
Analyzing Extended Property Graphs with Apache Flink

Martin Junghanns, André Petermann, Niklas Teichmann, Kevin Gómez, Erhard Rahm

University of Leipzig & ScaDS Dresden/Leipzig

[junghanns,petermann,rahm]@informatik.uni-leipzig.de
[teichmann,gomez]@studserv.uni-leipzig.de

ABSTRACT

Graphs are an intuitive way to model complex relation-
ships between real-world data objects. Thus, graph ana-
lytics plays an important role in research and industry. As
graphs often reflect heterogeneous domain data, their repre-
sentation requires an expressive data model including the ab-
straction of graph collections, for example, to analyze com-
munities inside a social network. Further on, answering com-
plex analytical questions about such graphs entails combin-
ing multiple analytical operations. To satisfy these require-
ments, we propose the Extended Property Graph Model,
which is semantically rich, schema-free and supports multi-
ple distinct graphs. Based on this representation, it provides
declarative and combinable operators to analyze both single
graphs and graph collections. Our current implementation is
based on the distributed dataflow framework Apache Flink.
We present the results of a first experimental study showing
the scalability of our implementation on social network data
with up to 11 billion edges.

CCS Concepts

•Information systems → Graph-based database
models; Parallel and distributed DBMSs;

Keywords

Graph Data Models, Graph Analytics, Apache Flink

1. INTRODUCTION
Graphs are a simple, yet powerful data structure to model

and to analyze relationships between real-world data ob-
jects. The flexibility of graph data models and the variety
of existing graph algorithms made graph analytics attractive
to different domains, e.g., to analyze the world wide web or
social networks [5] but also for business intelligence [9, 14,
15] and the life sciences [13]. In a graph, entities like web
sites, users, products or proteins can be modeled as vertices
while their connections are represented by edges.
Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

NDA’16 , June 26-July 01 2016, San Francisco, CA, USA

© 2016 ACM. ISBN 978-1-4503-4513-2/16/06. . . $15.00

DOI: http://dx.doi.org/10.1145/2980523.2980527

Graph data models are a prerequisite for the execution
of graph algorithms, for example, to rank web sites or to
analyze social networks. However, complex analytical prob-
lems often cannot be solved by a single algorithm as they
require a composition of different techniques. Let us give
an example: An analyst is interested in the maximum com-
mon subgraph among the largest communities inside a so-
cial network. To answer this analytical question, we need to
identify communities using a specific community detection
algorithm, aggregate the number of vertices for each com-
munity, select communities above a minimum vertex count
and finally apply a dedicated algorithm to find the max-
imum common subgraph. Furthermore, real-world graphs
are usually heterogeneous in terms of the objects they rep-
resent and their attached data. For example, vertices of a
social network may represent users, groups or bands while
relationships may express friendships, memberships or in-
terests. However, even entities of the same type may have
heterogeneous attributes, for example, different users may
provide more or less information about themselves.

To manage such data and to answer analytical questions
like sketched in our example, we identified the following data
model requirements: First, a data model must be able to
represent single graphs (e.g., the social network) as well as
graph collections (e.g., identified communities). Second, it
needs to support heterogeneous attributes without a fixed
schema not only for vertices and edges but also for graphs
(e.g., vertex count). Third, the data model should provide
general-purpose operators (e.g., selection by vertex count) as
well as support for use-case specific algorithms (e.g., com-
munity detection). Fourth, it shall allow the combination of
multiple operators and algorithms to analytical programs.

Since these requirements are not met by previous graph
data models, we propose the Extended Property Graph
Model (EPGM). The EPGM supports not only single but
also collections of heterogeneous graphs and includes a wide
range of combinable analytical operators. These operators
fulfill the closure property as they take single graphs or
graph collections as input and result in single graphs or
graph collections. The EPGM is implemented as part of
Gradoop [12], a new system for scalable graph analytics on
top of the Hadoop ecosystem. Gradoop is GPLv3-licensed
and publicly available1. To the best of our knowledge, this
is the first expressive graph data model including native
support for graph collections and respective operators im-
plemented on a distributed computing system. Our main
contributions can be summarized as follows:

1http://www.gradoop.com/

• We propose the EPGM, a graph data model that sup-
ports not only single graphs but also graph collections
with heterogeneous vertices and edges. Our model in-
cludes declarative operators for graph analytics.

• We describe the first implementation of the EPGM
on top of Apache Flink2, a state-of-the-art distributed
dataflow framework.

• We present first experimental results to show the scala-
bility of our implementation by applying an analytical
program to a social network with up to 11 billion edges.

The remainder of this article is organized as follows: In sec-
tion 2, we present the EPGM and its operators. Afterwards
in section 3, we give a brief introduction to Flink, its pro-
gramming concepts and how the EPGM is mapped to these
concepts. The results of our first experiments are reported
in section 4. Finally, we discuss related work in section 5
and conclude our work in section 6.

2. EXTENDED PROPERTY GRAPH MODEL
We introduce a data model extending the popular prop-

erty graph model [17] by support for graph collections and
by combinable analytical operators. Graph collections are a
natural way to represent logical partitions of a graph, e.g.,
communities in a social network [7] or business process exe-
cutions [14]. Further on, graph collections are the result of
certain graph algorithms, e.g., embeddings found by graph
pattern matching [8] or frequent subgraph mining [11]. The
EPGM supports operators for graphs and graph collections
as well as their composition to analytical programs. In the
following, we will discuss graph representation and provided
operators in more detail.

2.1 Graph Representation
In its basic form, a directed graph G = 〈V,E〉 consists of a

set of vertices V and a set of binary edges E ⊆ V × V . Sev-
eral extensions of this basic abstraction have been proposed
to define a graph data model [2, 3]. One of these models, the
property graph model (PGM) [17], gained wide acceptance
and is used in many graph database systems (e.g., Neo4j3

or Titan4). A property graph is a directed, labeled and at-
tributed multigraph. To express heterogeneity, type labels
can be defined for vertices and edges (e.g., Person or likes).
Attributes have the form of key-value pairs (e.g., name:Alice
or age:42) and are referred to as properties. Such properties
are set at the instance level without an upfront schema def-
inition. In contrast to the directed and labeled graph model
RDF5, attributes are encapsulated in vertices and edges.
With regard to the requirements stated in our introduc-

tion, the PGM is missing support for graph collections and
associated operators. To meet all requirements, we have de-
veloped the Extended Property Graph Model (EPGM). In
this model, a database consists of multiple property graphs
which we call logical graphs. These graphs are application-
specific subsets from shared sets of vertices and edges, i.e.,
may have common vertices and edges. Additionally, not only
vertices and edges but also logical graphs have a type label
and can have different properties. Formally, we define the
EPGM database as follows:

2http://flink.apache.org/
3http://www.neo4j.com/
4http://thinkaurelius.github.io/titan/
5http://www.w3.org/RDF/

Definition 1 (EPGM database). An EPGM database
DB = 〈V, E ,L, T, τ,K,A, κ〉 consists of a vertex set V =
{vi}, an edge set E = {ek} and a set of logical graphs L =
{Gm}. Vertices, edges and (logical) graphs are identified by
the respective indices i, k,m ∈ N. An edge ek = 〈vi, vj〉
with vi, vj ∈ V directs from vi to vj and supports loops (i.e.,
i = j). There can be multiple edges between two vertices
differentiated by distinct identifiers. A logical graph Gm =
〈Vm, Em〉 is an ordered pair of a subset of vertices Vm ⊆
V and a subset of edges Em ⊆ E where ∀〈vi, vj〉 ∈ Em :
vi, vj ∈ Vm. Logical graphs may potentially overlap such that
∀Gi, Gj ∈ L : |V (Gi) ∩ V (Gj)| ≥ 0 ∧ |E(Gi) ∩ E(Gj)| ≥ 0.
For the definition of type labels we use label alphabet T and a
mapping τ : (V∪E∪L) → T . Similarly, properties (key-value
pairs) are defined by key set K, value set A and mapping
κ : (V ∪ E ∪ L)×K → A.

Figure 1 shows an example EPGM database DB of a sim-
ple social network. Formally, DB consists of the vertex set
V = {v0, .., v9} and the edge set E = {e0, .., e19}. Ver-
tices represent persons, forums and interest tags, denoted
by corresponding type labels (e.g., Person) and are further
described by their properties (e.g., name:Alice). Edges de-
scribe the relationships between vertices and also have type
labels (e.g., knows) and properties. The key set K contains
all property keys, for example, name, city and since, while
the value set A contains all property values, for example,
Alice, Leipzig and 2015. Vertices with the same type label
may have different property keys, e.g., v0 and v1.

The sample database contains the set of logical graphs
L = {G0, G1, G2}, where each graph represents a commu-
nity inside the social network, in particular specific interest
groups (e.g., Databases). Each logical graph has a dedicated
subset of vertices and edges, for example, V (G0) = {v0, v1}
and E(G0) = {e0, e1}. Considering G0 and G2, one can see
that vertex and edge sets may overlap since V (G0)∩V (G2) =
{v0, v1} and E(G0)∩E(G2) = {e0, e1}. Note that also logi-
cal graphs have type labels (e.g., Community) and may have
properties, which can be used to describe the graph by anno-
tating it with specific metrics (e.g., vertexCount:3) or gen-
eral information about that graph (e.g., interest:Databases).
Logical graphs, such as those of our example, are either de-
clared explicitly or output of a graph algorithm, e.g., com-
munity detection or graph pattern matching. In both cases,
they can be used as input for subsequent operators.

2.2 Operators
The EPGM provides operators for single logical graphs

and graph collections; operators may also return single logi-
cal graphs or graph collections. Here, a graph collection G ∈
Ln is a n-tuple of logical graphs and may contain duplicate
elements. Collections are ordered to support application-
specific sorting and position-based selection of logical graphs.
In the following, we use the terms collection and graph collec-
tion as well as graph and logical graph interchangeably. Ta-
ble 1 lists our analytical operators together with their corre-
sponding pseudocode syntax for calling them in our domain
specific language GrALa (GraphAnalytical Language). The
syntax adopts the concept of higher-order functions for sev-
eral operators (e.g., to use aggregate or predicate functions
as operator arguments). Based on the input of operators,
we distinguish between graph operators and collection oper-
ators as well as unary and binary operators (single graph/-
collection vs. two graphs/collections as input). There are

Figure 1: Example EPGM database representing a simple social network containing three logical graphs.

also auxiliary operators to apply graph operators on collec-
tions or to call specific graph algorithms. In addition to the
listed ones we provide operators to create graphs, vertices
and edges including respective labels and properties. In the
following, we discuss the operators in more detail. Since
the scope of this article is the data model and its analytical
capabilities, complex operators (e.g., pattern matching and
grouping) are only sketched and will be thoroughly described
in future publications.

Aggregation. An operator often used in analytical appli-
cations is aggregation, where a set of values is mapped to a
single value of significant meaning. In the EPGM, we sup-
port aggregation at the graph level. Formally, the operator
maps an input graph G to an output graph G′ and applies
the user-defined aggregate function α : L → A. Thus, the
resulting graph is a modified version of the input graph with
an additional property k, such that κ(G′, k) 7→ α(G). In the
following, we show a simple vertex count example:

alpha = (g => g.V.count ())

outGraph = inGraph.aggregate(’vertexCount ’, alpha)

Here, a user-defined aggregate function alpha computes the
cardinality of the vertex set of an input graph (g.V). The
aggregation operator is called on the graph inGraph with
property key vertexCount and aggregate function alpha as
arguments. The resulting logical graph is assigned to the
variable outGraph and provides a property vertexCount stor-
ing the result of alpha. Basic aggregate functions such as
count, sum, min and max are predefined in GrALa and can
be applied to vertex and edge collections.

Transformation. The structure-preserving transform op-
erator allows the in-place modification of graph, vertex and
edge data, for example, to reduce data volume for further
processing or to align different schemata during data inte-
gration. The operator applies the user-defined transforma-
tion functions γ : L → L, ν : V → V and ǫ : E → E to
an input graph G, and outputs the graph G′ = γ(G) where
V (G′) = {ν(v) | v ∈ V (G)}, E(G′) = {ǫ(e) | e ∈ E(G)}.
The transformation functions are able to modify type labels
as well as property keys and values, but preserve identifiers
and the graph structure. In the following example, we define
the three transformation functions γ, ν and ǫ and use them
to transform the graph G0 (db.G[0]) of Figure 1:

gamma = (gIn , gOut =>

gOut[’topic ’] = gIn[’interest ’])

nu = (vIn , vOut => {

vOut.label = vIn[’name ’]

vOut[’from ’] = vIn[’city ’]})

epsilon = (eIn , eOut =>

eOut.label = eIn.label))

outGraph = db.G[0]. transform(gamma , nu , epsilon)

The graph transformation function gamma takes the current
graph instance gIn and the new graph instance gOut as in-
put. The latter is a copy of the current graph with omitted
type label and properties. The function determines that
graph label and all graph properties are removed, except
graph property interest, which is renamed to topic. The
definition of vertex and edge transformations is analogous.

Pattern Matching. A fundamental operation of graph an-
alytics is the retrieval of subgraphs isomorphic to a user-
defined pattern graph. For example, given a social net-
work, an analyst may be interested in all pairs of users
who are members of the same forum with a specific tag.
To support such queries, we provide the pattern match-
ing operator, where a pattern graph G∗ and a predicate
ϕ : L → {true, false} are the operator arguments. Pat-
tern matching is applied to a graph G and returns a graph
collection G′ = {G′ | G′ ⊆ G ∧ G′ ≃ G∗ ∧ ϕ(G′) = true}
containing all matches, for example:

outCollection = db.G.match("

(a:Person)<-[e:hasMember]-(b:Forum)

(c:Person)<-[f:hasMember]-(b)

(b)-[g:hasTag]->(d:Tag {name = ’Databases ’})")

The shown pattern graph reflects our social network query.
For GrALa, we adopted the basic concept of describing graph
patterns using ASCII characters from Neo4j Cypher6, where
(a)-[e]->(b) denotes an edge e from vertex a to vertex b.
The predicate function ϕ is embedded into the pattern by
defining type labels and properties. In the example, we de-
scribe a pattern of four vertices and three edges, which are
assigned to variables (a,b,c,d for vertices; e,f,g for edges).
Variables are optionally followed by a label (e.g., a:Person)
and properties (e.g., {name = ’Databases’}). The oper-
ator is called for the logical graph representing the whole

6http://neo4j.com/docs/2.3.1/cypher-query-lang.html

Operator
GrALa

Impl. State

Operator Signature Output

U
n
a
r
y

Aggregation Graph.aggregate(propertyKey, aggregateFunction) Graph X

Transformation Graph.transform(graphFunction, vertexFunction, edgeFunction) Graph X

Pattern Matching Graph.match(patternGraph) Collection wip

Subgraph Graph.subgraph(vertexPredicateFunction, edgePredicateFunction) Graph X

Grouping Graph.groupBy(vertexGroupingKeys, vertexAggregateFunction, X

edgeGroupingKeys, edgeAggregateFunction) Graph

Selection Collection.select(predicateFunction) Collection X

Distinct Collection.distinct() Collection X

Limit Collection.limit(n) Collection X

Sorting Collection.sortBy(propertyKey, [:asc|:desc]) Collection wip

B
in

a
r
y

Equality Graph.equals(otherGraph, [:identity|:data]) Boolean X

Combination Graph.combine(otherGraph) Graph X

Exclusion Graph.exclude(otherGraph) Graph X

Overlap Graph.overlap(otherGraph) Graph X

Equality Collection.equals(otherCollection, [:identity|:data]) Boolean X

Difference Collection.difference(otherCollection) Collection X

Intersect Collection.intersect(otherCollection) Collection X

Union Collection.union(otherCollection) Collection X

A
u
x
. Apply Collection.apply(unaryGraphOperator) Graph wip

Reduce Collection.reduce(binaryGraphOperator) Graph X

Call [Graph|Collection].callForGraph(algorithm, parameters) Graph X

[Graph|Collection].callForCollection(algorithm, parameters) Collection X

Table 1: EPGM operators and their implementation state (as of April 2016, wip: work in progress)

database DB of Figure 1 and returns a collection assigned
to variable outCollection and containing a single logical
graph: G′ = {〈{v0, v1, v5, v7}, {e10, e11, e16}〉}. An EBNF
grammar of the pattern definition language is already pub-
licly available7 and used by Gradoop.

Subgraph. If a specific subgraph is of interest, we pro-
vide an operator to extract that subgraph by applying user-
defined predicate functions ϕv : V → {true, false} and
ϕe : E → {true, false} which results in a new graph G′ ⊆ G
with V (G′) = {v | v ∈ V (G) ∧ ϕv(v) = true} and E(G′) =
{〈vi, vj〉 | 〈vi, vj〉 ∈ E(G) ∧ ϕe(〈vi, vj〉) = true ∧ vi, vj ∈
V (G′)}. In the following example, we extract the subgraph
containing all forums including their moderators from the
database of Figure 1:

outGraph = db.G.subgraph(

(v => v.label == ’Person ’ or v.label == ’Forum ’),

(e => e.label == ’hasModerator ’))

We use nested predicate functions to filter vertices and edges
based on the relevant type labels. Applied to the database
graph (db.G), the operator returns a graph described through
G′ = 〈{v0, v3, v5, v6}, {e14, e15}〉. By omitting either a ver-
tex or an edge predicate function exclusively, the operator
is also suitable to declare vertex-induced or edge-induced
subgraphs respectively.

Grouping. The groupBy operator determines a structural
grouping of vertices and edges to condense a graph and
thus helps to uncover insights about patterns hidden in the
graph. Let G′ be the grouped graph of G, then each vertex
in V (G′) represents a group of vertices in V (G); edges in
E(G′) represent a group of edges between the vertex group
members in V (G). More formally, V (G′) = {v′1, v

′
2, ..., v

′
k}

where v′i is called a super vertex and ∀v ∈ V (G), sν(v) is
the super vertex of v. Vertices are grouped based on their
property values, such that for a given set of vertex prop-
erty keys Kν ⊆ K, ∀u, v ∈ V (G) : sν(u) = sν(v) ⇔ ∀k ∈

7https://github.com/s1ck/gdl

Kν : κ(u, k) = κ(v, k) = κ(sν(u), k). Furthermore, E(G′) =
{e′1, e

′
2, ..., e

′
l} where e′i is called a super edge and sǫ(u, v) is

the super edge of 〈u, v〉. Edge groups are determined along
the super vertices and a set of edge keys Kǫ ⊆ K, such
that ∀〈u, v〉, 〈s, t〉 ∈ E(G) : sǫ(u, v) = sǫ(s, t) ⇔ sν(u) =
sν(s) ∧ sν(v) = sν(t) ∧ ∀k ∈ Kǫ : κ(〈u, v〉, k) = κ(〈s, t〉, k) =
κ(〈sν(u), sν(v)〉, k). Additionally, the vertex and edge aggre-
gate functions γv : P(V) → A and γe : P(E) → A are used
to compute aggregated property values for grouped vertices
and edges, e.g., the average age of persons in a group or the
number of group members. The aggregate value is stored at
the super vertex and super edge respectively. The follow-
ing example shows the application of our grouping operator
using GrALa:

1 outGraph = db.G

2 .subgraph(

3 (v => v.label == ’Person ’),

4 (e => e.label == ’knows ’))

5 .groupBy(

6 [:label , ’city ’],

7 (superVertex , vertices =>

8 superVertex[’count ’] = vertices.count()),

9 [: label],

10 (superEdge , edges =>

11 superEdge[’count ’] = edges.count ()))

The goal of this example is to group persons in the graph of
Figure 1 by the city they live in and to calculate the number
of group members. Furthermore, we want to group edges be-
tween users living in different cities as well as such living in
the same city. First, we use the subgraph operator to de-
scribe the input graph for grouping consisting of all persons
and their mutual relationships. In line 6, we define the ver-
tex grouping keys. Here, we want to group vertices by their
type label (denoted by the symbol :label) and property key
city. Edges are grouped only by type label (line 9). In lines
7 and 10, we define the vertex and edge aggregate functions.
Both receive the super entity (i.e., superVertex, superEdge)
and the set of group members (i.e., vertices, edges) as in-
put. Both functions apply the aggregate function count()

Figure 2: Result graph of Grouping example

on the set of grouped entities to compute the group size.
The resulting value is stored as a new property count at the
super vertex and super edge respectively. Figure 2 shows
the resulting logical graph of the grouping example.

Binary Graph Operators. The EPGM includes binary
graph operators to compare two input graphs. The equality
operator determines if two logical graphs are equal accord-
ing to a given equality function ξ : L × L → {true, false}.
We provide two implementations of ξ, :identity and :data.
The first one determines equality based on vertex and edge
identifiers, thus evaluates to true, if both input graphs con-
tain the same instances. The second one compares the input
graphs using a canonical form [11] representing labels and
properties of the contained vertices and edges. Further bi-
nary graph operators are adopted from set-theory and deter-
mine the union (combination operator), intersection (over-
lap) and difference (exclusion) of two graphs resulting in a
new graph. We denote these operators by dedicated terms
to distinguish them from set-theoretic operators on graph
collections (see next paragraph).
For example, the combination operator is useful to merge

previously selected subgraphs into a new graph. The com-
bination of input graphs Gi, Gj is a graph G′ consisting
of the vertex set V (G′) = V (Gi) ∪ V (Gj) and the edge
set E(G′) = E(Gi) ∪ E(Gj). For our example graph in
Figure 1, the call db.G[0].combine(db.G[2]) results in the
new graph G′ = 〈{v0, v1, v2, v3}, {e0, e1, e2, e3, e4}〉. Simi-
larly, the overlap of two graphs Gi, Gj is a graph G′ with
vertex set V (G′) = V (Gi) ∩ V (Gj) and edge set E(G′) =
E(Gi) ∩E(Gj). Applying the exclusion operator to Gi and
Gj determines all Gi elements that do not occur in Gj , i.e.,
V (G′) = V (Gi) \ V (Gj) and E(G′) = {〈u, v〉 ∈ E(Gi) |
u, v ∈ V (G′)}.

Collection Operators. Collection operators are such re-
quiring a graph collection as input. For example, the se-
lection operator selects those graphs from an input collec-
tion G for which a user-defined predicate function ϕ : L →
{true, false} evaluates to true. The output is a collection
G′ containing all qualifying graphs, such that G′ = {G | G ∈
G ∧ ϕ(G) = true}. Predicates are typically based on aggre-
gated graph properties, as shown in the following example:

inCollection = <db.G[0],db.G[1],db.G[2]>

phi = (g => g[’vertexCount ’] > 3)

outCollection = inCollection.select(phi)

Here, the operator is applied to a collection of three logical
graphs. The operator argument, a user-defined predicate
function phi, will evaluate to true if the input graph has
a value greater than 3 for property key vertexCount. Ap-
plied to the database of Figure 1, the result collection only
contains db.G[2].
As shown in Table 1, we further support unary opera-

tors for eliminating duplicate graphs in collections based on
their unique identifier (distinct), for selecting n (n ∈ N)

graphs from a collection (limit) and for sorting collections
(sort). The sort operator returns a collection sorted by a
graph property k in either ascending or descending order.
There are also binary operators that can be applied on two
collections. Similar to graph equality, collection equality de-
termines, if two collections are equal according to a provided
equality function ξG : Ln ×Ln → {true, false}. Collections
are considered to be equal if their elements are equal either
with regard to their unique identifiers (:identity) or to the
data they hold (:data). Additionally, the set-theoretical op-
erators union, intersection and difference compute new col-
lections based on graph identifiers.

Auxiliary Operators. In addition to the presented graph
and collection operators, advanced graph analytics often
requires the use of application-specific graph mining algo-
rithms. One application can be the extraction of subgraphs
that cannot be achieved by pattern matching, e.g., the de-
tection of communities in a social network [7]. To support
the plug-in of external algorithms, we provide generic call
operators, which may have graphs and graph collections as
input or output. Depending on the output type, we distin-
guish between so-called callForGraph (single graph result)
and callForCollection operators.

Furthermore, it is often necessary to execute a unary graph
operator on more than one graph, for example, to compute
an aggregated value for all graphs in a collection. Not only
the previously introduced operators aggregation, transfor-
mation and grouping, but all other operators with single
logical graphs as in- and output (i.e., op : L → L) can be ex-
ecuted on each element of a graph collection using the apply
operator. Let G = 〈G1, G2, ..., Gn〉 be an input collection,
then the output is G′ = 〈op(G1), op(G2), ..., op(Gn)〉 under
preservation of cardinality and order. The following example
shows an aggregation which computes the edge count and is
applied to all logical graphs in the collection inCollection:

outcollection = inCollection.apply(g =>

g.aggregate(’edgeCount ’, (h => h.E.count ())))

Similarly, in order to apply a binary operator on a graph
collection, we adopt the reduce operator as often found in
functional programming languages. The operator takes a
graph collection and a commutative binary graph operator
as input. The binary operator op : L × L → L is initially
applied on the first pair of elements of the input collection
which results in a new graph. This result graph and the
next element from the input collection are then the new
arguments for the binary operator and so on. In this way,
the binary operator is applied on pairs of graphs until all
elements of the input collection are processed and the final
graph is computed. In the following example, we call the
reduce operator parametrized with the combine operator on
all graphs in the given collection to compute a single graph:

outGraph = inCollection.reduce(g,h => g.combine(h))

3. IMPLEMENTATION
The most recent approaches to large-scale graph analyt-

ics are libraries on top of distributed dataflow frameworks,
e.g., GraphX on Apache Spark [18] or Gelly on Apache
Flink. These libraries are well suited for executing itera-
tive graph algorithms on distributed graphs in combination
with general data transformation operators provided by the
underlying frameworks. However, the implemented graph
data models have no support for collections and are generic,

1 DataSet <Id> graphId = secondGraph.getGraphHead ()

2 .map(ID_ONLY);

3 DataSet <Vertex > outV = firstGraph.getVertices ()

4 .filter(NOT_IN_GRAPH_FILTER)

5 .withBroadcastSet(graphId);

6 DatSet <Edge > outE = firstGraph.getEdges ()

7 .filter(NOT_IN_GRAPH_FILTER)

8 .withBroadcastSet(graphId)

9 .join(outV).where(SOURCE_ID). equalTo(VERTEX_ID)

10 .with(KEEP_LEFT_SIDE)

11 .join(outV).where(TARGET_ID). equalTo(VERTEX_ID)

12 .with(KEEP_LEFT_SIDE);

13 return new LogicalGraph(outV , outE)

Listing 1: Implementation of Exclusion on Flink

which means arbitrary user-defined data can be attached to
vertices and edges. In consequence, model-specific opera-
tors, for example, such based on properties, need to be user-
defined, too. Hence, using those libraries to solve complex
analytical problems becomes a laborious task.
We implemented the EPGM on top of Apache Flink to

provide new features for graph analytics and to benefit from
existing capabilities to large-scale data and graph processing
at the same time. In this section, we will briefly introduce
Flink and its programming concepts. We will further show
how the EPGM graph representation and a subset of the
introduced operators are mapped to those concepts.

3.1 Apache Flink
Apache Flink is the successor of the former research project

Stratosphere [1] and supports the declarative definition and
distributed execution of analytical programs on data flows
sourced from streaming and batch data. The basic abstrac-
tions of such programs are data sets and transformations. A
data set is a collection of arbitrary data objects and trans-
formations describe the transition of one data set to another
one. For example, let X,Y be data sets, then a transforma-
tion could be seen as a function t : X → Y . Example trans-
formations are map, where for each input object xi ∈ X
there is exactly one output object yi ∈ Y , and reduce, where
all input objects are aggregated to a single one. Further
transformations are well known from relational databases,
e.g., join, group-by, project, union and distinct. To express
application logic, transformations are parameterized with
user-defined functions. A Flink program may include multi-
ple chained transformations. When executed, Flink handles
program optimization as well as data distribution and par-
allel execution across a cluster of machines.

3.2 Graph Representation
We use three object types to represent EPGM data model

elements: graph head, vertex and edge. A graph head rep-
resents the data associated with a single logical graph. Ver-
tices and edges also carry associated data, but additionally
need to manage their graph membership as they may be
contained in multiple logical graphs. In the following, we
show a simplified definition of the respective types:

GraphHead := <Id,Label ,Properties >

Vertex := <Id,Label ,Properties ,GraphIds >

Edge :=<Id,Label ,SrcId ,TrgtId ,Properties ,GraphIds >

Each type contains an identifier (Id). As many EPGM oper-
ators create new entities (e.g., graph heads in binary graph
operators and vertices/edges during grouping), we require

1 DataSet <GraphHead > outGHeads = coll.getGraphHeads ()

2 .filter(predicateFunction);

3 DataSet <Id > graphIds = outGHeads.map(ID_ONLY);

4 DataSet <Vertex > outV = coll.getVertices ()

5 .filter(IN_ANY_GRAPH_FILTER)

6 .withBroadcastSet(graphIds);

7 DataSet <Edge > outE = coll.getEdges ()

8 .filter(IN_ANY_GRAPH_FILTER)

9 .withBroadcastSet(graphIds);

10 return new GraphCollection(outGHeads , outV , outE)

Listing 2: Implementation of Selection on Flink

identifiers to be generated independently in a distributed en-
vironment. Thus, we implemented identifiers using a 128-bit
universally unique identifier8. Furthermore, each element
has a label of type string and a set of properties. Since
EPGM elements are self-descriptive, properties are repre-
sented by a key-value map, where the property key is of type
string and the property value is encoded in a byte array. Our
current implementation supports values of all primitive Java
types. Vertices and edges maintain their graph membership
in a dedicated set of graph identifiers (GraphIds), edges ad-
ditionally store the identifiers of their incident vertices.

To represent a graph collection, we use a dedicated Flink
data set for each element type. In our implementation, a
logical graph is a special case of a graph collection where the
graph head data set contains a single object. The runtime
representation of graph G0 in Figure 1 can be sketched as
follows:

LogicalGraph g0 = {

DataSet <GraphHead > graphHead = {

<0,’Community ’,{’interest ’:’Databases ’,...}>

},

DataSet <Vertex > vertices = {

<0,’Person ’,{’name ’:’Alice ’,...},{0,2}>,

<1,’Person ’,{’name ’:’Bob ’,...},{0,2}>

},

DataSet <Edge > edges = {

<0,’knows ’,0,1,{’since ’:2014} ,{0 ,2} > ,

<1,’knows ’,1,0,{’since ’:2014} ,{0 ,2} >

}

}

One can see, indicated by the respective graph identifiers,
that associated vertices and edges are shared with logical
graph G2.

Since we use Flink data sets for graph representation, a
graph analytical program is not limited to EPGM opera-
tors, but can also benefit from all libraries offered by Flink
(e.g., for relational operations, machine learning or graph
processing).

3.3 Operators
We implemented the GrALa domain specific language us-

ing the Java programming language. Each EPGM operator
is mapped to a sequence of Flink transformations on the
respective data sets. In Flink, program execution needs to
be triggered explicitly, for example, by writing the result
to a file or a database. As none of our operator imple-
mentations includes such triggers, multiple operators can be
chained and executed as a single Flink program. We show
the general idea of mapping graph operations to data set
transformations for two of our operators. Listing 1 shows

8docs.oracle.com/javase/7/docs/api/java/util/UUID.html

SF |V | |E| Disk size Person knows Thresh.

1 62 K 2 M 570 MB 58.6% 49.9% 1 K

10 260 K 16.6 M 4.5 GB 90.2% 61.2% 7 K

100 1.7 M 147 M 40.2 GB 98.4% 68.9% 50 K

1K 12.7 M 1.36 B 372 GB 99.8% 74.4% 350 K

10K 90 M 10.8 B 2.9 TB 99.9% 77.3% 2.45 M

Table 2: Graphalytics social network datasets

the implementation of the exclusion operator, where the re-
sulting logical graph consists of vertices and edges that are
contained in the first, but not in the second input graph.
The idea of the implementation is to filter vertices and edges
based on their graph membership. This is straightforward
for vertices, however, for edges the implementation needs to
ensure, that source and target vertex are contained in the
resulting vertex data set.
In lines 1 and 2, we extract the identifier of the sec-

ond graph by applying a map transformation on its graph
head data set. The transformation is parameterized with
a user-defined function ID_ONLY, which extracts the iden-
tifier from a graph head. The resulting data set contains
a single id object, which is then used to filter vertices of
the first graph that are not contained in a graph with this
id. The filter transformation takes a user-defined function
(NOT_IN_GRAPH_FILTER) as argument and calls that function
for each vertex in the data set. To make the graph id avail-
able to the filter function, we use Flinks concept of broad-
casting (line 5) to send the data set to all workers of the
cluster. The resulting data set then contains only vertices
for which the filter function evaluates to true. For edges,
we apply the same procedure to pre-filter edges, but also
need to compute two semi-joins (line 9 to 12) to ensure that
source and target vertex are contained in the new vertex set.
In line 13, we create a new logical graph. Its graph head in-
cluding a new id is created by the constructor. Also, graph
membership is updated for all vertices and edges contained
in outV and outE using map transformations.
The concept of filter and broadcast is also used for the se-

lection operator, whose implementation is presented in List-
ing 2. Here, we use the filter transformation to apply the
user-defined predicate function on the graph head data set
associated with the input collection. In line 3, we extract
the identifiers of the filtered graph heads and use the result-
ing data set to filter those vertices and edges from the input
collection that are contained in at least one of those filtered
graphs. The latter is done by our IN_ANY_GRAPH_FILTER func-
tion, which evaluates to true, if the id set of the correspond-
ing vertex or edge contains one of the given graph identifiers.
In line 10, we create a new graph collection from the filtered
graph heads, vertices and edges.

4. PRELIMINARY EXPERIMENTS
We evaluate our EPGM implementation on a cluster with

16 worker nodes. Each worker consists of a E5-2430 6(12)
2.5 Ghz CPU, 48GB RAM, two 4TB SATA disks and runs
openSUSE 13.2. The nodes are connected via 1 Gigabit
Ethernet. Our evaluation is based on Hadoop 2.6.0 and
Flink 1.0-SNAPSHOT (commit: adbeec2). We run Apache
Flink with 12 threads and 40GB memory per worker.
We perform our experimental studies using datasets gen-

erated by the Graphalytics benchmark for graph processing

1 outGraph = socialNetworkGraph

2 .subgraph(

3 (v => v.label == ’Person ’),

4 (e => e.label == ’knows ’))

5 .transform(

6 (gIn , gOut => gOut = gIn),

7 (vIn , vOut => {

8 vOut.label = vIn.label

9 vOut[’city ’] = vIn[’city ’]

10 vOut[’gender ’] = vIn[’gender ’]

11 vOut[’k’] = vIn[’birthday ’]}),

12 (eIn , eOut => eOut.label = eIn.label))

13 .callForCollection(

14 :LabelPropagation , [’k’, 4]))

15 .apply(g => g.aggregate(

16 ’vertexCount ’, (h => h.V.count ())))

17 .select(g => g[’vertexCount ’] > 50000)

18 .reduce(g, h => g.combine(h))

19 .groupBy(

20 [’city ’,’gender ’], (superVertex , vertices =>

21 superVertex[’count ’] = vertices.count()),

22 [], (superEdge , edges =>

23 superEdge[’count ’] = edges.count ()))

24 .aggregate(’vertexCount ’, (g => g.V.count ()))

25 .aggregate(’edgeCount ’, (g => g.E.count ()))

Listing 3: Benchmark program

platforms. The generator creates heterogeneous social net-
work graphs that have a fixed schema similar to our example
in Figure 1 and mimic structural characteristics of real-world
networks [4]. Table 2 shows the datasets used throughout
the benchmark. The scale factor (SF) denotes the increase
of edges of type knows. Since our benchmark primarily in-
volves vertices of type Person and edges of type knows, we
added the particular ratio to the table.

The graph analytical program used for benchmarking is
presented in Listing 3. The input is the entire social network
as a single logical graph. First, we extract the subgraph con-
taining only persons and their mutual relationships. The re-
sulting graph is then transformed to a representation which
is limited to information necessary for subsequent opera-
tors. Note, that we rename the vertex property birthday to
k (line 11). That property key is then used in line 13 as an
argument for a specific community detection algorithm [16],
which is already implemented in Flink Gelly. The algorithm
propagates the property value associated with k through the
graph in four iterations. The result is a graph collection con-
taining all found communities. In line 15, we apply the ag-
gregate operator on each of these communities to compute
their vertex counts. Then, we use the selection operator
to filter communities whose vertex count exceeds a given
threshold (see Table 2, Thresh.). The filtered communi-
ties are then combined to a single logical graph by applying
the reduce operator on the filtered collection. We further
group the combined graph by the vertex properties city and
gender to see the relations between those groups. Edges are
grouped along their incident vertices. By applying group-
wise counting, we can find out how many vertices and edges
are represented by their respective super entities. In lines
24 and 25, we use aggregation to compute how many super
entities are contained in the resulting logical graph. The
source code for our benchmark program is available online.9

In Figure 3, we show the results of our first experiments to
evaluate the scalability of our implementation. For each con-

9https://git.io/vgozj

 10

 100

 1000

 10000

GA.1 GA.10 GA.100 GA.1K GA.10K

R
u
n
ti
m

e
 [
s
]

Graphalytics Dataset

(a) Graph size (16 workers)

 200

 400

 600

 800

 1000

 1200

 1 2 4 8 16

R
u
n
ti
m

e
 [

s
]

Number of Workers

Graphalytics.100

(b) Execution time

 1

 2

 4

 8

 16

 1 2 4 8 16

S
p
e
e
d
u
p

Number of Workers

Graphalytics.100
Linear

(c) Speedup

Figure 3: Evaluation results for our graph analytical benchmark program

figuration, we run the benchmark five times and measured
average execution time. In the first experiment, we evalu-
ated our implementation with respect to growing graph size
at a fixed number of workers. In Figure 3(a), one can see that
execution time scales nearly linear from GA.10 to GA.10K.
Due to a fixed job initialization time, smaller graphs do not
further reduce execution times.
In the second experiment, we evaluated execution time

for a fixed graph size (GA.100) but an increasing number of
workers. In Figure 3(b), one can see execution times ranging
from 1,057 seconds on a single worker to 104 seconds on
16 workers. Figure 3(c) shows the speedup for the same
experiment and reveals a nearly linear speedup for up to 8
workers and a slight speedup decrease for 16 workers.
Generally, the largest share of execution time can be traced

back to communication between workers. This is mainly
caused by join and group-by transformations in our opera-
tor implementations. Here, workers need to exchange data
among each other which leads to increased network traf-
fic. However, transformations like map and filter do not re-
quire communication and can be executed independently by
single workers. To reduce data exchange between workers,
Flinks optimizer reorders and chains multiple transforma-
tions whenever possible.

5. RELATED WORK
Surprisingly, the support for graph collections and asso-

ciated operators in graph data models has not found much
attention, yet. In [10], the authors introduce a formal graph
algebra supporting graph collections with heterogeneous at-
tributes on vertices, edges and graphs. Their focus is on
graph pattern matching and the construction of new graphs
from embeddings. However, graphs are no subgraphs from
shared vertex and edge sets but independent graphs that
need to be connected explicitly. In [6], vertices and edges
are added to so-called domains, which can be seen equivalent
to logical graphs. However, there is no support for attributes
and advanced operators on domains. In contrast to both ap-
proaches, the EPGM is primarily application-driven as we
avoid redundancy and additionally offer analytical operators
that go beyond pattern matching. A detailed discussion on
related work concerning RDF can be found in our technical
report on Gradoop [12].

6. CONCLUSIONS AND FUTURE WORK
We presented the EPGM, a graph data model support-

ing declarative, combinable operators on single graphs and
graph collections, including a scalable implementation. Our
model suits various applications as it enables the defini-

tion of analytical programs on heterogeneous, schema-free
graphs. Our first experiments show that we benefit from
the underlying framework and its approach to distributed
computing. The implementation is open-source, functioning
and can be extended to new use cases. Our future work will
focus on graph pattern matching and general improvements
through graph partitioning, program optimization and re-
duced memory consumption.

7. ACKNOWLEDGMENTS
This work is partially funded by the German Federal Min-

istry of Education and Research under project ScaDS Dres-
den/Leipzig (BMBF 01IS14014B).

8. REFERENCES
[1] A. Alexandrov et. al. The Stratosphere Platform for Big

Data Analytics. The VLDB Journal, 23(6), 2014.

[2] R. Angles. A Comparison of Current Graph Database
Models. In Proc. ICDEW, 2012.

[3] R. Angles and C. Gutiérrez. Survey of graph database
models. ACM Comput. Surv., 40(1), 2008.

[4] M. Capotă et. al. Graphalytics: A Big Data Benchmark for
Graph-Processing Platforms. In Proc. GRADES, 2015.

[5] M. Curtiss et. al. Unicorn: A System for Searching the
Social Graph. PVLDB, 6(11), 2013.

[6] A. Dries, S. Nijssen, and L. De Raedt. A Query Language
for Analyzing Networks. In Proc. CIKM, 2009.

[7] S. Fortunato. Community detection in graphs. Physics
Reports, 486(3-5):75–174, 2010.

[8] B. Gallagher. Matching structure and semantics: A survey
on graph-based pattern matching. AAAI FS, 6:45–53, 2006.

[9] A. Ghrab et al. A Framework for Building OLAP Cubes on
Graphs. In Proc. ADBIS, 2015.

[10] H. He and A. K. Singh. Graphs-at-a-time: Query Language
and Access Methods for Graph Databases. In Proc.
SIGMOD, 2008.

[11] C. Jiang et al. A survey of Frequent Subgraph Mining
algorithms. Knowledge Eng. Review, 28(1):75–105, 2013.

[12] M. Junghanns, A. Petermann, K. Gómez, and E. Rahm.
GRADOOP: Scalable Graph Data Management and
Analytics with Hadoop. arXiv:1506.00548, 2015.

[13] Z. J. Ling et. al. GEMINI: An Integrative Healthcare
Analytics System. PVLDB, 7(13), 2014.

[14] A. Petermann et. al. BIIIG: Enabling Business Intelligence
with Integrated Instance Graphs. In Proc. ICDEW, 2014.

[15] A. Petermann et. al. Graph-based Data Integration and
Business Intelligence with BIIIG. PVLDB, 7(13), 2014.

[16] U. N. Raghavan et. al. Near linear time algorithm to detect
community structures in large-scale networks. Phys. Rev.
E, 76:036106, 2007.

[17] M. A. Rodriguez and P. Neubauer. Constructions from
Dots and Lines. arXiv:1006.2361v1, 2010.

[18] R. S. Xin et. al. GraphX: A Resilient Distributed Graph
System on Spark. In Proc. GRADES, 2013.

