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ABSTRACT
Ridesharing enables drivers to share any empty seats in their vehi-
cles with riders to improve the efficiency of transportation for the
benefit of both drivers and riders. Different from existing stud-
ies in ridesharing that focus on minimizing the travel costs of ve-
hicles, we consider that the satisfaction of riders (the utility val-
ues) is more important nowadays. Thus, we formulate the prob-
lem of utility-aware ridesharing on road networks (URR) with the
goal of providing the optimal rider schedules for vehicles to max-
imize the overall utility, subject to spatial-temporal and capacity
constraints. To assign a new rider to a given vehicle, we propose
an efficient algorithm with a minimum increase in travel cost with-
out reordering the existing schedule of the vehicle. We prove that
the URR problem is NP-hard by reducing it from the 0-1 Knapsack
problem and it is unlikely to be approximated within any constant
factor in polynomial time through a reduction from the DENS k-
SUBGRAPH problem. Therefore, we propose three efficient ap-
proximate algorithms, including a bilateral arrangement algorithm,
an efficient greedy algorithm and a grouping-based scheduling al-
gorithm, to assign riders to suitable vehicles with a high overall
utility. Through extensive experiments, we demonstrate the effi-
ciency and effectiveness of our URR approaches on both real and
synthetic data sets.
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1. INTRODUCTION
Recently, companies (e.g., Uber [7] and Lyft [3]) have been al-

lowing their users to enjoy a ridesharing service through sharing
their locations and arranging rides with other passengers within
minutes with dual goals to alleviate the public traffic congestion
and to monetarily benefit drivers and riders. In a report [4], apps
(e.g., Uber and Lyft) saw a surge in riders willing to undertake
ridesharing with strangers in 2016. Moreover, several companies
[4, 8] launched unlimited ride packages – $69 for a week and $255
for a month, to allow customers to freely use ridesharing services
for a registered period of time. Consequently, riders’ levels of sat-
isfaction are mainly determined by their preferences of vehicles
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Figure 1: An Ridesharing Example.

Figure 2: Social Connections of Riders.

Rider Vehicle Utility Value
r1 c1 0.2
r1 c2 0.4
r2 c1 0.6
r2 c2 0.3
r3 c1 0.2
r3 c2 0.8
r4 c1 0.2
r4 c2 1.0

Table 1: Matrix of Utility Values.
(e.g., the brand or model), the drivers (e.g., the gender or habits),
the other riders (e.g., interests) and the lengths of trips (e.g., de-
tours). For example, a female rider may prefer a vehicle with a
female driver for safety in the late evening. A sports-lover may
be willing to taking a vehicle with other riders who share similar
tastes. In addition, riders usually prefer trips with less detours (e.g.,
the actual length of a ridesharing trip is close to that of the shortest
path). Subsequently, a clear trend for such companies is to promote
their businesses through maximizing the satisfaction levels of the
customers.

Following this trend, in this paper, we consider a practical prob-
lem in ridesharing, namely utility-aware ridesharing on road net-
works (URR), which assigns riders to available vehicles to maxi-
mize their overall satisfaction (evaluated with rider utility) subject
to the constraints of vehicles’ capacities and riders’ deadlines. In
the sequel, we illustrate the URR problem with a running example.
Example 1. Utility-Aware Ridesharing on Road Networks Exam-

ple. In this example of the utility-aware ridesharing problem, as-
sume that four riders, r1 ⇠ r4, and two vehicles, c1 and c2 are on a
road network, as shown in Figure 1. Specifically, there are 8 nodes
in the road network indicating 8 locations, and the numbers on the
edges represent the travel costs. The capacities of two vehicles are
both 2. Each vehicle is currently located at a node (e.g., vehicle
c1 locates at node B). For each rider, he/she is located at his/her
current location and the 4-tuple near to him/her follows the pattern
hrider id, deadline of pickup, deadline of delivery, destinationi. For
example, rider r1 is located at A and wants to go to H . He/she de-
sires to be picked up before 4 and delivered to H before 10. Table
1 lists the preference value (vehicle-related utility) of each rider to-
wards different vehicles. In addition, as Figure 2 shows, we know
the social connections between the four riders based on their so-
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cial media accounts (e.g., Facebook) or their ridesharing history
records (e.g., taking the same car).

The riders send their requests to the ridesharing system server.
Then, subject to the constraint of riders’ deadlines and the vehi-
cles’ capacities, the server assigns riders to vehicles to maximize
the overall utility of riders, which means the riders’ preferences are
best satisfied. As introduced in Section 2.4, one rider’s utility con-
sists of three components: vehicle-related utility, rider-related util-
ity and trajectory-related utility. Here, we assume that the rider’s
utility is the average of the three components.

With spatial-temporal and capacity constraints (e.g., deadline
of pickup or delivery of riders and the capacity of vehicles), one
possible solution is to assign the schedule {r+1 , r

+
3 , r

�
1 , r�3 } to ve-

hicle c1 and {r+4 , r
+
2 , r

�
4 , r�2 } to vehicle c2. Here a schedule is an

event sequence for a vehicle to perform. For example, the schedule
{r+1 , r

+
3 , r

�
1 , r�3 } means pick up r1 at node A then pick up r3 at

node E. Next, deliver rider r1 to node H , then deliver rider r3 to
node G. Calculated with Equation 1, the utility value of rider r1
taking vehicle c1 is 0.4208(= 1

3 (0.2 + 0.25⇥ 0.25 + 1)) and this
possible solution leads to an overall utility value of 1.6894. How-
ever, the optimal solution is to assign schedule {r+1 , r

+
2 , r

�
1 , r�2 }

and {r+4 , r
�
4 , r+3 , r

�
3 } to c1 and c2, respectively. As a result, the

optimal overall utility value is 2.5628.

As shown in the above example, in this paper, we study the URR
problem, which assigns the riders to the most suitable vehicles to
maximize the overall utility of riders, subject to the constraints of
vehicle capacities (e.g., each vehicle takes a limited number of rid-
ers) and the deadlines of riders (e.g., a rider should be picked up
before the specified pickup deadline). Existing studies [19, 20, 25]
on ridesharing mainly focus on real-time matching and scheduling
riders to vehicles to minimize the overall travel costs of vehicles
subject to the spatial-temporal, monetary or capacity constraints.
However, no studies on ridesharing have focused on the satisfaction
of the riders, thus the existing solutions cannot be directly applied
to solve the URR problem.

In this paper, we first prove that our URR problem is NP-hard by
reducing it from the knapsack problem [34] and unlikely to be ap-
proximated within any constant factor in polynomial time through
a reduction from the DENS k-SUBGRAPH problem [17]. As a
result, the URR problem is not tractable and it is very challeng-
ing to achieve the optimal solution. Therefore, we propose effec-
tive heuristic approaches, including bilateral arrangement, efficient
greedy and grouping-based scheduling, to tackle the URR problem
by efficiently computing schedules with high overall utilities satis-
fying the constraint of riders’ deadlines and vehicles’ capacities.

Specifically, we make the following contributions:
• We propose a new problem, called the utility-aware ridesharing

on road networks (URR), in Section 2, subject to the constraints
of vehicles’ capacities and riders’ deadlines, and we prove that
the URR problem is NP-hard in Section 2.6.

• We propose an efficient algorithm to allocate one rider to a given
vehicle without reordering its existing schedule such that the
travel cost increase is minimized in Section 3.

• We propose three novel heuristic algorithms, namely bilateral ar-
rangement, efficient greedy and grouping-based scheduling ap-
proaches, to tackle URR in Sections 4, 5, and 6, respectively.

• We have conducted extensive experiments on real and synthetic
data sets, to show the efficiency and effectiveness of our URR
approaches in Section 7.
In addition, the remaining sections of the paper are arranged as

follows. We review and compare previous studies on ridesharing in
Section 8 and conclude the work in Section 9.

2. PROBLEM DEFINITION
In this section, we present the formal definition of the utility-

aware ridesharing, in which we assign riders to the most suitable
vehicles under the constraints of the capacities of vehicles and valid
time windows of riders.

We use a graph G = hV,Ei to represent a road network that
consists of a vertex set V and an edge set E. Each edge, (u, v) 2 E
(u, v 2 V ), is associated with a weight cost(u, v) indicating the
travel cost from vertex u to v through edge (u, v). Here the travel
cost can be defined as the travel time or the travel distance. When
the speeds of vehicles are known, they can be converted from one to
another. Here we do not differentiate between them and use travel
cost consistently in the rest of this paper.

2.1 Time-Constrained Rider
Definition 1. (Time-Constrained Riders) Let R = {r1, r2, ..., rm}
be a set of m riders. Each rider r

i

submits his/her request q
i

to the
server, which is associated with a source location s

i

, destination
location e

i

, a pickup deadline rt�
i

and a drop off deadline rt+
i

.

In practice, a rider r
i

submits a ride request q
i

to notify the server
that he/she wants to be picked up at location s

i

and to be dropped
off at location e

i

. To guarantee the service, the rider can also spec-
ify a pickup deadline rt�

i

, which indicates the latest time he/she
prefers to be picked up, and a drop off deadline rt+

i

, which indi-
cates the deadline that he/she wants to be sent to the destination e

i

.
Here, the two timestamps of a request q

i

should have a relationship
in rt�

i

< rt+
i

to enable the server to arrange a suitable vehicle and
that the vehicle can complete the trip.

2.2 Dynamically Moving vehicles
Definition 2. Let C = {c1, c2, ..., cn} be a set of n moving vehi-
cles that prefer to provide ridesharing services. Each vehicle c

j

is
currently at location l(c

j

) and is associated with a capacity a
j

.

From the definition of vehicles, at any time the number of the
riders in any vehicle c

j

should not exceed its capacity a
j

(i.e., not
including the driver). Moreover, for each rider r

i

assigned to vehi-
cle c

j

, we indicate the utility of rider r
i

as µ(r
i

, c
j

).

2.3 Valid Scheduling
Definition 3. Let a schedule S

j

= {x1, x2, ..., xw

} be a sequence
of events for vehicle c

j

, where each event x
k

is to pickup or deliver
some rider r

i

at location l(x
k

) (= s
i

or e
i

).
A schedule S

j

is valid iff for any rider r
i

assigned to vehicle
c
j

, the pickup event is before its dropoff event in S
j

; vehicle c
j

can satisfy the deadlines of the assigned riders; and the number of
riders in vehicle c

j

does not exceed its capacity a
j

at any time.

Here we assume that vehicles always take the shortest path from
one location to another. A given schedule S

j

of vehicle c
j

consists
of a list TR

j

of consecutive trajectories tr
k

, where tr
k

is the kth
trajectory of vehicle c

j

from location l(x
k

) to location l(x
k+1).

We note the travel cost of trajectory tr
k

as cost(tr
k

).

2.4 Utility Value
Here we first discuss the utility value and formally define it.

Nowadays, being involved in ridesharing is not just about saving
money but rather for a better user experience, as unlimited rides
packages enable them to pay for the ridesharing service weekly
or monthly with constant fees no matter what the summation of
travel distances are. The user experiences of the riders in rideshar-
ing will be affected by the brand and model of the cars, the service
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level of the drivers, and the interaction with other riders. Then,
the utility value of a rider r

i

to a vehicle c
j

comprises of three
components: vehicle-related utility µ

v

(r
i

, c
j

), rider-related utility
µ
r

(r
i

, c
j

), and trajectory-related utility µ
t

(r
i

, c
j

). Thus, we have:
µ(r

i

, c

j

) = ↵ ·µ
v

(r

i

, c

j

)+� ·µ
r

(r

i

, c

j

)+(1�↵��) ·µ
t

(r

i

, c

j

), (1)

where ↵,� 2 [0, 1] are balancing parameters and ↵ + �  1.
These two balancing parameters represent the preferences of rid-
ers towards the three utility components and are configured by the
riders or the ridesharing system.

Note that other factors, such as the travel distances of the empty
vehicles, the sceneries along the trips and so on, may also affect
the utility of riders. To keep this paper clear and focused on the
main factors (i.e., the three components in Equation 1), we do not
include other factors, which, however, can be easily embedded in
this framework (i.e., adding more balancing parameters and utility
components in Equation 1) if necessary.
Discussion on social matching. Matching the riders with drivers
and other riders with respect to their social factors is crucial to im-
prove the user experience, when the monetary benefits become rela-
tively insignificant (e.g., unlimited weekly/monthly ride packages).
In general, there are three types of social matchings: satisfaction
matching, similarity matching and structure matching, as shown in
Figure 3.

(a) Satisfaction Matching (b) Similarity Matching (c) Structure Matching
Figure 3: Types of Social Matching.

Satisfaction Matching. As Figure 3(a) shows, the satisfaction match-
ing happens between two riders r

a

and r
b

, where rider r
a

desires
some particular property A (e.g., speaking Chinese) and rider r

b

can provide the property A. In other words, this type of matching
is a supply-demand relationship. In this paper, the vehicle-related
utility represents the suitableness of the satisfaction matching be-
tween riders and drivers.
Similarity Matching. As Figure 3(b) shows, similarity matching
means connecting two riders, r

a

and r
b

, based on the similarity
of their profiles (e.g., students), interests (e.g., NBA fans) or social
circles (e.g., common friends). The more similar two people are,
the better the match is. Our rider-related utility reflects the evalua-
tion of similarities between riders. Thus, we should arrange a rider
r
i

to a vehicle c
j

which would result in a higher rider-related utility.
Structure Matching. The social connections between four riders are
shown in Figure 3(c). Then, the structure matching will match the
riders based strictly on their social structures. For example, we may
first construct coalitions [30] of riders (e.g., a coalition of riders r

a

,
r
b

and r
c

), and then assign the riders in the same coalition to the
same vehicle. However, the size of the coalition may break the
vehicle’s capacity constraint. In addition, the riders in the same
coalition may be physically located far from each other, then it is
not practical to try to assign them to the same vehicle. Thus, in this
paper, we do not consider the structure matching of riders.
Vehicle-related utility. For a given pair of rider r

i

and vehicle c
j

,
the vehicle-related utility, µ

v

(r
i

, c
j

) 2 [0, 1], reflects the prefer-
ence of rider r

i

towards vehicles c
j

. For example, an old rider may
prefer to take a vehicle with a good suspension system to make
the ride smooth. The vehicle-related utilities can be estimated with
the categorically stated preferences of riders towards vehicles and
drivers: i.e., riders can stipulate their preferences of vehicle brands
and drivers (e.g., experienced or high-rated), then the ridesharing
system can evaluate their preferences towards different vehicles.

Rider-related utility. Riders are more likely to enjoy a trip with
other riders who share a lot of interests. Riders with similar tastes
can easily communicate with each other and thus have a more in-
teresting and enjoyable journey. The rider-related utility of rider r

i

will change when other riders in vehicle c
j

change. Specifically,
we define rider-related utility in the following form,

µ

r

(r

i

, c

j

) =

X

tr

k

2TR

i

j

cost(tr

k

)

cost(TR

i

j

)

⇣ X

r

0
i

2R

k

j

�{r
i

}

s(r

i

, r

0
i

)

|Rk

j

� {r
i

}|

⌘
, (2)

where TRi

j

is a set of trajectories of the vehicle c
j

with rider r
i

in it, Rk

j

indicates the riders in vehicle c
j

during trajectory tr
k

,
and s(r

i

, r0
i

) is the social similarity of rider r
i

and r0
i

. Intuitively,
for a rider r

i

, sharing with other high-similarity riders for a larger
portion of TRi

j

will lead to a higher rider-related utility, µ2(ri, cj).
As nowadays social networks are very popular, we can easily ac-

cess the friendship of riders when they register or connect rideshar-
ing services with their social media accounts (e.g., Facebook). If
any of the riders do not use social media accounts to register for
ridesharing services, we can measure their similarities based on
their ridesharing history or historical location records (e.g., com-
mon trips or popular locations). Here we use Jaccard similarity
[23] to measure the similarities between riders. Specifically, for the
two riders r

i

and r0
i

, their social similarity is calculated as below:
s(r

i

, r

0
i

) =

|�(r
i

) \ �(r

0
i

)|
|�(r

i

) [ �(r

0
i

)|
, (3)

where �(r
i

) denotes the set of friends of r
i

and |�(r
i

)| is the num-
ber of elements of �(r

i

). Jaccard similarity is widely used in ex-
isting studies [10, 31, 11] in a range of fields, including social net-
works, data mining and statistics. Note that other methods can also
be used to estimate the similarities between riders.
Trajectory-related Utility. Trajectory-related utility is to measure
the satisfaction level of the rider r

i

towards the route that vehicle
c
j

takes to deliver him/her to his/her destination. In general, the
trajectory-related utility µ

t

(r
i

, c
j

) decreases when the extra travel
cost is incurred (e.g., caused by detours) to deliver rider r

i

to his/her
destination. We first define the travel cost ratio �

ij

of assigning
rider r

i

to vehicle c
j

as below:

�

ij

=

P
tr

k

2TR

i

j

cost(tr

k

)

cost(s

i

, e

i

)

(4)

where TRi

j

is a set of trajectories of the vehicle c
j

with rider r
i

in
it. As

P
tr

k

2TR

i

j

cost(tr
k

) � cost(s
i

, e
i

), �
ij

is not less than 1.
In this work, we define the trajectory-related utility µ

t

(r
i

, c
j

) as
a decreasing function based on the logistic function [9] below:

µ

t

(r

i

, c

j

) = 2�
2

1 + e

�(�
ij

�1)
=

2

1 + e

(�
ij

�1)
, (5)

where e is the natural logarithm base (i.e., e = 2.71828...). Since
�
ij

is not less than 1, the trajectory-related utility µ
t

(r
i

, c
j

) will
be in the range of (0, 1]. For example, when the travel cost ratio
�
ij

= 1, the trajectory-related utility µ
t

(r
i

, c
j

) is 1. The logistic
function is widely used in a range of fields, including artificial neu-
ral networks, linguistics, and statistics. Here, we use the logistic
function to model the scenario that the less the vehicle detours, the
more the rider is satisfied. Note that, other decreasing functions can
also be used to calculate µ

t

(r
i

, c
j

).

2.5 Utility-Aware Ridesharing on Road Net-
works Problem

We formally define our URR problem below.

Definition 4. (Utility-Aware Ridesharing on Road Networks, URR)
Given a set R of m riders and a set C of n vehicles on a road
network G, the problem of utility-aware ridesharing on Road Net-
works (URR) is to arrange the riders to vehicles, such that:
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Table 2: Symbols and Descriptions.
Symbol Description
R a set of m time-constrained riders
r

i

a rider r
i

sending ride request q
i

s

i

the source location of ride request q
i

e

i

the destination location of ride request q
i

rt

�
i

the pickup deadline of ride request q
i

rt

+
i

the dropping off deadline of ride request q
i

C a set of n dynamically moving vehicles
c

j

a vehicle c

j

a

j

the capacity of vehicle c

j

S

j

the schedule of pickup/dropoff events of vehicle c

j

TR

j

a list of consecutive trajectories of vehicle c

j

cost(u, v) the travel cost between location u to location v

µ(r
i

, c

j

) the utility value of assigning rider r
i

to vehicle c

j

1. at any time the number of riders in any vehicle c
j

should not
exceed its capacity a

j

; and
2. the departure and arrival deadlines of each arranged rider r

i

should be valid for the assigned vehicle c
j

; and
3. the overall utility,

P
r

i

2R

0 µ(ri, cr
i

), of the arranged riders
R0 is maximized, where c

r

i

is the vehicle that the rider r
i

is
arranged to.

2.6 Hardness of Utility-Aware Ridesharing on
Road Networks Problem

In this section, we first prove that our URR problem is NP-hard,
through reducing a well-known NP-hard problem, 0-1 knapsack
problem [34], to the URR problem.

Theorem 2.1. (Hardness of the URR Problem) The problem of the
Utility-Aware Ridesharing on Road Networks (URR) is NP-hard.
Proof. Please refer to Appendix B.

Next, we discuss that URR is hard to approximate within any
constant factor. Specifically, we show this result by reducing it
from the DENSE k-SUBGRAPH problem [17], which is inspired
by the work on social event organization [24]. By assuming the
hardness of a conjecture, namely Unique Games with Small Set
Expansion Conjecture [22], the authors [28] show that DENSE k-
SUBGRAPH is hard to approximate within any constant factor.
Due to space limitations, for the details and history of the conjec-
ture, please refer to [28].

Theorem 2.2. Assuming the Unique Games with Small Set Expan-
sion Conjecture, it is NP-hard to approximate the URR problem
within any constant factor in polynomial time.
Proof. Please refer to Appendix C.

The URR problem needs to assign riders to vehicles to achieve
the maximum overall utility of riders while satisfying the constraints
of riders and vehicles (e.g., capacity of vehicle). Unfortunately,
URR is NP-hard and unlikely to be approximated within any con-
stant factor in polynomial time as shown in Theorems 2.1 and 2.2.
Thus, due to the NP-hardness of URR, in subsequent sections, we
first propose an efficient algorithm to insert one rider for a given ve-
hicle such that the incremental travel cost is minimized. Then we
propose three heuristic algorithms, namely bilateral arrangement,
efficient greedy, and grouping-based scheduling approaches to ef-
ficiently achieve assignments and schedules for our URR problem.

3. ARRANGE A SINGLE RIDER
Usually, a ridesharing system needs to respond to each rider

quickly. One straight problem is to arrange a single rider r
i

to a
given vehicle c

j

. From the perspective of drivers, they want to serve
all the riders with the least travel cost. Unfortunately, this prob-
lem is known as the single-server dial-a-ride problem [15], which
is NP-hard by reducing it from the Travelling Salesman Problem
(TSP) [34]. According to the experimental results of the existing

(a) An Example of Schedule Sequence

(b) An Example of Transfer Event Structure
Figure 4: Illustration of Transfer Event Structure.

work on real-time ridesharing problems, it is not in practice neces-
sary to reorder the points of a schedule before the insertion of a new
rider with the goal of minimizing the travel distance [25]. There-
fore, we assume the existing schedule for each vehicle will not be
reordered. In this section, we propose one efficient approach to ar-
range a new rider to a given vehicle with the minimum incremental
travel cost (i.e., an incremental update operation).

3.1 Transfer Event Structure
Before we represent the approach to arrange a single rider r

i

for
a given vehicle c

j

, we introduce a data structure to store the status
of the vehicle c

j

.
In Figure 4(a), we present a valid schedule for vehicle c

j

, where
each node indicates a location and each edge indicates a transfer
event. For example, from location o to location s1, the edge ⌧1
presents the transfer event from location o to s1. Then we can gen-
erate a corresponding transfer event list as shown in Figure 4(b).
We connect the transfer event nodes following the sequence in Fig-
ure 4(a). Specifically, for each transfer event node ⌧

u

, we store the
following information: a) start location l�

u

and end location l+
u

; b)
the earliest start time t�

u

and the latest completion time t+
u

; c) rid-
ers R

u

in the vehicle c
j

on event ⌧
u

; d) the maximum flexible time
ft

u

on the trajectory between l�
u

and l+
u

. We show the structure of
transfer event ⌧1 at the bottom of Figure 4(b).

The earliest start time t�
u

. The earliest start time t�
u

of the trans-
fer event ⌧

u

indicates the time when the vehicle can reach location
l�
u

if no time has been wasted or delayed in any prior transfer event
⌧
v

(v < u). Specifically, when vehicle c
j

is currently located at
location o at timestamp ¯t and the current ongoing transfer event is
⌧
v

, for a travelling event ⌧
u

(v < u), the earliest start time t�
u

is
calculated as follows:

t

�
u

=

¯

t+ cost(o, l

+
v

) +

uX

i=v+1

cost(l

�
i

, l

+
i

), (6)

where l�
i

and l+
i

are the start and the end location of the transfer
event ⌧

i

, respectively, and cost(l�
i

, l+
i

) is the travel cost from lo-
cation l�

i

to location l+
i

. Note that after inserting or deleting one
transfer event ⌧

v

from the transfer sequence, we only need to update
the earliest start time field of the subsequence nodes ⌧

u

(v < u).
The latest completion time t+

u

. The latest completion time t+
u

of
the transfer event ⌧

u

represents the latest time for the vehicle to
arrive at the end location l+

u

of ⌧
u

such that it is still possible to
complete the next event if no time will be wasted or delayed in the
next transfer event. Specifically, for a vehicle c

j

with a list of n
transfer events, the latest completion time of the transfer event ⌧

u

is calculated as follows:

t

+
u

=

⇢
min(t

+
u+1 � cost(l

�
u+1, l

+
u+1), dl(l

+
n

)), u 6= n

dl(l

+
n

), u = n

(7)

where l�
u+1 and l+

u+1 are the start location and the end location of
the transfer event ⌧

u+1, respectively. dl(l+
n

) is the deadline to reach
location l+

n

(i.e., the required pickup or the dropoff deadline of the
corresponding rider).

The flexible time ft
u

. The flexible time ft
u

for a transfer event
⌧
u

is the time that vehicle c
j

can stop or detour while moving from
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(a) Transfer Sequence of Vehicle c1

(b) Transfer Sequence of Vehicle c1 after Inserting Location F

Figure 5: An Example of Inserting a Pickup Location.
location l�

u

to l+
u

, which allows the vehicle c
j

to spend more time
from location l�

u

to l+
u

to pick up or deliver one additional rider,
such that it is still possible to complete all subsequent events. We
notice that for each transfer event ⌧

u

in a transfer sequence of n
transfer events, its flexible time can be calculated as follows:

ft

u

=

⇢
min(t

+
u

� t

�
u

� cost(l

�
u

, l

+
u

), ft

u+1), u 6= n

t

+
u

� t

�
u

� cost(l

�
u

, l

+
u

), u = n

(8)

where l�
u

and l+
u

are the start location and the end location of the
transfer event ⌧

u

, respectively, and t�
u

and t+
u

are the earliest start
time and the latest completion time of event ⌧

u

, respectively.

Example 2. (Pickup Location Insertion) For the vehicles and rid-
ers in the road network shown in Figure 1, assume we currently
arrange vehicle c1 to pick up rider r1 at A and deliver him/her to
destination H . We then have a transfer sequence T1 as shown in
Figure 5(a), where each node indicates a transfer event. For exam-
ple, node ⌧1 represents that the vehicle c1 is currently located at B
and needs to reach location A before timestamp 4. As the travel
cost from B to A is 1, the flexible time of ⌧1 is 3 (=4-0-1). To insert
a pickup location F in T1, it is only valid to insert F to ⌧2. As for
⌧1, its flexible time of 3 is not enough for vehicle c1 to pick up r2 at
F first, then arrive at location A before the deadline time 4.

After we insert the pickup location F into ⌧2, we get two transfer
events ⌧�

2 (from A to F ) and ⌧+
2 (from F to H). To maintain the

fields (e.g., flexible time ft) of the transfer events, we update the
earliest start times from ⌧+

2 to the tail of T1, then from the tail of T1

backwards to ⌧1 update the latest completion times and the flexible
times of transfer events with Equations 7 and 8, respectively.

3.2 Single Rider Insertion
In this subsection, we propose an algorithm, namely ArrangeSin-

gleRider, to insert a new rider r
i

into an existing transfer sequence
T
j

of vehicle c
j

such that the incremental travel cost is minimized.
Insert one location. To arrange a new rider r

i

into an existing
transfer sequence T

j

of vehicle c
j

, we need to first filter out the
valid transfer events for the source location s

i

and destination lo-
cation e

i

to be inserted. We present Lemma 3.1 here to guide the
selection of valid insertion positions.

Lemma 3.1. (Valid Insertion) For a transfer event ⌧
u

, the insertion
of a location x

i

(x
i

= s
i

or e
i

) of a rider r
i

is valid if and only if
the following conditions are all satisfied:
a) t�

u

 dl(x
i

);
b) cost(l�

u

, x
i

)  dl(x
i

)� ¯t;
c) cost(l�

u

, x
i

) + cost(x
i

, l+
u

)� cost(l�
u

, l+
u

)  ft
u

;
d) |R

u

|+ 1  a
j

,
where dl(x

i

) is the deadline for reaching location x
i

(i.e., the pickup
or dropoff deadline of the corresponding rider), ¯t is the current
timestamp, |R

u

| is the number of riders in the vehicle during trans-
fer event ⌧

u

, and a
j

is the capacity of vehicle c
j

.

Condition a) tells that the deadline for reaching location x
i

should
be later than the earliest start time of event ⌧

k

. Condition b) is re-
quired as the remaining time to reach location x

i

is enough for
vehicle c

j

to move from start location l�
u

to x
i

. Condition c) dic-
tates the flexible time ft

u

is larger than the incremental travel cost

Algorithm 1: ArrangeSingleRider
Input: An existing transfer sequence T

j

of vehicle c

j

and a rider r
i

Output: A best transfer sequence ˆ

T

j

1 ˆ

� INFINITY
2 ˆT

j

 ;
3 T

s

 ValidEvents(T
j

, s
i

)
4 T

e

 ValidEvents(T
j

, e
i

)
5 sort T

s

and T
e

based on incremental travel costs �
ij

in
ascending order

6 for transfer event ⌧
u

in T
s

do
7 if �

iu

� ˆ

� then
8 break
9 T 0

j

 insert s
i

in transfer event ⌧
u

of T
j

10 updateEventFields(T 0
j

, ⌧
u

, s
i

)
11 for transfer event ⌧

v

in T
e

do
12 if v < u then
13 continue
14 if �

iu

+�

iv

� ˆ

� then
15 break
16 if ⌧

v

is still valid to insert e
i

then
17 ˆT

j

 insert e
i

in transfer event ⌧
v

of T 0
j

18 ˆ

� �

iu

+�

iv

19 return ˆT
j

�

iu

(= cost(l�
u

, x
i

)+ cost(x
i

, l+
u

)� cost(l�
u

, l+
u

)) after inserting
location x

i

. Finally, condition d) means the count of riders in the
vehicle c

j

should not exceed the capacity a
j

of c
j

. Only when all
the conditions in Lemma 3.1 are satisfied, the transfer event ⌧

u

is
valid to insert the location x

i

.
Although the conditions in Lemma 3.1 are easy to check, we

still need to traverse all the transfer events of the existing transfer
sequence T

j

of vehicle c
j

to choose the valid events for insertion,
which is not efficient. We notice that for any event ⌧

v

, the earliest
start time t�

u

of any subsequent transfer event ⌧
u

(v < u) is larger
than t�

u

. Thus, we have the following Lemma 3.2 to stop searching
for valid events for insertion earlier.

Lemma 3.2. (Earliest Start Time Pruning) For an insert location
x
i

and an existing transfer sequence T
j

of vehicle c
j

, if the earliest
start time t�

u

of transfer event ⌧
u

is later than the deadline of reach-
ing location x

i

, then the subsequent transfer events ⌧
v

(v > u) are
invalid to insert x

i

.

Lemma 3.2 asserts that when searching for valid transfer events
to insert in location x

i

from the beginning of a given sequence, it
is safe to stop when we find the earliest start time t�

u

of the cur-
rent checking event ⌧

u

is later than the deadline dl(x
i

) of reaching
location x

i

.
The pseudo code of the algorithm ArrangeSingleRider is il-

lustrated in Algorithm 1. We first initialize the current minimum
increment travel cost ˆ

� as infinity such that any possible insertion
can lead to a smaller travel cost increment (line 1). As no best trans-
fer sequence has been found, we set the best transfer sequence ˆT

j

as empty (line 2). Then, we pick out the valid insertion events T
s

and T
e

for source location s
i

and destination location e
i

of the new
rider r

i

respectively using Lemmas 3.1 and 3.2 (lines 3-4), and sort
the events in T

s

and T
e

based on their incremental travel cost �
ij

in ascending order separately (line 5). Then we check every possi-
ble insertion events pair (one event from T

s

and the other one from
T
e

) and report the pair with the minimum incremental travel cost,
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�

iu

+ �

iv

(lines 6-18). Specifically, we first pick out one trans-
fer event ⌧

u

with the least incremental travel cost �
iu

(line 6). If
�

iu

is already larger than the current minimum incremental travel
cost ˆ

�, we can safely stop checking other event pairs (lines 7-8).
We insert location s

i

into the transfer event ⌧
u

of T
j

and assign
the resulting sequence to T 0

j

(line 9). Then we update the fields of
events in T 0

j

(line 10). Here we update the earliest start times (with
Equation 6) and riders from event ⌧

u

forwards to the end of T 0
j

, and
then update the flexible times (with Equation 8) from the tail of T 0

j

backwards to the head of it. Similarly, we traverse the valid events
⌧
v

to insert location e
i

in ascending order of the incremental travel
costs (line 11). If the event ⌧

v

is prior to the event ⌧
u

, which means
vehicle c

j

needs to deliver r
i

before picking up him/her, then, we
skip this event ⌧

v

(lines 12-13). What is more, if the incremental
travel cost �

iu

+�

iv

is larger than the currently found minimum
incremental travel cost ˆ

�, we can stop this traverse on T
e

(lines
14-15). Moreover, if we find a new valid pair with a smaller incre-
mental travel cost than ˆ

�, then we update the best sequence ˆT
j

and
ˆ

� (lines 16-18). Finally, we return the found bets sequence ˆT
j

.
The Time Complexity. For a transfer sequence T

j

with n trans-
fer events, the time complexity of Algorithm 1 is O(n2

). It needs
O(1) to check whether a location can be inserted into a transfer
event with Lemma 3.1, and O(n) to select valid events (lines 3-4).
Sorting the events in T

s

and T
e

needs O(n log n) (lines 5). The
iterations on T

s

at most runs n times (lines 6-18). Insert s
i

into
event ⌧

u

needs O(1) (line 9). To update the fields of events in T 0
j

needs O(n) (line 10). Also, iterations from line 11 to line 18 run at
most n times, and it each time needs O(1). Thus, the whole time
complexity of the algorithm is O(n2

). Note that the algorithm runs
fast in average situations, as many events have been pruned in the
selection of the valid events with Lemma 3.1 and 3.2.
Discussion on the Optimality. In this paper, we assume that the
existing transfer sequences will not be reordered, as a result, our
approach ArrangeSingleRider can achieve the exact solution for
arranging a single rider to a given vehicle with the minimum in-
crease on its travel cost. When the reorder operation is allowed, one
existing method [20] can report the optimal transfer sequence with
the minimum incremental travel cost. It utilizes a kinetic tree struc-
ture to store all the valid schedule sequences of each vehicle, then
inserts the single rider to the best stored schedule sequence. How-
ever, to arrange multiple riders to multiple vehicles with the mini-
mum travel cost (known as the Dial-a-Ride Problem), our approach
and the kinetic tree approach [20] all just achieve local optimal re-
sults as the deletion and the switch operations on the arranged rid-
ers are not allowed (i.e., no arranged riders will be deleted or switch
to other vehicles). Existing solutions [13] have the high computa-
tional complexities and only can solve small-size instances (e.g.,
less than 10 vehicles and 50 riders), thus cannot handle the real-
world instances (e.g., thousands of vehicles and riders).

4. THE BILATERAL ARRANGEMENT
APPROACH

As discussed in Section 2.6, the URR problem is NP-hard and
unlikely to be approximated within any constant factor in polyno-
mial time. An alternative choice is to design efficient heuristic algo-
rithms to achieve high quality results within affordable time. Thus,
we propose the bilateral arrangement algorithm in this section.

From the perspective of the riders, they want to have a nice
ridesharing experience, when they enjoy a ridesharing service. On
the other side, for each vehicle driver with a set of riders to pick
up at sources and deliver to destinations, the driver wants to have
a smart schedule sequence, such that the total travel cost is min-

Algorithm 2: BilateralArrangement
Input: A set C of n avaliable vehicles and their n incumbent

schedules S, and a set R of m rider
Output: A set of updated scheduling sequences S

1 foreach r
i

2 R do
2 retrieve a list C

i

of vehicles that are valid to r
i

3 while R 6= ; do
4 randomly pick one rider r

i

5 remove r
i

from R
6 while C

i

6= ; do
7 pick one vehicle c

j

with the highest utility increase for r
i

8 remove c
j

from C
i

9 if rider r
i

can be arranged in c
j

then
10 arrange r

i

to c
j

11 break
12 else if r

i

can replace rider r0
i

of c
j

then
13 replace r0

i

with r
i

14 put r0
i

back to R
15 break

16 return S

imized. In fact their objectives (to maximize the utilities and to
minimize travel distances) are consistent. To serve a rider with less
travel cost increase, a vehicle may have more flexible time. Then,
it could be flexible enough to provide service to more other high-
utility riders. Inspired by this observation, we propose a bilateral
arrangement algorithm, which assigns each rider to a suitable vehi-
cle. Each time we assign a rider r

i

to a vehicle c
j

, the assignment
is suitable iff no other vehicle c

k

exists such that µ(S0
j

)�µ(S
j

) 
µ(S0

k

)�µ(S
k

) and cost(S0
j

)� cost(S
j

) � cost(S0
k

)� cost(S
k

),
where S0

j

is the schedule of vehicle c
j

after arranging rider r
i

to it,
and µ(S

j

) and cost(S
j

) are the total utility and total travel cost of
vehicle c

j

arranged with the schedule S
j

, respectively.
Specifically, for each rider r

i

, we maintain a list C
i

of valid ve-
hicles. Then, for each rider, we first try to assign it to the vehicle
c
j

with the highest utility. If we can directly insert r
i

to the sched-
ule of c

j

, we simply insert r
i

into the schedule of c
j

. Otherwise,
if there is no flexible time for c

j

to serve r
i

, we try to replace one
rider r0

i

already assigned to c
j

such that the total travel cost of c
j

can be reduced and the overall utility can be improved.
The pseudo code of the algorithm BilateralArrangement is shown

in Algorithm 2. We first, for each rider r
i

, we retrieve a list C
i

of
vehicles that are valid to serve rider r

i

. Here a valid vehicle c
j

means that the rider r
i

can find a valid position of the schedule S
i

according the Lemma 3.1 (line 2). The loop from line 4 to line 14
process at least one rider in each iteration. In each iteration, we
randomly select one rider r

i

that has not been arranged to any ve-
hicle (lines 5-6). Then, we greedily pick the vehicle c

j

that has the
highest utility µ(r

i

, c
j

) (line 8). To avoid a rider r
i

being replaced
and reinserted back to a particular vehicle c

j

, when we test whether
r
i

can be arranged to c
j

, we remove c
j

from the preference vehicle
list C

i

of rider r
i

(line 9). Next, we arrange the riders from the per-
spective of vehicles (lines 10-16). If rider r

i

can be arranged to c
j

,
we simply insert r

i

into the schedule sequence of c
j

(lines 10-12).
Otherwise, we try to replace another rider r0

i

with r
i

to reduce the
total travel cost of c

j

and improve the overall utility (lines 13-16).

5. THE EFFICIENT GREEDY APPROACH
Although the bilateral arrangement algorithm in Section 4 can

achieve high-utility results efficiently, it needs to adjust the settled

1202



arrangements when better choices appear, which leads to its run-
ning time is hard to analyze.

A popular alternative is the greedy-based approximate method.
In this section, we introduce an efficient greedy algorithm, which
greedily selects a rider-and-vehicle pair with maximum utility effi-
ciency. Here, the utility efficiency f

ij

of assigning rider r
i

to ve-
hicle c

j

, whose incumbent scheduling is S
j

, is defined as follows:

f

ij

=

µ(S

0
j

)� µ(S

j

)

cost(S

0
j

)� cost(S

j

)

(9)

where S0
j

is the schedule after arranging rider r
i

to vehicle c
j

, and
µ(S

j

) and cost(S
j

) are the total utility and the total travel cost
of vehicle c

j

arranged with the schedule S
j

, respectively. The in-
tuition is that some rider-and-vehicle pair may have a high incre-
mental utility and a large travel cost increase, which may exhaust
the potential of the vehicle to serving other riders. Then, a rider-
and-vehicle pair with higher utility efficiency can have a higher
incremental utility with a smaller travel cost increase.

Specifically, to arrange one more rider r
i

to a particular vehi-
cle c

j

with an incumbent scheduling S
j

, we utilize Algorithm 1 to
achieve a non-reordered local optimal sequence S0

j

.
The pseudo code of the algorithm EfficientGreedy is illustrated

in Algorithm 3. We first initialize the set I of valid rider-and-vehicle
pairs as empty (line 1), then for each rider r

i

, we retrieve the valid
vehicles c

j

and put a pair hr
i

, c
j

i to I (lines 2-4). Here, the valid
vehicles are filtered out with the condition a) and b) of Lemma 3.1,
which can be sped up with a spatial index [29]. Then we calculate
the utility efficiency f

ij

of each pair hr
i

, c
j

i (lines 5-6). Next, we
greedily select the pair hr

i

, c
j

i with the current highest efficiency
and arrange the rider r

i

to vehicle c
j

with Algorithm 1 (lines 9-10).
As the insertion may change some efficiencies of pairs h., c

j

i re-
lated to vehicle c

j

, we update their efficiencies (line 11). Then, we
remove some invalid pairs (line 12). Finally, the updated schedul-
ing sequences for vehicles are returned (line 13).

Algorithm 3: EfficientGreedy
Input: A set R of m riders, a set, C, of n avaliable vehicles

and their n incumbent schedules S
Output: A set of updated schedules S

1 I ;
2 for rider r

i

2 R do
3 retrieve the possible vehicles C

i

for r
i

4 8c
j

2 C
i

, push one pair hr
i

, c
j

i to I
5 for rider-and-vehicle pair hr

i

, c
j

i 2 I do
6 calculate the utility increasing efficiency f

ij

with Equation 9

7 sort the pairs of each rider based on their utility efficiency in
descending order, separately

8 while I 6= ; do
9 select one pair hr

i

, c
j

i with the highest efficiency
10 insert rider r

i

to vehicle c
j

and arrange the scheduling S
j

with Algorithm 1
11 update the efficiencies of pairs h., c

j

i in I
12 remove pairs hr

i

, .i and invalid pairs from I
13 return S

The Time Complexity. For a set of n vehicles C and their n
incumbent scheduling sequences to support a set of m rider R,
the time complexity of Algorithm 3 is O(max(mx2,mn log(n))),
where x is the average length of the vehicle schedule. As there are
at most mn possible rider-and-vehicle pairs, to retrieve the pos-
sible rider-and-vehicle pairs I needs O(mn) (lines 2-4). Also, to
calculated the utility efficiency of all the pairs in I requires O(mn)

(lines 5-6). It requires O(n log(n)) to sort each group of (at most n
) rider-and-vehicle pairs of a rider. Then, it requires O(mn log(n))
to sort all the m groups of pairs separately (line 7). As the pairs of
each rider have been sorted, to select one pair with the highest effi-
ciency needs O(n) (line 9). Assume that the length of each sched-
ule sequence is k, to insert a new rider with Algorithm 1 needs
O(x2

). In each iteration from lines 8 to line 12, we need to update
the efficiencies of at most m pairs. To maintain the order of one
updated pair in its group, we need O(log(n)). Then, the updating
operation needs m log(n) (line 11). In addition, in each iteration
we need to remove at most n invalid pairs from I, which needs
O(n). As in each iteration, we will assign at least one rider to some
vehicle, there will be at most m iterations, then lines 8 - 12 need
O(max(mx2,mn log(n))). Thus, the whole time complexity of
Algorithm 3 is O(max(mx2,mn log(n))).

6. THE GROUPING-BASED SCHEDULING
APPROACH

Although the bilateral assignment algorithm and efficient greedy
algorithm can assign riders to suitable vehicles to maximize the
total utility value, their time complexities are large as they process
riders one by one. Then one straightforward idea to optimize the
running speeds is to group the riders and solve each group of riders
separately. According to a report [33] of the statistics of New York
City taxis in 2014, more than 50% of trips are less than 3 miles. We
may find some key vertices and attach the other vertices to them.
For a key vertex u

k

and its attached vertices, they form an area
A

k

. For example, as Figure 6 shows, the original road network
is illustrated in Figure 6(a). Then, we pick out two key vertices
A and H . For the key vertex A, we attach a set {B,C,D} to it.
They form an area O, whose center is A. Similarly, we get an
area P consisting of {E,F,G,H}, whose center is H . Moreover,
the distance between two areas is the length of the shortest part
between A and H .

In this section, we first propose a k-path covers based areas con-
struction algorithm. Next, based on the travel distances, we classify
the ride requests into two classes: short-trips and long-trips. Then,
we process different kinds of trips.

(a) A Road Network Example (b) The Corresponding Road Skeleton

Figure 6: Example of 3-Path Cover.

6.1 Area Construction Algorithm
Preprocessing. As the lengths of the edges in road networks are not
necessarily even, there may be some edges of tens of miles. To con-
struct areas with similar radii, we modify the original road networks
with a simple preprocessing, which breaks the long edges evenly
into shorter edges through inserting pseudo nodes. Specifically, for
a given upper bound of edge length d

max

, we check whether or not
to insert pseudo nodes into each edge (u, v). As we do not differ-
entiate between the length and travel cost in this work, d

max

can
also be used as the maximum travel cost. Based on the length of
(u, v), we can calculate the number of pseudo nodes to insert with
the equation below:

n

e

= b
cost(u, v)

d

max

c. (10)

Then, we uniformly insert n
e

pseudo nodes into the edge (u, v)
such that the travel cost between each two successive node of n

e

+2

nodes (including u and v) is cost(u,v)
n

e

.
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Algorithm 4: AreaConstruction
Input: A graph G = hV,Ei and a positive integer k
Output: A set A of constructed areas

1 A ;
2 Retrieve a set V 0 of k-shortest-path cover vertices of G
3 foreach u

j

2 V 0 do
4 create a area a

j

 {u
j

}
5 insert a

j

to A

6 foreach v
i

2 V � V 0 do
7 find the closest vertex u

j

2 V 0 of vertex v
i

8 add v
i

to the corresponding area a
j

9 return A

Area Construction. To construct the areas, we first need to select
the key vertices, which can represent the skeleton of the origin road
network. Here we use the state-of-art algorithms [18] of the k-path
covers problems to retrieve a subset V 0 ⇢ V of key vertices such
that any path consisting of k vertices has at least one vertex u 2 V 0.
As we only consider the shortest paths, here we use the algorithm
to solve the minimum k-shortest-path cover (k-SPC) problem to
select the key vertices. Specifically, for a given graph G = hV,Ei
and a positive integer k, k-SPC is to select a minimum subset of
vertices V 0 ⇢ V such that, for every shortest path ⇡ = v1, ..., vk
in G, ⇡ \ V 0 6= ;. For example, in Figure 6, the set {A,H} is a
solution of a 2-SPC problem shown in Figure 6(a).

The pseudo code of algorithm AreaConstruction to construct
the areas of a given road network is shown in Algorithm 4, which
returns a set of constructed areas A of a given graph G and a posi-
tive integer k. At the beginning, we initialize A to an empty set as
no areas exists (line 1). Then, we retrieve a subset V 0 through an
existing algorithm to solve the k-SPC problem [18] (line 2). Next,
we create an area a

j

for each key vertex v
j

2 V 0 and insert a
j

to A (lines 3-5). For the other vertices, we attach each one to a
corresponding area of a closest key vertex (lines 6-8).
Short-/Long-Trips Grouping. According to the travel distances,
the trips can be classified into two categories: short-trips and long-
trips. One trip is a short-trip, if its travel distance is smaller than
the upper bound of the radii of the constructed areas (i.e., d

max

·k);
otherwise, it is a long-trip. We group the short-trips starting in the
same area as a group and the long-trips as a group. Next, we first
arrange the long-trips as they may have huge impacts on the sched-
ules of vehicles. Then, for the groups of short-trips, we process
them following the order from groups with more trips to groups
with less trips. We next propose the grouping-based scheduling
algorithm.

6.2 Arrange Groups of Trips
Based on the area construction and classification of trips, we can

now arrange trips with different priorities. The pseudo code of the
grouping-based scheduling algorithm is shown in Algorithm 5. We
first initialize ⌘ + 1 groups of trips as empty sets (line 1). Then,
for the short-trips, we group the trips starting in the same area into
the same group, while the long-trips are classified into group g0
(lines 2-6). Next, we sort the trip groups based on the number of
trips in descending order (line 7). We solve the trip groups with our
bilateral arrangement algorithm or efficiency greedy algorithm. As
the long-trips have a larger impact on the schedules of vehicles, we
first arrange the trips in group g0(line 8). Then, for the short-trips,
we process them group-by-group based on the number of trips in
each short-trip group. We give higher priorities to groups with more
trips. Finally, we return the updated scheduling sequences.

Algorithm 5: GroupArranging
Input: A graph G = hV,Ei and the set A of its ⌘ constructed

areas, a set of n avaliable vehicles C and their n
incumbent schedules S, and a set R of m riders

Output: A set of updated schedules S
1 8g

x

 ;, x = 0, 1, ..., ⌘
2 foreach r

i

2 Q do
3 if r

i

is a short-trip then
4 put r

i

to the group g
x

where s
i

is in the area a
x

5 else
6 put r

i

to group g0

7 sort trip groups g
x

based on their numbers of trips in
descending order

8 solve the trips in group g0
9 while 9g

x

is unsolved do
10 select the group g

x

with maximum number of trips among
unsolved groups

11 solve the trips in group g
x

12 return S

Fast Valid Vehicles Filtering. To arrange the riders in one group
g
x

, we need to filter out the valid vehicles for the riders. A direct
way is to filter out a set of the valid vehicles of each rider, then
merge all the valid vehicle sets, which may cost at least the same
computational cost compared to non-grouping methods. However,
with the help of the constructed areas, we can quickly filter out the
valid vehicles. Specifically, for a given group g

x

and a vehicle c
j

,
we find out the latest pick up deadline rt�

max

among all the riders
classified into g

x

, then use the location of the key vertex u
x

of the
area of the group g

x

to apply the following condition to filter out
valid vehicles:

cost(u

x

, l(c

j

))� d

max

· k < rt

�
max

� ¯

t

where d
max

is the upper bound of the edge length and ¯t it the cur-
rent timestamp. The condition implies the vehicle that can arrive at
the original location of any rider in group g

x

is valid for the group.
With this condition, we can quickly filter out the valid vehicles and
thus improve the solving speed of group g

x

.
The Time Complexity. As the AreaConstruction procedure is in
fact a preprocessing for the road network, it does not affect the
arranging process. Here, we mainly analyze the time complexity
of Algorithm 5, namely GroupArranging. The time complexity
to classify one rider is O(log ⌘) with the help of the index data
structures (e.g., B+ Tree). Thus, to classify the riders, the time
complexity is O(m log ⌘) (lines 2-6). To sort the trip groups, the
time complexity is O(⌘ log ⌘) (line 7). Assume the trips and ve-
hicles are evenly distributed, then, for each trip group, there are
m

⌘

trips and n

⌘

valid vehicles. In addition, we assume Algori-
thm 3, namely EfficientmGreedy, is used to solve each trip group
and its time complexity is O(mn log n) to arrange m riders to
n vehicles. Then, the time complexity to solve ⌘ trip groups is
O(⌘(m

⌘

· n

⌘

) log(

n

⌘

) = O(

mn

⌘

log

n

⌘

). Then, the total time com-
plexity of Algorithm 5 is O(max(⌘ log ⌘, mn

⌘

log

n

⌘

)).

6.3 Cost-Model-Based Estimation of the Best
Number of Groups

With the grouping-based scheduling (GBS) algorithm, we can
improve the processing speed of the URR algorithms. However,
the parameter k may affect the running speed of the GBS algori-
thm in two parts of the calculation: 1) constructing the areas and
classifying the trips; 2) resolving each groups of trips. When k is
large, the prior part needs low time cost but the later part needs
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high time cost. In this subsection, we analyze the running cost of
the GBS algorithm and propose a cost model, then derive a best k
value such that the running time of GBS algorithm is minimized.

Specifically, the cost of the GBS algorithm includes 2 parts: the
cost, F

a

, of the area construction algorithm (in Algorithm 4) and
the cost, F

g

, of the group scheduling algorithm (in Algorithm 5).
The cost, F

a

, of areas construction. From algorithm AreaCon-
struction (in Algorithm 4), we first need to retrieve a set of k-
shortest-path cover vertices of the original graph G with s vertices.
As discussed in [18], their QuickPruning algorithm first adds all the
nodes to the coverage set G0, then tries to remove each node if they
are not necessary in set G0 to maintain the k-SPC properties that are
discussed in Section 6.1. For each node v, to determine whether
to remove it or not requires a time cost of O(N

k

(v)logN
k

(v) +
N

k

(v)2), where N
k

(v) denotes the number of nodes in G that lie
on a k-path originating in v. As this time complexity varies for
each node, it is hard to analyze the overall time complexity of the
QuickPruning algorithm [18]. According to the experimental study
in [18], the QuickPruning algorithm runs faster than the adaptive-
sampling algorithm in [32], whose total cost is O(s�̄

k�1 log �̄k�1),
where �̄

k�1 is the average number of (k� 1)-hop neighbors of the
vertices in G. As analyzed in [32], when �̄

k�1 is far smaller than
s, O(s�̄

k�1 log �̄k�1) grows linearly with n. Thus, we simply
note the cost of retrieving a set of k-shortest-path cover vertices as
O(C

k

s), where C
k

is a constant estimated for the given road net-
work G and s is the number of vertices of G. Unfortunately, the
QuickPruning algorithm does not have a bound for the size of the
coverage set G0 [18], thus we note the size of set G0 as ⌘ for a
given parameter k for our further analysis. Note that, the size of set
G0 is equal to the number of constructed areas. To attach the other
vertices in G � G0 to their corresponding areas, with the help of
spatial index structures (e.g., B+ Tree), it costs O(s log ⌘). From
the discussion above, we can obtain the cost F

a

below:
F
a

= s(C
k

+ log ⌘),

where C
k

is a constant estimated for the given road network G
while calculating the k-shortest path cover vertices, s is the number
of vertices of G, and ⌘ is the size of the coverage set G0.
The cost, F

g

, of group scheduling. In Algorithm 5, to classify
the riders, lines 2-6 need O(2m log ⌘) cost. To sort the ⌘ groups
based on their trip counts, it needs O(⌘ log ⌘) cost. Then, to use
our EfficientGreedy algorithm to process ⌘ groups of trips in lines
9-11, it needs O(

mn

⌘

log

n

⌘

)) cost (discussed in Subsection ). As
the k is usually small (e.g., 16) in practice for a city scale road
network, and the larger k is, the smaller ⌘ is, we have ⌘ >> 1, thus
we ignore the cost to process the group g

o

in line 8. Then, we have
the cost of group scheduling as below:

F

g

= 2m log ⌘ + ⌘ log ⌘ +

mn

⌘

log

n

⌘

The total cost of the GBS algorithm. The total cost, Cost
gbs

, of
the GBS algorithm can be given by summing up the two parts of
cost, F

a

and F
g

. Thus, we have

Cost

gbs

= s(C

k

+ log ⌘) + 2m log ⌘ + ⌘ log ⌘ +

mn

⌘

log

n

⌘

We take the derivation of Cost
gbs

over l, and let it be 0. In
particular, we have:

@Cost

gbs

@⌘

=

s+ 2m

⌘

+ log ⌘ + 1�
mn

⌘

2
(log

n

⌘

+ 1) = 0

We notice that when ⌘ = 1, @Cost

gbs

@⌘

is much smaller than 0 but
increases when ⌘ grows. In addition, ⌘ can only be an integer and
determined by k. When k is large, ⌘ is small. Thus, we can do a
binary search for the most suitable k value in range [1, s] such that
@Cost

gbs

@⌘

is larger than 0, which induces a minimum running cost
on the GBS algorithm.

7. EXPERIMENTAL STUDY

7.1 Experimental Methodology

7.1.1 Data Set
We use both real and synthetic data to test our proposed URR

approaches. Specifically, for real data, we use the taxi trip data sets
in NYC [5] and Chicago [6] and the USA road networks data set
[1] and Gowalla Check-in data set [2].
Road Networks. In the USA road networks data set, it includes the
latitude and longitude of each node. For each edge, its travel time
from one node to another node is given. Then, we have a graph of
the road networks in the NYC area (with longitude from�74.5� to
�73.5� and latitude from 40.3� to 41.3�), which includes 264,346
nodes and 733,846 edges, and the Chicago area (with longitude
from �87.94� to �87.53� and latitude from 41.64� to 42.02�),
which includes 57,181 nodes and 175,416 edges.
Taxi Trips. The NYC’s taxi trip data set is provided by the NYC’s
Taxi and Limousine Commission, which contains 14,776,615 taxi
trip records from Feb. 2013 in the NYC area. The Chicago taxi trip
data set is provided by the City of Chicago on the Chicago Data
Portal, which contains over 100 million taxi rides in Chicago dating
back to 2013. Each taxi trip record contains the pickup location
and timestamp, the drop-off location and other information. Figure
7 shows the distribution of time costs of two taxi trip data sets. In
the two data sets, more than half of the taxi trips require less than
1,000 seconds to finish, which can be treated as short trips.
Geo-Social Networks. Gowalla is a location-based social network-
ing website where users share their locations by checking-in. Gowalla
Check-in data set was collected by E. Cho et al [12], which in-
cludes a friendship network consisting of 196,591 nodes (users)
and 950,327 undirected edges (friendship connections), and 6,442,890
check-ins of these users over the period of Feb. 2009 - Oct. 2010.
We filter out the subset of the data set in the NYC area, which in-
cludes 159,257 check-in records.

7.1.2 Experiment Configuration
For the experiments on the real data set, we use the pickup lo-

cation and timestamp of one record of NYC’s taxi trip data set to
set up the pickup location and timestamp of one rider. To configure
the initial location of vehicles at a given timestamp t

j

, we select
a set T of taxi trip records ending in a time frame f

j

of range of
[t
j

� �
j

, t
j

], where �
j

is the length of frame f
j

in time units, then
for each record in T we set up the location of one vehicle as the
drop-off location of the trip record.

For the experiments on the synthetic data set, we do not ran-
domly generate the riders and the available vehicles on the road
networks, but simulate them through mining the taxi trip data set
with the simulation method in [25]. According to the observations
in [25], in a time frame f

j

(a period of time), the arrival of riders
on each road node u

i

approximately follow a Poisson distribution.
Then, for time frame f

j

, we denote the number of riders that orig-
inate from u

i

as nrj
i

, and estimate the parameter�j

i

of the Poisson
distribution for road edge u

i

in time frame f
j

with Eq. 11 below:

�j

i

= nrj
i

/�
j

, (11)

where �
j

is the length of frame f
j

in time units.
For the transition probability pj

ik

from nr
i

to nr
k

during the time
frame f

j

, we can estimate with Eq. 12 below:

pj
ik

= nrj
ik

/cj
i

, (12)
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Table 3: Experimental Settings.
Parameters Values

the number, m, of riders 1K, 3K, 5K, 8K, 10K
the number, n, of vehicles 100, 200, 300, 400, 500
the pickup deadline range [rt�

min

, rt

�
max

] [1, 10], [10, 30], [30, 60]
the capacity of vehicles a

j

2, 3, 4, 5
the balancing parameters (↵,� ) (0, 0), (1, 0), (0, 1), (0.33, 0.33)
the flexible factor " 1.2, 1.5, 1.7, 2
the length �

j

of time frame f

j

30 mins

where nrj
ik

is the number of riders that start from edge u
i

and end
at edge u

k

in time frame f
j

.
Then, for a given time frame f

j

, we first generate the ride re-
quests originating on each road edge u

i

, and generate the destina-
tions of rider according to the transition probability pj

ik

.
To simulate the initial locations of vehicles, we assume the ap-

pearance of vehicles on each road node u
i

also approximately fol-
lows a Poisson distribution. Different from the simulation of the
arrival of riders, we use the drop-off locations and timestamps to
mine the parameter �j

i

of the Poisson distribution of the appear-
ance of vehicle on the node u

i

in time frame f
j

. For all initialized
vehicles, we assume there are no riders in them at the beginning.

In addition, for both real and synthetic data sets, we simulate
the drop-off deadlines through adding time differences calculated
by multiplying the shortest travel cost cost0 with a flexible factor
". Here, we assume the drivers in the taxi trip data set are expe-
rienced and can deliver their passengers to the destinations with
the minimum travel cost. For the pickup deadlines, we gener-
ate them following Uniform distribution in the given time range
[rt�

min

, rt�
max

]. Then, for a trip trj
ik

from node u
i

to node u
k

in
time frame f

j

, we use the average travel cost of all the trips from
node u

i

to node u
k

in the same time frame f
j

.
Next, we map the riders and drivers to the geo-social networks.

Specifically, we use the pickup locations of riders and initial loca-
tions of drivers as their current locations respectively. Then, for a
rider/driver, we search the closest check-in record in Gowalla data
set in the current time frame, and use the social relationships of the
corresponding Gowalla user to initialize the rider/driver.

7.1.3 URR Approaches and Measurements
We conduct experiments to evaluate the effectiveness and effi-

ciency of our three approaches, which includes bilateral arrange-
ment (BA), efficient greedy (EG) and grouping-based scheduling
(GBS), in terms of the total utility value and the running time.
Specifically, for GBS, we can have two different combinations:
GBS+BA and GBS+EG, which use BA and EG as the base meth-
ods to arrange the trips in each constructed area, respectively. In
addition, we compare our approaches with one baseline method,
namely cost-first greedy (CF), which greedily selects rider-and-
vehicle pairs with the lowest incremental travel cost in each iter-
ation. As proved in Section 2.6, the URR problem is NP-hard and
unlikely to be approximated within any constant factor in polyno-
mial time, and thus it is infeasible to calculate the optimal result as
the ground truth. Alternatively, we have conducted a set of exper-
iments on a small-size URR instance with 3 vehicles and 8 riders.
Then we enumerate the optimal result and compare it with our URR
approaches’ results.

Table 3 introduces our experiment settings, where the default
values of parameters are in bold font. In each set of experiments,
we vary one parameter, while setting other parameters to their de-
fault values. For each experiment, we report the running time and
the assignment score of our tested approaches. All our experiments
were run on an Intel Xeon X5675 CPU @3.07 GHZ with 32 GB
RAM in Python.
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Figure 7: Distribution of Time Costs of Taxi Trips.

7.2 Experimental Results

7.2.1 Experiments on Real Data
In this section, we show the effects of the range [rt�

min

, rt�
max

]

of the pickup deadline and the capacity of vehicles a
j

.
Effect of the Range, [rt�

min

, rt�
max

], of Pickup Deadlines. Figure
8 illustrates the experimental results on different ranges, [rt�

min

, rt�
max

],
of pickup deadlines of riders from [1,10] to [30, 60] (in minutes),
where other parameters are set to their default values. In Figure
8(a), the overall utilities of all tested approaches increase, when
the value range of pickup deadlines gets larger. When the pickup
deadlines of riders increase, more vehicles become valid to arrive
at the pickup locations of riders. Then, for the riders, they have
more potential vehicles to select, which allows the test approaches
to arrange riders to more suitable vehicles with higher probabilities.
As a result, the overall utilities of the tested approaches increase.
Among the tested approaches, GBS+BA and BA can achieve sim-
ilar utility value, which are higher than the utilities of other ap-
proaches. The utilities of GBS+EG are much higher than that of
EG. The reason will be discussed in Section 7.2.2. As a baseline
algorithm, CF is less effective than our URR approaches. As shown
in Figure 8(b), the baseline algorithm, CF, runs the fastest, as it only
needs to select the rider-and-vehicle pair with the lowest travel cost.
BA needs to devote a lot of effort on adjusting the assignments of
riders to vehicles to search for better rider-and-vehicle pairs with
higher utilities and lower travel costs, which causes BA runs slow-
est among all the tested approaches. EG needs to calculate the util-
ity efficiencies for each possible rider-and-vehicle pair, which is a
little more complex than CF, thus EG needs similar time costs with
CF. Particularly, our GBS approach can reduce the time complexity
through efficiently grouping the trips into different areas, especially
when we can choose a suitable parameter k with our cost-model-
based estimation. As a result, GBS+BA and GBS+EG are faster
than BA and EG, respectively.
Effect of the Capacity of Vehicles a

j

. Figure 9 shows the experi-
mental results with different vehicle capacities a

j

from 2 to 5 over
real data, where other parameters are set to their default values.
In Figure 9(a), the utilities of tested approaches increase slightly,
when the vehicle capacity a

j

increases. The reason is that a higher
capacity can allow each vehicle serve more riders, thus improve the
total served riders and the overall utilities. GBS+BA can achieve
the highest entire utility values. The utility values of EG are lower
than BA and GBS+EG, but still much higher than that of BA and
CF. In Figure 9(b), the vehicle capacities a

j

also have almost no ef-
fect on the running time of the four approaches. BA is the slowest
and CF is the fastest. GBS+EG is a little bit faster than EG.

The experimental results of varying the range [rt�
min

, rt�
max

] of
the pickup deadline and the capacity of vehicles a

j

on Chicago data
set are similar to that on NYC data set. For the details, please refer
to Appendix D.

7.2.2 Experiments on Synthetic Data
In this section, we first show the effectiveness of our URR ap-

proaches by comparing their results with the enumerated optimal
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result (OPT) on a small scale URR instance ( with 3 vehicles and 8
riders). Then, we test the effectiveness and scalability of our URR
approaches compared with the baseline method, CF, by varying the
balancing parameters (↵,� ), the flexible factor ✏, the number, m,
of riders and the number, n, of vehicles on the synthetic data sets.
Results of a small scale URR instance.

To show the effectiveness of our URR approaches, we compare
the results achieved by our URR approaches with the optimal result
(calculated through enumeration) on a small scale URR instance
with 3 vehicles and 8 riders. As shown in Table 4, the optimal
utility is 2.047802. Our BA can achieve a very close utility value,
1.741861. EG is better than CF in achieving high-utility results.

Table 4: Results of the Small Scale URR Instance.
Approaches Utility Running Time

BA 1.741861 0.002197
EG 0.806841 0.002411

GBS+BA/EG - -
CF 0.635385 0.001287

OPT 2.047802 7218.234246

Particularly, BA runs 106 times faster than naively enumeration.
EG is better than CF, but less effective than BA. As the URR in-
stance is too small, GBS-related approaches cannot divide the trips
into different areas, thus we did not test them on this URR instance.
Effect of the balancing parameters (↵,� ). Figure 10 shows the
effect of the balancing parameters, (↵,� ), in Equation 1, by chang-
ing ↵ and � with four sets of values in Table 3, where other parame-
ters are set to their default values. The utilities of tested approaches
are shown in Figure 10(a), the utilities achieved by GBS-related
approaches (GBS+BA and GBS+EG) are usually higher than their
base methods. For example, GBS+EG is always better than EG
w.r.t. the utilities. The reason is when we divide the riders into dif-
ferent groups and solve them one-by-one, we can avoid the distrac-
tion from other riders in different groups, which may lead the flex-
ible times of the vehicles tight. With more flexible time, we can ar-
range riders to more suitable vehicles. What is more, as BA can ad-
just the rider-and-vehicle pairs to search for better arrangement, it
can repair the bad rider-and-vehicle pairs of the subsequent sched-
uled riders, which has a similar effect of GBS. Thus, GBS+BA
cannot significantly improve the performance of BA w.r.t. the utili-
ties and GBS+BA sometimes achieves a lower utility than BA (i.e.,
when ↵ = 1 and � = 0). Particularly, the utility values are rel-
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Figure 10: Effect of the Balancing Parameters (↵,� ) (Synthetic).
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Figure 11: Effect of the flexible factor ✏ (Synthetic).

atively low when ↵ = 0 and � = 1 (i.e., only the rider-related
utility is counted), as the social similarities of riders are usually
very low (e.g., 0.1) calculated with Equation 3. Moreover, we no-
tice that the utility of EG and CF are almost same when ↵ = 0

and � = 0 (i.e., only the trajectory-related utility is counted). The
reason is, for each rider, his/her the trajectory-related utility is high
when the travel cost is low, which leads EG and CF greedily select-
ing similar rider-and-vehicle pairs in each iteration. As shown in
Figure 10(b), CF runs fastest as its simple mechanism. GBS+BA
and GBS+EG are faster than BA and EG, respectively, but EG is
still much faster than GBS+BA. In addition, we notice the balanc-
ing parameters have very little effect on the speed of tested ap-
proaches, as the balancing parameters just influence the priorities
of rider-and-vehicle pairs to select.
Effect of the flexible factor ✏. Figure 11 presents the effect of
the flexible factor, ✏, by varying ✏ from 1.2 to 2.0, while other pa-
rameters are set to their default values. As shown in Figure 11(a),
GBS+BA and BA can achieve similar utilities, which are higher
than those of the other tested approaches. Due to the same reason in
the above discussion of the effect of balancing parameter, GBS+EG
can achieve higher utilities compared with EG. Most importantly,
when the flexible factor ✏ increases, the utilities of all the tested
approaches increase at the same. The reason is that larger flexible
factor means riders can accept longer detours/delays, which enables
vehicles to serve more riders.

In Figure 11(b), the running time of all the tested approaches in-
crease when ✏ increases. The reason is that when riders allow more
detours/delays (i.e., the flexible factor is larger), more other riders
will be valid for each vehicle, which causes the tested approaches
spending more time to handle more valid rider-and-vehicle pairs.
GBS+BA is faster than BA. EG is slightly slower than GBS+EG,
but much faster than GBS+BA. CF is still the fastest.
Effect of the Number of Riders, m. Figure 12 illustrates the effect
of the number, m, of riders, by varying m from 1K to 10K, where
other parameters are set to their default values. As shown in Figure
12(a), when the number of riders increases, the entire utility val-
ues of the results achieved by all the approaches will increase. The
reason is that when more riders are available, they will be served
and satisfied by the vehicles until the vehicles cannot handle the
ride requests. As a result, the utilities of EG and GBS increase fast
when m increases from 1K to 3K, however, they increase slowly
when m gets larger than 3K. The reason is when the riders become

1207



1K 3K 5K 8K 10K
m

0

100

200

300

400

500

U
til

ity

BA

EG

GBS+BA

GBS+EG

CF

(a) Utility Value

1K 3K 5K 8K 10K
m

100

101

102

103

104

R
u
n
n
in

g
 T

im
e
 (

s)

BA

EG

GBS+BA

GBS+EG

CF

(b) Running Time
Figure 12: Effect of the Number of Riders m (Synthetic).

saturated, all the capabilities of vehicles are used and no more util-
ity increases can be achieved. In Figure 12(b), when m increases,
the running times also increase. This is because, we need to deal
more rider-and-vehicle pairs for a large m. Again, EG is slower
than GBS+EG but faster than BA and GBS+BA. In addition, the
baseline CF is the fastest as its simple mechanism.
Effect of the Number of Vehicles, n. Figure 12 shows the ex-
perimental results with different numbers of vehicles, n, from 100
to 500 over synthetic data, where other parameters are set to their
default values. Similar to previous results about the effect of m,
in Figure 12(a), our URR approaches can obtain good results with
high entire utility values, compared with the baseline approach, UF.
Moreover, when the number, n, of workers increases, the utilities
achieved by all tested approaches also increase. The reason is that
when the number of n increases, the riders have more valid vehicles
to be assigned to, which may alleviate the competition of vehicles
among riders and lead to higher overall utilities.

In Figure 13(b), the running time of the tested approaches in-
creases, with the increasing number of vehicles. The reason is that
when more vehicles are available, we need to handle more valid
rider-and-vehicle pairs, which enlarges the problem space. Simi-
larly, BA runs slowest and GBS is faster than EG. As a baseline,
due to its simpleness, CF runs fastest.

In summary, over both real data and synthetic data sets, BA can
achieve the highest overall utilities, but it runs the slowest among
the tested approaches. GBS can increase the running speeds com-
pared with the corresponding base method (i.e., BA). More impor-
tant, when we use EG to solve the subproblems of GBS, GBS+EG
can always achieve much higher utilities than EG.

8. RELATED WORK
Recent years, with the popularity of GPS-equipped smart devices

and social networks, people can join ridesharing services conve-
niently. On the other hand, the emergence of online-to-offline trip
markets (e.g., Uber [7] and Lyft [3]) have enabled their users to
directly contact drivers to reserve personalized traveling services.
As a more efficient alternative, Uber-like companies have started to
provide sharing-traveling services, which allow customers to share
vehicles with other customers, then reduce the travel cost (as it is
distributed to all the customers in the same trip). Though rideshar-
ing and real-time taxi-sharing have been studied in several previ-
ous works [21, 16, 19, 20], they mainly focus on the efficiency
of vehicles, which is to provide ridesharing services to customers
to guarantee required constraints at minimum travel costs. How-
ever, saving travel cost is not a crucial point any more, as more
and more companies [4, 8] have launched unlimited ride packages
to provide unlimited ridesharing services for a period of registered
time. Thus, the customers involved in ridesharing activities are not
only for saving money but also for having better user experiences,
which is measured with utility values in this work. Specifically, we
take into consideration the vehicle-related utility, the riders-related
utility and the trajectory-related utility.

The utility-aware ridesharing problem can be viewed as a variant
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Figure 13: Effect of the Number of Vehicles n (Synthetic).

of the dial-a-ride problem (DARP), which designs vehicle routes
and schedules for n riders who specify pick-up and drop-off re-
quests between origins and destinations [14]. Existing works on
DARP have primarily focused on the static DARP, where all cus-
tomer ride requests are known in prior [21, 35, 13]. The gen-
eral DARP is NP-hard and intractable, only small instances can
be solved exactly [13]. Several works on DARP focus on single-
vehicle problem instances, where only one vehicle is considered
to schedule riders and plan the travel route [27, 26]. Some works
group the ride requests with bounded distance errors, then use heuris-
tic algorithms to dispatch a set of riders to each vehicle to provide a
high running efficiency such that the ridesharing services can be
used in on-line situations with large scale existing ride requests
[19]. For online ridesharing/taxi-sharing, existing works [25, 20]
focus on fast responses to the arrival riders one by one without guar-
anteeing the global optimality. In [25], they proposed one frame-
work to handle the online taxi-sharing problem, where riders and
taxis keep arriving and leaving. Their framework responds to each
coming rider by scheduling it to the most suitable vehicle such that
the time window and monetary constraints are satisfied. According
to their experimental study, they pointed out that schedule reorder-
ing is not necessary for large scale ridesharing services, as the time
cost will increase a lot but the effectiveness measurements change
very little. In [20], the researchers propose a kinetic tree structure
to trace the valid schedule plans for each vehicle. When a new rider
arrives, they provide the best route among all the vehicles with the
least travel cost increase. However, our URR problem takes three
components of utility into consideration and targets on maximizing
the overall utility of riders such that the user experience can be im-
proved, thus no previous solutions can be used directly. To solve
the URR problem, we propose two approximate algorithms, then
propose a grouping-based algorithm to improve the running speed.

9. CONCLUSION
In this paper, we propose the problem of utility-aware rideshar-

ing on road networks (URR), which assigns time-constrained rid-
ers to capacity-constrained and dynamically moving vehicles, such
that the entire utility value, which includes the vehicle-related util-
ity, the riders-related utility, and the trajectory-related utility, is
maximized. We prove that the URR problem is NP-hard, and thus
we propose three approximate approaches (i.e., a bilateral arrange-
ment algorithm, an efficient greedy algorithm and a grouping-based
scheduling algorithm), which can efficiently retrieve URR answers.
Extensive experiments have shown the efficiency and effectiveness
of our URR approaches on both real and synthetic data sets.
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B. PROOF OF THEOREM 2.1 (HARDNESS
OF THE URR PROBLEM)

Proof. We prove the theorem by a reduction from the 0-1 Knap-
sack problem [34]. A 0-1 knapsack problem can be described as
follows: given a set of m items numbered from 1 up to m, each
with a weight w

i

and a value v
i

, along with a knapsack that has a
maximum weight capacity W , the problem is to maximize the sum
of the values of the items in the knapsack so that the sum of the
weights is less than or equal to the knapsack’s capacity W .

Figure 14: Illustration of the URR Instance.

For a given knapsack problem, we can transform it to an instance
of URR shown in Figure 14 as follows: we give only one vehicle
c
j

with k(� 1) capacity located at a node o with no riders. In
addition, we give a set of m ride requests at different locations, and
the pickup deadlines and delivery deadlines of requests are set to
W . Moreover, the destinations of the requests are the same as the
riders’ current locations respectively. Then, we set the traveling
time from node o to a node A

i

as w
i

/2 and the utility value of ride
request q

i

as v
i

. Then, for this URR instance, we want to arrange a
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schedule for the given vehicle such that the summation utility value
is maximized.

As the destinations of the requests are the same as the current lo-
cations of the riders, each time the vehicle moves to some node A

i

,
then it can satisfy the rider immediately. In addition, as the travel-
ing time from node o to any other node A

i

is w
i

/2 and no routes
between the locations of requests, to serve a request q

i

and continue
to the other ones, the vehicle needs to go to node A

i

then go back
to node o, which leads to a traveling time cost of w

i

and increases
the summation of utility value with v

i

. As the deadlines of all the
requests are set to W , the vehicle can finish ride requests before
W . Thus, to maximize the summation utility value satisfying the
deadlines is same as to maximize the total value of the items in the
knapsack problem under the constraint of the capacity of the given
knapsack. Given this mapping it is easy to show that the knapsack
problem instance can be solved if and only if the transformed URR
problem can be solved.

This way, we can reduce the knapsack problem to the URR prob-
lem. Since the knapsack problem is known to be NP-hard [34],
URR is also NP-hard, which completes our proof.

C. PROOF OF THEOREM 2.2

Proof. We prove the theorem by a reduction from the DENSE k-
SUBGRAPH problem [17]. The DENSE k-SUBGRAPH problem
can be described as follows: given a graph G = (V,E) (on n
vertices) and a parameter k, the problem is to find a subgraph G0

=

(V 0, E0
) of G induced on k vertices, such that the density of G0

=

2|E0|
|V 0| (=

2|E0|
k

) is maximized.
For a given DENSE k-SUBGRAPH problem instance I defined

by a graph G = (V,E) (on n vertices) and a positive integer k, we
can create an URR instance J as follows: For any node v

i

in G,
we create a rider r

i

in R. Then for any edge (v
i

, v
j

) 2 E, we set
s(r

i

, r
j

) = 1 (i.e., the similarity of the corresponding rider pair is
1); otherwise, s(r

i

, r
k

) = 0 if (v
i

, v
k

) /2 E. Let C = {c
x

} and
a
x

= k (i.e., there is only one vehicle c
x

and its capacity is k). In
addition, we set � = 1, then the utility µ(r

i

, c
x

) = µ
r

(r
i

, c
x

) (i.e.,
we only consider the rider-related utilities). The road network has
only two nodes o1 and o2, and l(c

x

) = s
i

= o1, ei = o2, 8ri 2
R (i.e., the vehicle c

x

and all the riders are located at o1 and the
destinations of all the riders are o2). What is more, the delivery
deadlines of riders are set as rt+

i

= cost(o1, o2), 8ri 2 R, which
means it is just sufficient for vehicle c

j

to move from o1 to o2 once.
As a result, to solve the URR instance J is to select a subset

R0 of k riders for vehicle c
x

to deliver from o1 to o2 such that the
overall utility is maximized, where the overall utility is

X

r

i

2R

0

X

r

0
i

2R

0�{r
i

}

s(r
i

, r0
i

)

|R0 � {r
i

}|

=

X

r

i

2R

0

X

r

0
i

2R

0�{r
i

}

s(r
i

, r0
i

)

k � 1

=

2|E0|
k � 1

(13)

where E0 is the edge set of the subgraph induced on the k corre-
sponding vetrices of the selected subset R0 of riders. Equation 13
holds, as s(r

i

, r0
i

) equals to 1 only when the corresponding edge
exists in G (also in G0). Thus, as k is a given constant, to maxi-
mize the overall utility of the solution for J is same to maximize
the density of the selected subgraph G0 for I.

Suppose there is a PTIME algorithm A approximating URR within
a factor of c 2 (0, 1), then there must be a PTIME algorithm B that
can approximate DENSE k-SUBGRAPH within the same factor
through converting I to J as above, running A on J , and out-
putting the vertices corresponding the the selected riders R0 by A.
This cannot be true unless the Unique Games with Small Set Ex-
pansion Conjecture does not hold.

D. EXPERIMENTAL RESULTS ON CHICAGO
DATA SET
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Figure 16: Effect of the Capacity of Vehicles a

j

(Chicago).

The results of the experiments on Chicago data set are similar
to the results of the experiments on NYC data set. Specifically,
in Figure 15, when the range of the pickup deadline of riders gets
larger, the utilities of all the tested approaches increase at the same
time. GBS+BA can achieve the close utility values compared with
BA, and they are better than other approaches w.r.t. the utility of
results. CF reports the fastest results with the lowest utilities. GBS-
related approaches (GBS+BA and GBS+EG) run faster than their
base methods (e.g., BA and EG). As for the effect of the capac-
ity, a

j

, of vehicles, the utilities achieved by the tested approaches
increase slightly, when the vehicle capacity a

j

increases. The rea-
son is that a higher capacity can allow each vehicle to serve more
riders, thus improve the total served riders and the overall utilities.
GBS+BA and GBS+EG usually achieve higher utilities than their
base methods, BA and EG, respectively. GBS+EG is still worse
than BA w.r.t. the achieved utilities.

The observation of the experimental results on Chicago data set
is similar to that on NYC data set. Our BA algorithm is good at
achieving high utilities, but runs very slow. GBS can improve the
running speed of its base method and usually achieve higher utili-
ties than its base method.
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