64 could be increased to allow values
with arbitrary length. This would also allow the PH-tree to
be effectively used as a compact and fully indexed table of
a relational database.

6. CONCLUSIONS
We have presented the PH-tree as an approach for com-

bined storage and indexing of multi-dimensional data. The
tests showed that the PH-tree is space efficient, requiring
significantly less space than structures such as the kD-tree
and in certain cases even less space than naive plain array
storage. As a multi-dimensional index structure, it showed
competitive performance for updates and queries, especially
for larger datasets. For large and dense datasets, such as
the tested CLUSTER dataset, the PH-tree performs range
queries several orders of magnitude faster than the tested
kD-trees. For a densely filled tree such as resulting from the
TIGER/Line or CLUSTER dataset, the tree showed even
super-constant performance for updates and range queries
which became faster with a growing number of entries. Com-
pared to CB-trees (binary PATRICIA-tries), the PH-tree
shows comparable characteristics for k = 2 but scales much
better for most datasets with growing k, especially in point
query performance. The only exception is insertion perfor-
mance, where the current implementation becomes slower
than CB-trees for k = 10 and beyond.

In summary, the combination of multi-dimensional index-
ing with space efficiency and good performance makes it a
useful alternative for many applications.

7. ACKNOWLEDGEMENTS
We would like to thank Dr. Stefania Leone, who provided

valuable feedback and support on early versions of this pa-
per. This research was partially funded by the Hasler Foun-
dation, Switzerland.

8. REFERENCES
[1] L. Arge, M. D. Berg, H. Haverkort, and K. Yi. The

Priority R-tree: A Practically Efficient and
Worst-Case Optimal R-tree. ACM Transactions on
Algorithms, 4(1):9:1–9:30, March 2008.

[2] J. L. Bentley. Multidimensional Binary SearchTrees
Used for Associative Searching. Communications of
the ACM, 18(9):509–517, September 1975.

[3] S. Berchtold, D. A. Keim, and H.-P. Kriegel. The
X-tree: An Index Structure for High-Dimensional
Data. Readings in multimedia computing and
networking, page 451, 2001.

[4] J.-M. Chang and K.-S. Fu. Extended Kd-tree
Database Organization: A Dynamic Multiattribute
Clustering Method. Software Engineering, IEEE
Transactions on, 3:284–290, 1981.

[5] L. Chen, G. Cong, and X. Cao. An Efficient Query
Indexing Mechanism for Filtering Geo-Textual Data.
In Proc. of the 2013 ACM Intl. Conf. on Management
of Data, SIGMOD ’13, pages 749–760, 2013.

[6] R. Finkel and J. Bentley. Quad Trees A Data
Structure for Retrieval on Composite Keys. Acta
Informatica, 4:1–9, 1974.

[7] M. Freeston. A General Solution of the n-Dimensional
B-Tree Problem. SIGMOD Rec., 24(2):80–91, 1995.

[8] V. Gaede and O. Günther. Multidimensional Access
Methods. ACM Computing Surveys, 30(2):170–231,
June 1998.

[9] U. Germann, E. Joanis, and S. Larkin. Tightly Packed
Tries: How to Fit Large Models into Memory, and
Make them Load Fast, Too. In Proc. of the NAACL
HLT Workshop, pages 31–39, June 2009.

[10] A. Guttman. R-trees: A Dynamic Index Structure for
Spatial Searching. In Proc. Intl. Conf. on Management
of Data, SIGMOD ’84, pages 47–57. ACM, 1984.

[11] I. Kamel and C. Faloutsos. Hilbert R-tree: An
Improved R-tree Using Fractals. Technical Report TR
93-19, ISR University of Maryland, USA, 1993.

[12] A. K. Khamayseh and G. Hansen. Use of the Spatial
kd-Tree in Computational Physics Applications.
Communications in Computational Physics, 2, 2007.

[13] P. Kirschenhofer, H. Prodinger, and W. Szpankowski.
Multidimensional Digital Searching and Some New
Parameters in Tries. Technical Report CSD TR
91-052, Department of Computer Science, Purdue
University, West Lafayette, Indiana, USA, 1991.

[14] D. Lomet and B. Salzberg. The hB-tree: A
Multiattribute Indexing Method with Good
Guaranteed Performance. ACM Transactions on
Database Systems, 15:625–658, 1990.

[15] K. Markov, K. Ivanova, I. Mitov, and S. Karastanev.
Advance of the Access Methods. International Journal
on Information Technologies and Knowledge,
2/2:123–135, 2008.

[16] D. R. Morrison. PATRICIA – Practical Algorithm To
Retrieve Information Coded in Alphanumeric. Journal
of the ACM, 15(4):514–534, October 1968.

[17] B. G. Nickerson and Q. Shi. On k-d Range Search
with Patricia Tries. SIAM Journal on Computing,
37(5):1373–1386, 2008.

[18] P. O’Neil, E. Cheng, D. Gawlick, and E. O’Neil. The
Log-Structured Merge-Tree (LSM-Tree). Acta
Informatica, 33(4):351–385, 1996.

[19] O. Procopiuc, P. K. Agarwal, L. Arge, and J. S.
Vittery. Bkd-tree: A Dynamic Scalable kd-tree. In
Proc. Intl. Symposium on Spatial and Temporal
Databases, SSTD ’03, pages 46–65, 2003.

[20] J. T. Robinson. The K-D-B-Tree: A Search Structure
for Large Multidimensional Dynamic Indexes. In Proc.
Intl. Conf. on Management of Data, SIGMOD ’81,
pages 10–18, New York, NY, USA, 1981. ACM.

408

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: fix size 8.500 x 11.000 inches / 215.9 x 279.4 mm
 Shift: move down by 23.83 points
 Normalise (advanced option): 'original'

 32

 D:20140328112256
 792.0000
 US Letter
 Blank
 612.0000

 Tall
 1
 0
 No
 795
 352
 Fixed
 Down
 23.8320
 0.0000

 Both
 7
 AllDoc
 36

 CurrentAVDoc

 Uniform
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2 2.0
 Quite Imposing Plus 2
 1

 11
 12
 11
 12

 1

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: fix size 8.500 x 11.000 inches / 215.9 x 279.4 mm
 Shift: move left by 7.20 points
 Normalise (advanced option): 'original'

 32

 D:20140328112256
 792.0000
 US Letter
 Blank
 612.0000

 Tall
 1
 0
 No
 795
 352

 Fixed
 Left
 7.2000
 0.0000

 Both
 7
 AllDoc
 36

 CurrentAVDoc

 Uniform
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2 2.0
 Quite Imposing Plus 2
 1

 11
 12
 11
 12

 1

 HistoryList_V1
 qi2base

