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ABSTRACT
Depth-First Search (DFS), which traverses a graph in the depth-
first order, is one of the fundamental graph operations, and the
result of DFS over all nodes in G is a spanning tree known as a
DFS-Tree. There are many graph algorithms that need DFS such
as connected component computation, topological sort, community
detection, eulerian path computation, graph bipartiteness testing,
planar graph testing, etc, because the in-memory DFS algorithm
shows it can be done in linear time w.r.t. the size of G. However,
given the fact that real-world graphs grow rapidly in the big data
era, the in-memory DFS algorithm cannot be used to handle a large
graph that cannot be entirely held in main memory. In this paper,
we focus on I/O efficiency and study semi-external algorithms to
DFS a graph G which is on disk. Here, like the existing semi-
external algorithms, we assume that a spanning tree of G can be
held in main memory and the remaining edges of G are kept on
disk, and compute the DFS-Tree in main memory with which DFS
can be identified. We propose novel divide & conquer algorithms
to DFS over a graph G on disk. In brief, we divide a graph into
several subgraphs, compute the DFS-Tree for each subgraph inde-
pendently, and then merge them together to compute the DFS-Tree
for the whole graph. With the global DFS-Tree computed we iden-
tify DFS. We discuss the valid division, that can lead to the correct
DFS, and the challenges to do so. We propose two division algo-
rithms, named Divide-Star and Divide-TD, and a merge algorithm.
We conduct extensive experimental studies using four real massive
datasets and several synthetic datasets to confirm the I/O efficiency
of our approach.

Categories and Subject Descriptors
G.2.2 [Graph Theory]: Graph algorithms
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1. INTRODUCTION
Depth-first search (DFS) is one of the fundamental graph opera-

tions to access all nodes in a graph G by traversing it in the depth-
first order, and the result of DFS over all nodes in G is a spanning
tree known as a DFS-Tree. The importance of DFS comes from the
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fact that a large number of graph algorithms need to access nodes
in an order, and there are a large number of applications that need
to traverse a graph in the depth-first order. In brief, the graph algo-
rithms that need DFS include topological sort, reachability query,
finding connected components, planar graph testing, graph bipar-
titeness testing, and even frequent subgraphs mining.

Motivation: In the literature, the in-memory DFS algorithm has
been well studied, and is shown to be done in linear time, w.r.t. the
graph size [16]. However, due to the fact of rapid graph growth
in the big data era, the size of many graphs grows rapidly so that
they cannot entirely reside in main memory. For example, there are
more than 1.32 billion nodes with average degree more than 132 in
facebook1. As a small part of the entire web, uk-2007-052 contains
105,896,555 nodes and 3,738,733,648 edges. Motivated by this, in
this paper, we study new I/O efficient algorithms to DFS a graph G
when G cannot be entirely held in main memory.

Related Work: In the external memory (EM) model [1], it as-
sumes that the main memory can only keep M elements while the
remaining will be kept in blocks on disk, where one block con-
tains B elements. Suppose one I/O access will read/write B ele-
ments (1 block) from/into disk into/from main memory. The I/O
complexity to scan N elements, denoted as scan(), is Θ(N

B
) I/Os,

and the I/O complexity to sort N elements, denoted as sort(), is
O(N

B
· log M

B

N
B

) I/Os [1].
Given the external memory model, Chiang et al. [5] propose a

DFS algorithm for a graph G(V,E) with I/O complexity O(|V |+
|V |
M
· scan(|E|) + sort(|E|)). Later, Kumar and Schwabe [10]

and Buchsbaum et al. [4] improve to O((|V | + |E|
B

) log2
|V |
B

+
sort(|E|)). The main idea of the approaches is to reduce the I/O
cost to find the next unvisited node. They reduce I/O complexity to
O(N), from O(E) by a naive approach, using either tournament
trees [10] or buffered repository trees [4]. However, they still need
a large number of I/Os, because O(N) I/Os for every step in DFS
is very high, and is impractical to be used.

The most up-to-date semi-external algorithm for DFS is by Sibeyn
et al. [14]. They assume that main memory can hold a spanning tree
of G but not all the edges of G, and convert the DFS problem to
the problem of finding a DFS-Tree with which DFS can be com-
puted. It is worth noting that Zhang et al. [18] study an I/O efficient
semi-external algorithm to find all strongly connected components
in a graph using a weak order instead of the total order that DFS
implies. Their approach cannot be used for DFS, because the weak
order cannot be used to find the DFS-Tree.

There are reported studies on some specific graphs. Her et al. [9]
propose an external memory method to DFS in general grid graphs.
Arge et al. [3] propose a method for undirected embedded planar

1http://newsroom.fb.com/company-info/
2http://law.di.unimi.it/datasets.php
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graphs. However, these approaches cannot be used to handle a
general directed graph. Surveys about designing I/O efficient al-
gorithms for massive graphs can be found in [17, 2].

There are also distributed/parallel algorithms. Makki et al. [11]
and Sharma et al. [13] propose distributed DFS algorithms with
bound message length and transmitting times. Makki et al. [12]
propose a distributed algorithm to find the DFS-Tree in a distributed
environment, which uses a stack-type structure to enable better dy-
namic backtracking. However, simulating the content in the mes-
sages and transmitting will result in a large number of random ac-
cess. Freeman [8] examines a parallel DFS algorithm in sub-linear
time, which only works on undirected or planar graphs.

The Main Contributions: In this paper, we discuss the ineffi-
ciency of the existing semi-external DFS algorithms, and propose
a novel divide & conquer semi-external algorithm that significantly
reduces the I/O cost for DFS, where a semi-external algorithm as-
sumes that only a spanning tree of the graph can be held in mem-
ory. In our divide & conquer algorithm, we divide a graph into
several subgraphs, compute the DFS-Tree for each subgraph in-
dependently, and then merge them together to compute the DFS-
Tree for the whole graph. With the global DFS-Tree computed we
identify DFS. It is important to note that a subgraph can be further
divided recursively if it is still too large to fit in memory, and for
each subgraph divided we can reduce the I/O cost because we do
not need to scan the entire graph to handle a subgraph. We discuss
the motivation of designing a divide & conquer DFS algorithm, the
valid division that can lead to the correct DFS, and the challenges
to do so. We design two division algorithms, named Divide-Star
and Divide-TD, and a merge algorithm. By Divide-Star, the divi-
sion is made according to the children of the root. By Divide-TD,
the division is made according to a cut-tree. We conduct extensive
experimental studies using four real massive datasets and several
synthetic datasets to confirm the I/O efficiency of our approach.

Paper Organization: The remainder of this paper is organized as
follows. We give the problem statement in Section 2, and discuss
the existing solutions in Section 3. In Section 4, we show the ben-
efit and challenges of divide & conquer approaches and outline the
framework of our approaches. We discuss the properties of a valid
division in Section 5, and propose two divide algorithms in Sec-
tion 6 and one merge algorithm in Section 7. We report our experi-
mental results in Section 8. We conclude this work in Section 9.

2. THE PROBLEM STATEMENT
We model a directed graph as G(V,E), where V represents the

set of nodes and E represents the set of edges (ordered pairs of
nodes). We denote the number of nodes and edges by n and m,
i.e., n = |V | and m = |E|, respectively. In the following, we
may use V (G) and E(G) to denote the set of nodes and the set of
edges of a graph G, when necessary. In addition, we use NO(u)
and NI(u) to denote the out-neighbors and in-neighbors of u, i.e.,
NO(u) = {v | (u, v) ∈ G} and NI(u) = {v | (v, u) ∈ G},
respectively. The in-degree and out-degree of node u are denoted
as dI(u) = |NI(u)| and dO(u) = |NO(u)| respectively.

Depth-First Search (DFS): Given a graph G(V,E), depth-first
search (DFS) is to search G following the depth-first order. Specif-
ically, it searches a graph G in an order by picking up an unvis-
ited node v from the out-neighbors of the most recently visited u,
NO(u), to search, and backtracks to the node from where it comes
when a node u has explored all possible ways to search further [6].
In the following discussion, for simplicity and without loss of gen-
erality, we assume that a graph is connected in the sense that its
underneath undirected graph is connected, and there is a node in
G whose in-degree is zero to start DFS. When there are more than
one node whose in-degree is zero, we can add a virtual root node
γ which has an edge to every node v in G that has zero in-degree

Figure 1: A Graph G and its DFS-Tree

(a) A spanning tree T with edge types (b) A DFS-Tree
Figure 2: An Example

(dI(v) = 0). By DFS starting from γ, it can DFS every node in G.
When there is no node whose in-degree is zero, a node in G will be
randomly selected as the first node for DFS. The similar steps can
be performed to handle a graph that is not connected.
The DFS-Tree: A DFS of G results in a total order over all nodes
in G. It is worth mentioning that DFS is not unique and the total
order is not unique. The result of DFS forms an ordered spanning
tree called a DFS-Tree. By DFS the graph in a different order, it
may result in a valid but different DFS-Tree. The DFS-Tree can be
used to represent the DFS or the total order. In other words, DFS
the graph G is equivalent to finding the DFS-Tree of G.
Example 2.1: Fig. 1 shows a graph G. Starting DFS from node A,
a result of DFS shows a total order over all nodes in G, which can
be A, B, C, D, E, F , G, J , H , I , P , K, L, M , N and O. The
corresponding DFS-Tree is marked by solid lines in Fig. 1. 2

The need to find a DFS-Tree of G first followed by finding DFS
over G stems from the fact that a graph can be very large such
that it cannot be entirely held in memory. In such a situation, the
application of any in-memory DFS algorithm will result in a huge
number of random I/O accesses, which makes it impractical.
Edge Types: In order to discuss how DFS-Tree can be used in
finding DFS overG whenG cannot be held in memory, we classify
edges of G into different types under an ordered spanning tree of
G [6, 14]. Let T be an ordered spanning tree of G, the edges of
G that appear in T are called tree-edges. The remaining edges,
(u, v), are non-tree edges, and are categorized into four types: (1)
forward-edge if u is an ancestor of v in T , (2) backward-edge if u
is a descendant of v in T , (3) forward-cross edge if u and v do not
have ancestor/descendant relationship and u is visited before v by
the preorder of T for G, and (4) backward-cross edge if u and v
do not have ancestor/descendant relationship and u is visited after
v by the preorder of T for G. We use cross-edge to denote an edge
that is either a forward-cross edge or a backward-cross edge. By
definition, as shown in [14], a DFS-Tree is an ordered spanning
tree T that does not have any forward-cross edges. As a result, the
problem of DFS in G can be solved by finding a DFS-Tree of G,
and the condition of ensuring that a spanning tree is a DFS-Tree
can be done by checking forward-cross edges. Based on this, a
semi-external DFS algorithm is designed to hold a spanning tree in
memory when the graph G cannot be held in memory.
Example 2.2: A graph G is shown in Fig. 2(a). Here, the ordered
spanning tree is represented by the nodes connected by the solid
edges where the nodes are visited in an order ofA, B, C, E, D, F ,
G, H , I , and J . Such a spanning tree is not a DFS-Tree, because
(C,D) is a forward-cross edge. On the other hand, the spanning
tree shown in Fig. 2(b) is a DFS-Tree, since no forward-cross edges
exist in the spanning tree. 2
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Problem Statement: To DFS over a directed graph G that cannot
be held entirely in memory, in this paper, we study a semi-external
algorithm that aims at computing a DFS-Tree (by which DFS can
be obtained) with the limited given memory M such that k · |V | ≤
M ≤ |G|. Here, k is a small constant number (e.g., k = 3), and
|G| = |V |+ |E|.
Discussion: In this paper, as the first step, we focus on designing a
semi-external DFS algorithm by assuming that k · |V | ≤ M . This
restricts the algorithm to only handle a graph G whose spanning
tree can be held in main memory, and the focus becomes which
edges we should keep in main memory to find a DFS-Tree in an I/O
efficient manner. Such an assumption is made due to the following
reasons. For most social networks and web graphs, the number of
edges is much larger than the number of nodes. In SNAP3 among
79 real-world graphs, the largest graph contains 65 M nodes and
1.8 G edges. In KONET4 among 230 real-world graphs, the largest
graph contains 68 M nodes and 2.6 G edges. Second, designing
an I/O efficient semi-external DFS algorithm is non-trivial. Third,
it has been well recognized that external DFS is very hard to be
solved efficiently [10, 5, 4]. In the literature, the best external DFS
algorithm requires O((|V |+ |E|

B
) log2

|V |
B

+ sort(|E|)) I/Os [10,
4] which is obviously too high to handle real-world large graphs.

3. EXISTING SOLUTIONS
Algorithm EdgeByEdge: Sibeyn et al. [14] propose a semi-external
algorithm to find the DFS-Tree for a graph G. The basic idea is to
repeatedly restructure the spanning tree T held in memory by re-
placing any forward-cross edge found in T when reading edges of
G from disk until there do not exist any forward-cross edges in G.

Example 3.1: Reconsider Fig. 2 where we omit the virtual node
γ. Assume that a spanning tree T is in memory, which includes the
solid edges as shown in Fig. 2(a). The dotted edges in Fig. 2(a) rep-
resent the non-tree edges. Among the five non-tree edges, (A,D),
(C,D), (G,D), (J,H) and (I, F ), the edge (C,D) is the only
forward-cross edge w.r.t. T in memory. When edge (C,D) is read
from G on disk, by restructure, EdgeByEdge will delete the edge
of (E,D) from T and add (C,D) into T . This results in a span-
ning tree T shown in Fig. 2(b). Assume that the visiting order by
DFS is A, B, C, D, E, F , G, H , I , and J over T in Fig. 2(b).
EdgeByEdge finds that there is no more forward-cross edges in the
next iteration when scanning G. As a result, the spanning tree in
Fig. 2(b) is a DFS-Tree to be computed. 2

Algorithm EdgeByBatch: By EdgeByEdge, the number of I/O
accesses required to find the DFS-Tree may be large since it may
need to scan the entire graph G for n times in the worst-case. This
is because it may reduce only one forward-cross edge in scanning
G in every iteration. In order to reduce the number of I/O ac-
cesses by making use of the memory whenever possible, Sibeyn
et al. in [14] propose a batch processing algorithm, denoted as
EdgeByBatch, which is illustrated in Algorithm 1. The algorithm
first constructs an initial spanning tree T in memory (line 1-2).
Then, it restructures the spanning tree T iteratively by invoking
the procedure Restructure(G,T,M) until no forward-cross edges
exist in G w.r.t. T . The procedure Restructure is shown in line 7-
16 of Algorithm 1. It loads edges of G on disk into the memory
in a batch manner. In every batch, it will construct a graph GM

by adding as many edges as possible into the spanning tree T held
in memory under the constraint of |GM | ≤ M (line 11). Here,
E(GM ) ⊆ E(G). Given GM held in memory, it constructs a new
DFS-Tree T for GM in memory (line 14) if there exists a forward-
cross edge in GM w.r.t. T (line 12), and removes those non-tree
3http://snap.stanford.edu/data/
4http://konect.uni-koblenz.de/networks/

Algorithm 1 EdgeByBatch(graph G, memory size M)

1: for all nodes v ∈ V (G) do
2: add edge (γ, v) in T where γ is a virtual node;
3: update← true;
4: while update = true do
5: (T, update)← Restructure(G, T,M);
6: return T ;

7: Procedure Restructure (graphG, spanning tree T , memory sizeM )
8: update← false;
9: while there exist unprocessed edges ofG on disk do
10: GM ← T ;
11: load unprocessed edges of G from disk to enlarge GM in memory where

possible under the constraint of |GM | ≤M ;
12: if there exists a forward-cross edge inGM w.r.t. T then
13: update← true
14: construct a new T by conducting DFS overGM ;
15: remove non-tree edges ofGM and only keep T in memory;
16: return (T, update);

edges regarding T from the memory (line 15). A variable update
is used to check whether there exists at least one forward-cross edge
in G w.r.t. T (line 13), and it is used as a termination condition for
the EdgeByBatch algorithm. After all edges of G are processed in
a batch manner, the spanning tree T along with the variable update
is returned (line 16).

In Algorithm 1, whenever there is more memory available, it will
load as many edges as possible and apply the DFS procedure to
the graph in memory. Note that DFS should visit the nodes which
stay in memory before newly loaded ones. Algorithm 1 performs
well when a large part of the graph can be loaded into memory.
However, since the graph size cannot be reduced during the DFS
procedure, the batch processing has to scan the whole graph even
if only one forward-cross edge exists in G, which is inefficient. In
the worst case, the algorithm still needs to scan all the edges of the
graph on disk for n times.

4. A NEW DIVIDE & CONQUER METHOD
In this section, we analysis the problem and outline our new ap-

proach to compute the DFS-Tree.

4.1 Problem Analysis
We give the motivation to design new divide & conquer algo-

rithms by analyzing the drawbacks of the existing semi-external
DFS algorithms, and we show the challenges of designing a good
divided & conquer algorithm.

Drawbacks of Existing Solutions: When the graph G cannot en-
tirely fit in the main memory, the existing algorithms, EdgeByEdge
and EdgeByBatch, have several drawbacks which make them in-
efficient to compute the DFS-Tree.

(1) A total order in V (G) needs to be maintained in the whole
process of DFS. Recall that when the graph G can fit in the main
memory, the in-memory based DFS algorithm in [6] can perform
DFS efficiently based on a total order of all nodes in G. This is
because the algorithm can find the next node to be visited one by
one in the total order by checking unvisited nodes and each node
can be checked in constant time. In the semi-external algorithms
EdgeByEdge and EdgeByBatch introduced in [14] to compute the
DFS-Tree, the total order is also adopted to restructure the in-
memory spanning tree. The total order of nodes in V (G) needs
to be maintained in every iteration of both algorithms, since when-
ever the spanning tree is restructured both algorithms need the new
total order of all nodes to compute and update the type of every
edge in the graph G. Maintaining such a total order may result in
high computational cost because once the order of a certain node is
changed, all the nodes with larger order may need to update their
positions in the total order accordingly.
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(2) A large number of I/Os are produced. Both EdgeByEdge and
EdgeByBatch have to scan all the edges of G in order to eliminate
even only one forward-cross edge found in an iteration.

(3) A large number of iterations are needed due to low locality.
Both EdgeByEdge and EdgeByBatch need a large number of it-
erations to terminate. This is because they assume that edges on
disk are stored in an arbitrary order without considering data lo-
cality, i.e., they do not consider the possibility to group together
the edges that are near each other in the visiting sequence when
DFS the graph. As a result, even if the batch processing tech-
nique is adopted, it is possible that, in one iteration, the elimina-
tion of a forward-cross edge e1 in a certain batch will produce a
new forward-cross edge e2 in another batch that has to be elimi-
nated in the next iteration. In other words, the locality-unaware ap-
proach adopted in both EdgeByEdge and EdgeByBatch will result
in a chain effect in the process of forward-cross edge elimination,
which in turn requires a large number of iterations.

Why Divide & Conquer? The above drawbacks motivate us to
find more efficient semi-external algorithms to compute the DFS-
Tree. In this paper, we propose a new solution based on divide &
conquer. We aim at dividing the graph G into several subgraphs
G0, G1, · · · , Gp with possible overlaps with each other, such that
the DFS-Tree of G can be obtained by combining the DFS-Tree
for each Gi (0 ≤ i ≤ p) together. We show such a division
always exists. Let T be the DFS-Tree of G. Suppose there are p
subtrees T1, T2, · · · , Tp of T together with a tree T0. Here, the
root of T0 is the root of T and all the p leaves of T0 are the root
of p subtrees. Obviously, G0, G1, · · · , Gp is a valid division for
divide and conquer, if every Gi (0 ≤ i ≤ p) is a subgraph induced
by nodes in Ti. The divide & conquer approach can overcome
the above drawbacks for EdgeByEdge and EdgeByBatch in the
following three ways.
1) After dividing G into G0, G1, · · · , Gp, instead of maintaining a
total order for all nodes in V (G), we only need to maintain a total
order for nodes in each V (Gi) for 0 ≤ i ≤ p. As a result, when
the order of a node in a certain V (Gi) is changed, only the order of
the nodes in Gi needs to be updated.
2) Given the divided subgraphs G0, G1, · · · , Gp for the original
graphG, the DFS-Tree forG can be computed using the DFS-Tree
for each Gi (0 ≤ i ≤ p). In such a way, when a certain forward-
cross edge exists in a certain graph Gi, we only need to scan the
edges inGi to eliminate such a forward-cross edge without wasting
I/Os to scan the edges of the whole graphG on disk. Therefore, the
number of I/Os is largely reduced.
3) With the divided subgraphs G0, · · · , Gp for G, the locality for
edges w.r.t. DFS is largely increased. This is because the DFS pro-
cess can be performed for each Gi (0 ≤ i ≤ p) independently. In
such a way, when processing Gi using EdgeByBatch, a less num-
ber of batches are needed in every iteration when scanning edges.
This can largely reduce the number of iterations caused by the chain
effect. In the case that Gi can fit entirely in the main memory, only
one batch is needed for EdgeByBatch to terminate in one iteration.

Based on the above discussion, to achieve a good division G0,
G1, · · · , Gp of the graph G, each subgraph Gi should be as small
as possible. In order to achieve this, we need to (1) maximize the
number of divided subgraphs, and (2) minimize the size difference
between any two divided subgraphs at the same time. Here, to max-
imize the number of subgraphs is to enlarge the chances of finding
a division that can divide a large graph into small subgraphs. The
maximization is interrelated to the minimization of differences be-
tween two divided subgraphs, because a division is not cost effec-
tive, if it always divides a large graph into a large subgraph along
with a large number of small subgraphs.

A

B

D

E
C

F

G1

G2

(a) Valid Division

A

B

D

E
C

F
G1

G2

(b) Invalid Division
Figure 3: Two Divisions for Graph G

Challenges: Although a valid division of a graph always exists for
DFS, there are still a lot of difficulties to find a good division.

(Challenge 1): It is not straightforward to check whether a di-
vision is valid. In order to guarantee that a division is valid,
four properties should be satisfied, namely, node-coverage, con-
tractible, independence, and DFS-preservable. By node-coverage,
we mean that the divided subgraphs should jointly cover all nodes
in the graph. By contractible, we mean that each divided subgraph
should be smaller than the original graph. By independence, we
mean that the result of the DFS on a certain subgraph does not affect
that of another. By DFS-preservable, we mean the DFS-Tree for a
graph can be constructed based on the DFS-Tree for each divided
subgraph. However, checking the properties, especially the DFS-
preservable property, is not straightforward. This is because after
dividingG intoG0,G1, · · · ,Gp, and computing the corresponding
DFS-Trees T0, T1, · · · , Tp, by DFS-preservable, we need to check
whether there is a way to organize all the DFS-Trees for the divided
subgraphs to form the DFS-Tree forGwith no forward-cross edges
w.r.t. G, and the possible ways to organize all such DFS-Trees for
the divided subgraphs can be exponential. The details of the four
properties will be introduced in Section 5.

(Challenge 2): Finding a good division method is non-trivial. A
straightforward division method is to divide a graph into subgraphs
such that there is no cross-division edges, i.e., edges that connect
different subgraphs. However, such a division may not always ex-
ist. Recall that a good division should satisfy two conditions. First,
it should generate as many subgraphs as possible. Second, the sub-
graph sizes should not vary too much. However, neither of the
conditions is easy to be satisfied. For the first condition, even di-
viding the graph into two subgraphs to satisfy the properties of a
valid division is non-trivial, since the cross-division edges can have
various types. The situation becomes more complex when we want
to divide the graph into multiple subgraphs. For the second condi-
tion, it makes the problem more difficult since dividing the graph
evenly usually results in a larger number of cross-division edges,
making the properties for a valid division harder to be satisfied.

(Challenge 3): A merge procedure needs to be carefully designed
to ensure that the result tree is a DFS-Tree. Recall that a DFS-Tree
is an ordered tree. Even if a good division of the graph is calcu-
lated to satisfy the properties of a valid division, we cannot sim-
ply combine them together to form the final DFS-Tree, since this
may produce forward-cross edges w.r.t. the cross-division edges.
Therefore, we need to carefully design a merge procedure that can
combine the DFS-Trees for the divided subgraphs in a certain or-
der such that no new forward-cross edges w.r.t. the cross-division
edges are produced after the combination of all such DFS-Trees.

Example 4.1: For example, in Fig. 3, for the graph G, and the
same spanning tree T shown in solid lines, there are two different
division results. The first division divides the graphs into G1 and
G2 as shown in Fig. 3(a), and the corresponding DFS-Trees are T1

and T2, which are two subtrees of T . Simply combining T1 and T2

will result in T , which is not a DFS-Tree since edge (B,E) is a
forward-cross edge. However, if we exchange the positions of T1

and T2 in T , it becomes a valid DFS-Tree since no forward-cross
edge exists in this case. Thus, the division in Fig. 3(a) is a valid
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division. The second division divides the graphs into another G1

andG2 as shown in Fig. 3(b), and the corresponding DFS-Trees are
T1 and T2, which are two subtrees of T . For this division, no matter
how T1 and T2 are ordered to form a new tree, the merged tree will
not be a DFS-Tree for G since either edge (B,E) or (F,C) will
be the forward-cross edge. Now, suppose we restructure the graph
G by adding the forward cross edge (B,E) into the spanning tree
T and removing the edge (D,E) from T , then no matter how the
graph G is divided according to the subtrees of T , it will result in a
valid division since the whole tree T is a DFS-Tree. 2

The above example shows that, in order to find a valid division,
how the divided subgraphs are ordered such that their DFS-Trees
can be combined to form the DFS-Tree of the whole graph is im-
portant, and it can determine the order of merging. Based on this
observation, we need to consider the relationships among all sub-
graphs in both the division procedure and merge procedure, and
find a way to capture such relationships when designing an effec-
tive divide & conquer algorithm.

4.2 Algorithm Framework
Our divide & conquer algorithm is designed to overcome the

three challenges introduced in the previous subsection as follows.
1) To address challenge 1, after a division, in addition to compute
the divided subgraphs G0, G1, · · · , Gp, we also compute a light-
weight summary graph (S-Graph) denoted as Σ. Σ is used to cap-
ture the relationships among all the divided subgraphs. Given such
a S-Graph Σ, we can check whether a division is valid by searching
the S-Graph instead of searching the whole graph G. This can also
save large computational cost since the S-Graph Σ is much smaller
than the original graphG and thus can be kept in the main memory.
2) To address challenge 2, first, we design the divide & conquer
algorithm in a way that can divide the graph as early as possible
when the in-memory spanning tree is restructured iteratively, in or-
der to avoid scanning the whole graph. Second, according to the
first condition of a good division, we find two division algorithms,
namely, Divide-Star and Divide-TD with the aim of dividing the
graph G into as most subgraphs as possible. The details of the two
division algorithms will be introduced in Section 6. Third, accord-
ing to the second condition of a good division, we need to avoid
generating very large subgraphs in the division. In order to achieve
this, after a division, for a subgraph that is still very large, we re-
cursively divide such a subgraph using the same divide & conquer
process until it is restructured to form a DFS-Tree or the whole di-
vided subgraph can fit in the main memory such that the DFS-Tree
can be computed directly in memory.
3) To address challenge 3, given a division G0, G1, · · · , Gp of
graph G, suppose the corresponding DFS-Trees are T0, T1, · · · ,
Tp respectively, and the S-Graph is Σ, we design an efficient merge
algorithm that can compute the DFS-Tree of graphG based on only
T0, T1, · · · , Tp and the S-Graph Σ without scanning the edges of
the original graph on disk. The details of the merge algorithm are
introduced in Section 7. Note that since the division process is
conducted recursively, the merge process should also be conducted
recursively in a reverse manner.
The Framework: We outline the framework of our divide & con-
quer algorithm, which is denoted as DivideConquerDFS (Algo-
rithm 2). It first creates an initial spanning tree T by adding a vir-
tual node γ and connecting it to all nodes in G, which is the same
initial spanning tree created in EdgeByEdge and EdgeByBatch.
Then it invokes an algorithm DivideConquer to recursively con-
struct the DFS-Tree of the graph G in a divide & conquer manner.
DivideConquer is shown in line 4-18 of Algorithm 2. It takes a

graph G, a spanning tree T of G, and the memory size M as in-
put, and outputs a tree T which is a DFS-Tree of G, where G is
stored on disk, and T is kept in memory. The algorithm first checks

Algorithm 2 DivideConquerDFS(graph G, memory size M)

1: for all nodes v ∈ V (G) do
2: add edge (γ, v) in T where γ is a virtual node;
3: return DivideConquer(G, T,M);

4: Procedure DivideConquer(graphG, tree T , memory sizeM)

5: if |G| ≤M then
6: return DFS-Tree T ofG using an in-memory algorithm;
7: dividable← false;
8: while dividable = false do
9: (T, update)← Restructure(G, T,M);
10: if update = false then
11: return T ;
12: (G0, G1, · · · , Gp;T0, T1, · · · , Tp; Σ)← Divide(G, T,M);
13: if p > 1 then
14: dividable← true;
15: for i = 1 to p do
16: Ti ← DivideConquer(Gi, Ti,M);
17: T ← Merge(T0, T1, T2, · · · , Tp; Σ);
18: return T ;

whether the graph G can fit in memory (line 5), if so, it simply
loads the graph into memory, computes the DFS-Tree T ofG using
the in-memory algorithm, and returns T as the final result (line 6).
Otherwise, the algorithm needs to compute the DFS-Tree of G by
restructuring T or further divide G to construct the DFS-Tree in
a divide & conquer manner. In order to do so, the algorithm uses
a variable dividable to record whether a valid division of G can
be found, which is initialized to be false (line 7). Then in a while
loop (line 8-14), the algorithm tries to restructure the current span-
ning tree T w.r.t. G by invoking the same procedure Restructure
used in EdgeByBatch (line 9) until T is a DFS-Tree ofG (line 10-
11) or a valid division of G is found based on the current spanning
tree T (line 12-14). Here, the division is processed by invoking
a Divide procedure to produce a graph division G0, G1, · · · , Gp

of G with corresponding spanning trees T0, T1, · · · , Tp. The di-
vision procedure also computes the summary graph (S-Graph) Σ
to be used in the merge procedure (line 12). The division is valid
only if p > 1 (line 13-14). After a valid graph division is com-
puted, in line 15-16, a DFS-Tree Ti is computed for each divided
subgraph Gi by invoking the same procedure DivideConquer re-
cursively. After that, the DFS-Tree T can be computed by merging
all DFS-Trees Ti for the divided subgraphs Gi according to the
S-Graph Σ (line 17), and returns T as the DFS-Tree of G.

Next, in Section 5, we discuss the properties for a valid graph
division. In Section 6, we propose two graph division algorithms,
namely, Divide-Star and Divide-TD, to be used in line 12 of Algo-
rithm 2. In Section 7, we introduce the merge algorithm, to be used
in line 17 of Algorithm 2.

5. DIVISION PROPERTIES
We introduce the properties that a valid division of graph G

should satisfy. As discussed above, a valid division should sat-
isfy four properties, namely, node-coverage, contractible, Indepen-
dence, and DFS-preservable. Let a valid division be G0, G1, · · · ,
Gp of G, we define the four properties below.
• (Node-Coverage): The divided subgraphs jointly cover all nodes

of G, i.e.,
⋃

0≤i≤p V (Gi) = V (G). This is to ensure that no
node is missed after the division.

• (Contractible): The number of nodes in each subgraphGi should
be smaller than that of G, i.e., |V (Gi)| < |V (G)| for any
0 ≤ i ≤ p. This is to ensure that the division is meaningful.

• (Independence) Given two DFS-Trees Ti and Tj for Gi and
Gj respectively (1 ≤ i < j ≤ p), for any two nodes u, v ∈
V (Ti)∩ V (Tj), u is an ancestor (descendant) of v in Ti iff u is
an ancestor (descendant) of v in Tj . This requires the relation-
ships of any pair of nodes in V (Ti) ∩ V (Tj) are consistent in
Ti and Tj to ensure that each tree can be dealt independently.
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• (DFS-Preservable) Given the DFS-Tree Ti of Gi for any 0 ≤
i ≤ p, there exists a DFS-Tree T for graphG such that V (T ) =⋃

0≤i≤p V (Ti) and E(T ) =
⋃

0≤i≤pE(Ti). This is to ensure
the DFS-Tree for graph G can be constructed using the DFS-
Trees of graphs Gi for 0 ≤ i ≤ p.

Among the four properties for a valid division, the node-coverage
property and the contractible property are trivial, thus, in the fol-
lowing, we assume that the node-coverage property and the con-
tractible property are satisfied and then focus on the discussion of
the independence property and DFS-preservable property.

5.1 Independence Property
The importance of the independence property is to ensure that

the DFS in Gi does not affect the DFS in Gj for any 0 ≤ i < j ≤
p. A trivial case for a division of G has the independence property
is V (Gi) ∩ V (Gj) = ∅ for any 0 ≤ i < j ≤ p. However, when
V (Gi) ∩ V (Gj) 6= ∅, the independence property may not hold.
For instance, node u is an ancestor of node v in the DFS-Tree of
Gi, but is a sibling of node v in the DFS-Tree of Gj . We give a
theorem to ensure the independence property of a division.

Theorem 5.1: Given a division G0, G1, · · · , Gp of a graph G,
the independence property is satisfied if and only if, for any two
subgraphs Gi and Gj (0 ≤ i < j ≤ p), E(Gi) ∩ E(Gj) = ∅. 2

The proof sketch is given in Appendix.
Example 5.1: Fig. 4(a) shows a graphG. One division ofG results
in two graphs G1 and G2 as marked. We have E(G1) ∩E(G2) =
{(E,F )}. In such a case, there exists a DFS-Tree T1 of G1 with
DFS order C, A, F , E, D in which F is an ancestor of E, and
there exists a DFS-Tree T2 of G2 with DFS order B, E, F in
which F is a sibling node of E. The relationships of E and F in
T1 and T2 are inconsistent. Therefore, such a division does not
have independence property. However, for another divisionG1 and
G3, it has the independence property since there exists only one
common node E in G1 and G3, and thus the DFS on G1 and G3

will not affect each other. 2

5.2 DFS-Preservable Property
We discuss the DFS-Preservable property, which ensures that if

the DFS-Trees for all subgraphs have been found, the DFS-Tree
for the whole graph can be computed just according to the exist-
ing DFS-Trees. In other words, after computing the DFS-Tree for
each subgraph, it does not need to DFS the graph any more to find
the DFS-Tree for the whole graph. In order to ensure the DFS-
Preservable property, we need to guarantee that the union of the
DFS-Trees for the divided subgraphs is a spanning tree/forest of
G, which leads to the following lemma.

Lemma 5.1: Given a division G0, G1, · · · , Gp of G that satisfies
the independence property, suppose the corresponding DFS-Trees
forG0,G1, · · · ,Gp are T0, T1, · · · , Tp respectively, then the union
of T0, T1, · · · , Tp is a spanning tree/forest of G only if, for any 0
≤ i < j ≤ p, one of the following conditions is satisfied:

C1: V (Ti) ∩ V (Tj) = ∅;
C2: V (Ti) ∩ V (Tj) is the root of Ti; and

C3: V (Ti) ∩ V (Tj) is the root of Tj; 2

The proof sketch is given in Appendix.

5.3 Root Based Valid Divisions
Together with all the four properties, we take a root based divi-

sion approach in this work, as implied by the the DFS-Preservable
property (Lemma 5.1). We explain the root based division. Given
a graph G and a division G0, G1, · · · , Gp of G, let T0, T1, · · · , Tp

be the corresponding DFS-Trees with roots r0, r1, · · · , rp, respec-
tively, the root based division is a division if V (G0) ∩ V (Gi) =
{ri} and ri is a leaf node of T0 for any 1 ≤ i ≤ p, and V (Gi) ∩
V (Gj) = ∅ for any 1 ≤ i < j ≤ p.

It is important to note that there are two things to find a DFS-
Tree of a graph G. First, there is DFS-Tree, and second, the DFS-
Tree represents a total order following a DFS. In our root based
division approach, we first construct a spanning tree with the same
edge set as a DFS-Tree which we call DFS∗-Tree. Then, we de-
termine the exact order of nodes in the DFS∗-Tree to make it as a
DFS-Tree. It is worth noting that not every spanning tree of G is a
DFS∗-Tree and a DFS-Tree can be determined from a DFS∗-Tree.
We explain it using an example.
Example 5.2: For the graph G in Fig. 2(a), the spanning tree, rep-
resented by the solid lines, is not a DFS-Tree, since there exists a
forward-cross edge (C,D) in G. However, it is a DFS∗-Tree be-
cause if we visit the graph in the order A, E, D, B, C, F , G, H ,
I , and J , it will result in a DFS-Tree with the same edge set as
the tree in Fig. 2(a). On the other hand, if we set the same order
to nodes in the DFS∗-Tree in Fig. 2(a) by swapping the subtrees
rooted at E and B, then we will have the same DFS-Tree. 2

Next, we show that with the properties, given all DFS-Trees Ti

for subgraph Gi, for 0 ≤ i ≤ p, the final DFS-Tree T must be a
DFS∗-Tree.
Lemma 5.2: Given a graph G and a division G0, G1, · · · , Gp

of G, let T0, T1, · · · , Tp be the DFS-Trees of G0, G1, · · · , Gp

respectively, and T be a graph with V (T ) =
⋃

0≤i≤p V (Ti) and
E(T ) =

⋃
0≤i≤pE(Ti). Suppose the independence property of

the division is satisfied, then the DFS-preservable property of the
division is satisfied if and only if T is a DFS∗-Tree of G. 2

Proof Sketch: The lemma can be easily proved according to the
above discussion. 2

Below, we further show how to check whether a spanning tree of
a graph is a DFS∗-Tree. We illustrate a simple case that cannot be
a DFS∗-Tree in Fig. 4(b). In Fig. 4(b), G contains a spanning tree
T with two additional edges (u1, v1) and (u2, v2). Here, wi repre-
sents a root of a spanning tree Ti forGi for i = 1, 2. Given (u1, v1)
and (u2, v2), T1 and T2 cannot satisfy the DFS-preservable prop-
erty, if we treat them independently by division. We prove the gen-
eral case in Lemma 5.3.

Lemma 5.3: Given a graph G and a spanning tree T ∗ of G. T ∗ is
a DFS∗-Tree of G if and only if there do not exist edges (u1, v1),
(u2, v2), · · · , (uk, vk) and nodes w1, w2, · · · , wk such that for ev-
ery 1 ≤ i ≤ k, (ui, vi) is a cross edge, wi is an ancestor of both vi
and ui+1 in T ∗, andwi andwi+1 do not have ancestor/descendant
relationship in T ∗ (suppose uk+1 = u1, and wk+1 = w1, and a
node is an ancestor/descendant of itself). 2

The proof sketch is given in Appendix.
Based on Lemma 5.3 and Lemma 5.2, we propose two division

algorithms in Section 6. In the division algorithms, we make sure
that we can find DFS-Tree Ti for subgraph Gi, for (0 ≤ i ≤ q).
By merging all DFS-Trees Ti, we will have a DFS∗-Tree. The
DFS∗-Tree has the same edge set as a DFS-Tree for G, and we
will discuss how to get DFS-Tree from DFS∗-Tree in our merging
algorithm in Section 7.

6. DIVISION ALGORITHMS
Given graph G, and a division G0, G1, · · · , Gp, a key issue is to

check whether the division is valid efficiently. In order to do so, we
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introduce a S-Graph to avoid checking a valid division by scanning
the entire graph G. Then, we discuss how to construct T0 based on
which a valid division is identified. It is worth mentioning that T0

is the tree that connects to all other trees Ti for 1 ≤ i ≤ p.

6.1 S-Graph
Recall that checking whether a division is DFS-preservable can

be done by checking the cross-edges in G (Lemma 5.3). However,
it is inefficient if it needs to consider all cross-edges in the graph G
which may not fit entirely in the main memory. In order to make it
efficient, we define a small graph called S-Graph to capture the re-
lationship of different subgraphs in the division. S-Graph is much
smaller than the original graph G and can be used to efficiently
check the DFS-preservable property of a root based division. Be-
low, in order to define S-Graph, we first discuss S∗-Graph.

Definition 6.1: (S∗-Graph) Given a root based division G0, G1,
· · · , Gp of G, let ri be the root of the corresponding DFS-Tree for
Gi, for 0 ≤ i ≤ p. A S∗-Graph, denoted as Σ∗, is a graph by
contracting each Gi (1 ≤ i ≤ p) to ri. Here, V (Σ∗) = V (G0)
in which a node can be a contracted node representing a subgraph
Gi. There are 4 cases for all edges (u, v) in G. 1) If both u and v
in G0, (u, v) appears in Σ∗. 2) If u ∈ G0 and v ∈ Gi for i 6= 0,
there is an edge (u, ri) in Σ∗. 3) If u ∈ Gi for i 6= 0 and v ∈ G0.
there is an edge (ri, v) in Σ∗. 4) If u ∈ Gi and v ∈ Gj , for i 6= 0,
j 6= 0, and i 6= j, there is an edge (ri, rj) in Σ∗. 2

Example 6.1: Fig. 5(a) shows a graph G and a spanning tree T (in
solid lines). G is divided into 5 subgraphs: G0, G1, G2, G3, and
G4. Its S∗-Graph Σ∗ is shown in Fig. 5(b) where the node B, E,
H , and K represents G1, G2, G3, and G4, respectively, and an S-
edge is represented by a dotted line. For example, the edge (B,E)
in Fig. 5(b) indicates there is at least one edge from G1 to G2. 2

The following lemma shows that we can check whether a root
based division is DFS-preservable using the S∗-Graph only.

Lemma 6.1: Given a graph G and a root based division G0, G1,
· · · , Gp of G, let T0 be a spanning tree of G0 and Σ∗ be the S∗-
Graph w.r.t. the division, then the division is DFS-preservable w.r.t.
T0 if and only if T0 is a DFS∗-Tree of Σ∗. 2

The proof sketch is given in Appendix.
The S∗-Graph can largely reduce the search space for checking

whether a root based division is DFS-preservable, because we do
not need to scan the entire graph. However, checking the conditions
in Lemma 5.3 is still costly based on S∗-Graph. Next, we introduce
S-Graph, based on which an efficient algorithm can be devised to
check the validity of a division.

In order to define S-Graph, we do the following. First, we define
a new operation pushup to push up the relationship implied by a
cross-edge (u, v) to one of its parent in a spanning tree T , for ex-
ample, (w, v), where w is the parent of u in T . Second, we show
that the DFS-preservable property remains unchanged by pushing
up a cross-edge. Third, we show that we can push up cross-edges
as high as possible. Here, we use S-edge(u, v) to denote the re-
sulting edge by pushing up edge (u, v) repeatedly until it cannot be
pushed up any higher along T . And the S-Graph is the resulting
graph by replacing all cross-edges with their S-edges.

Definition 6.2: (The operation pushup) Given a graph G and a
spanning tree T of G, for an arbitrary cross-edge (u, v) w.r.t. T
in G, let w be the parent node of u in T , if w is not an ances-
tor of v in T , then the pushup operation on u results in a new
edge (w, v), denoted as pushup((u, v), T, u) = (w, v), otherwise,
pushup((u, v), T, u) = (u, v). The operator pushup((u, v), T, v)
can be defined similarly. 2

With the pushup operation, we show the resulting tree is still a
DFS∗-Tree.
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Figure 5: A graph G and its S∗-Graph (S-Graph)
Lemma 6.2: Given a spanning tree T of G, for an arbitrary cross-
edge (u, v) w.r.t. T in G, let G′ be a graph by replacing (u, v) in
G with either pushup((u, v), T, v) or pushup((u, v), T, u), then
T is a DFS∗-Tree of G if and only if T is a DFS∗-Tree of G′. 2

The proof sketch is given in Appendix.
With Lemma 6.2 and Lemma 5.2, given a spanning tree T of G,

replacing an arbitrary cross-edge (u, v) with either pushup((u, v),
T, u) or pushup((u, v), T, v) will keep the DFS-preservable prop-
erty of a division unchanged. Thus we can iteratively push a cross-
edge (u, v) with either pushup((u, v), T, u) or pushup((u, v), T, v)
until we cannot push up any higher. We define it as S-edge(u, v).

Definition 6.3: (S-edge): Given a spanning tree T of G, for an
arbitrary cross-edge (u, v) w.r.t. T in G, if we iteratively replace
(u, v) with either pushup((u, v), T, u) or pushup((u, v), T, v) un-
til pushup(( u, v), T, u) = (u, v) and pushup((u, v), T, v) =
(u, v), then the resulted edge is an S-edge(u, v). 2

Consider Fig. 5(a), there is a cross-edge (H,F ). By pushup((H,
F ), T, F ), a new S-edge (H,E) is generated in Fig. 5(b). The
edge (H,E) is S-edge(H,F ), because it cannot be pushed up any
higher. With S-edges, we define S-Graph Σ below.

Definition 6.4: (S-Graph Σ): Given a root based division G0, G1,
· · · , Gp of graph G, let T0 be the DFS-Tree of G0 and Σ∗ be the
S∗-Graph w.r.t. the division, the S-Graph Σ is a graph by removing
all backward and forward edges w.r.t. T0 in Σ∗, and replacing all
cross-edges, (u, v), w.r.t. T0 in Σ∗ with their corresponding S-
edges, S-edge(u, v). 2

For the S∗-Graph in Fig. 5(b), its S-Graph is the same as its
S∗-Graph. We have the following Lemma.

Lemma 6.3: Given a spanning tree T of G, let G′ be graph G by
removing all backward and forward edges w.r.t. T and replacing
all cross-edges w.r.t. T in G with their S-edges, then T is a DFS∗-
Tree if and only if G′ is an directed acyclic graph (DAG). 2

The proof sketch is given in Appendix.
It is important to note that checking whether a tree T is a DFS∗-

Tree ofG is very complicated using Lemma 5.3 because it requires
checking an exponential number of combinations of cross-edges
and ancestor nodes. With Lemma 6.3, we can check it by checking
whether the S-Graph is a DAG. We show a theorem below.

Theorem 6.1: Given a root based division G0, G1, · · · , Gp of
graph G, let T0 be a spanning tree of G0 and Σ be the S-Graph
w.r.t. the division and T0, then the division is DFS-preservable
w.r.t. T0 if and only if Σ is a DAG. 2

The theorem can be derived directly from Lemma 6.3 and Lemma 6.1.
Theorem 6.1 provides an efficient way to check whether a divi-

sion is DFS-preservable, which can be done by checking whether
the S-Graph is a DAG. Based on Theorem 6.1, we discuss two di-
vision algorithms in the next two subsections.

6.2 Division Algorithm Divide-Star
In this subsection, we discuss our division algorithm. Theorem

6.1 indicates a way to check whether a division is valid by checking
whether the S-Graph Σ w.r.t. the division is a DAG. However, there
are two problems to be solved in order to find a valid root based

451



Algorithm 3 Divide-Star(graph G, tree T , memory size M)

1: r0 ← the root of T ;
2: {r′1, r′2, · · · , r′p′} ← the child nodes of r0 in T ;

3: create a graph Σ with V (Σ) = {r0, r′1, · · · , r
′
p′} and E(Σ) =

{(r0, r′1), (r0, r
′
2), · · · , (r0, r′p′ )};

4: for all edge (u, v) ∈ E(G) in sequential order on disk do
5: w ← the LCA of u and v in T ;
6: if (u, v) is a cross-edge and w = r0 then
7: (r′i, r

′
j)← S-edge(u, v);

8: E(Σ)← E(Σ) ∪ {(r′i, r
′
j)};

9: if Σ is not a DAG then
10: for all SCC S in Σ do
11: if |S| > 1 then
12: modify T and Σ using the node contraction operation w.r.t. S;
13: T0 ← a star with root r0 and child nodes {r1, r2, · · · , rp} which are the

same with the child nodes of r0 in T ;
14: for i = 1 to p do
15: Ti ← the subtree rooted at ri in T ;
16: for i = 0 to p do
17: Gi ← the subgraph induced by nodes in Ti;
18: return (G0, G1, · · · , Gp;T0, T1, · · · , Tp; Σ);

division G0, G1, · · · , Gp: (1) How to find a division such that
the corresponding S-Graph is a DAG? and (2) If the S-Graph is
not a DAG, can we still produce a new valid division based on the
current division and the S-Graph Σ? In order to solve the above
two problems, we first analyze a simple case: the spanning tree T0

of G0 in theorem 6.1 is a star (a tree of depth 1). We denote such a
division method as Divide-Star.

Recall that in the algorithm framework (Algorithm 2), the divi-
sion algorithm takes the current in-memory spanning tree T ofG as
input and outputs a division G0, G1, · · · , Gp, their corresponding
subtrees in T , as well as the S-Graph Σ (see line 12 of Algorithm
2). Suppose the root of T is r′0 and r′0 has p′ child nodes r′1, r′2, · · · ,
r′p′ in T , a straightforward division can be designed as follows: Let
T ′0 be a star rooted at r′0 with p′ child nodes r′1, r′2, · · · , r′p′ , and T ′i
(1 ≤ i ≤ p′) be the subtree of T rooted at r′i. G

′
i (0 ≤ i ≤ p′) is a

subgraph induced by nodes in T ′i .
Given such a division, the corresponding S-Graph Σ can be con-

structed as follows: Initially, Σ contains nodes r′0, r′1, · · · , r′p′ , and
edges from r′0 to each r′i (1 ≤ i ≤ p′). Then for each cross-edge
(u, v) w.r.t. T , if the LCA of u and v in T is r′0, we can find nodes
r′i and r′j in Σ such that S-edge(u, v) = (r′i, r

′
j), and we add the

edge (r′i, r
′
j) in Σ.

After constructing Σ, if the graph Σ is a DAG, then we find a
valid graph division G′0, G′1, · · · , G′p′ according to theorem 6.1,
and Divide-Star is finished. However, when Σ is not a DAG, ac-
cording to theorem 6.1, the division G′0, G′1, · · · , G′p′ is not DFS-
preservable. In such a situation, we need to find a way to eliminate
the cycles in Σ to make it a DAG. In order to do this, we modify
the tree T , S-Graph Σ, and the division based on SCC-aware graph
division which is introduced as follows.

SCC-Aware Graph Division: Given a spanning tree T of G, a di-
vision of G and the corresponding S-Graph Σ, if Σ is not a DAG,
then SCC-aware graph division modifies T , Σ, and the current di-
vision as follows: We compute all strongly connected components
(SCCs) in Σ, and for each SCC S in Σ, if it contains multiple nodes
S = { r′i1 , r′i2 , · · · , r′ik}, then we apply the node contraction op-
eration w.r.t. S to modify T , Σ, and the division as follows:

• Modifying T : We add a virtual node s, an edge (r′0, s), and
edges (s, r′i1) (s, r′i2), · · · , (s, r′ik ) in T , and remove the edges
(r′0, r

′
i1) (r′0, r

′
i2), · · · , (r′0, r

′
ik

) from T .

• Modifying Σ: In the S-Graph Σ, we add a virtual node s. For
any edge (u, v) in Σ where u ∈ S and v /∈ S, we add a new
edge (s, v) in Σ, and for any edge (u, v) in Σ where u /∈ S and
v ∈ S, we add a new edge (u, s) in Σ, and we remove all nodes
in S and their corresponding edges from Σ.
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Figure 6: Examples for Divide-Star and Divide-TD

• Modifying Division: For the division, we create a new tree T ′

rooted at the virtual node s by connecting s to the roots of the
trees T ′i1 , T ′i2 , · · · , T ′ik . Then we remove subgraphs G′i1 , G′i2 ,
· · · , G′ik from the division, and add a new subgraph which is
the subgraph induced by nodes in T ′ in the division.

By applying the above node contraction operations for all SCCs
in Σ, SCC-aware graph division will result in a new spanning tree
T , a new S-Graph Σ, and a new division G0, G1, · · · , Gp. Ob-
viously, such a division is a valid division since its corresponding
S-Graph Σ is a DAG. However, the spanning tree T is not a span-
ning tree of the original graphG since some virtual nodes are added
in T . In Section 7, we will discuss how to handle such virtual nodes
in the merge algorithm in order to compute the DFS-Tree of the
original graph G according to a SCC-aware graph division.
Example 6.2: For the graph G shown in Fig. 5 (a), a spanning
tree T is shown in solid edges. A straightforward division divides
graph G into five subgraphs, G′0, G′1, · · · , G′4 where G′0 is the
subgraph induced by the star with five nodes A, B, E, H , and K,
and G′i (1 ≤ i ≤ 4) are the subgraphs induced by the nodes in the
subtrees rooted atB,E,H , andK respectively. The corresponding
S-Graph Σ is shown in Fig. 5 (b). Obviously, Σ is not a DAG
since it contains an SCC {E, H}, thus such a division is not DFS-
preservable. However, if we contract the two nodes E and H by
adding a virtual node EH , the new division is shown in Fig. 6 (a)
which contains only four subgraphs, G0, G1, G2, and G3, where
G2 is the subgraph induced by the union of nodes in the above
subgraphs G′2 and G′3. The new Σ is the same as G0 in Fig. 6 (a).
Obviously, the new division is DFS-preservable. 2

The Divide-Star Algorithm: According to the above discussion,
our algorithm Divide-Star is shown in Algorithm 3. Initially, we
get the root r0 of T , as well as its child nodes, and initialize the
S-Graph Σ as a star rooted at r0 (line 1-3). Then we construct
Σ by scanning all edges of G on disk (line 4). For each scanned
edge (u, v), we compute the LCA w of u and v. If w is r0 and
(u, v) is a cross-edge w.r.t. T , then the S-edge of (u, v) should
be included in the S-Graph Σ (line 5-8). Next, we check whether
Σ is a DAG, if not, we need to modify T and Σ using the node
contraction operations introduced above for each SCC S in graph
Σ (line 9-12). Then, we start to divide the graph. We first construct
T0 which is a star with root be r0 and leaves be the child nodes
of r0 in T (line 13). After constructing T0, each Ti (1 ≤ i ≤ p)
is a subtree rooted at a leaf node of T0 (line 14-15). Finally, we
compute the induced subgraph of nodes in Ti (0 ≤ i ≤ p) as the
subgraph Gi in the division, and return the divided subgraphs, the
corresponding subtrees, as well as the S-Graph Σ as the result.
Example 6.3: A graph G is shown in Fig. 5 (a) with a spanning
tree T marked in solid lines. By applying the Divide-Star algo-
rithm (Algorithm 3), the division is shown in Fig. 6 (a) with four
subgraphs G0, G1, G2, G3. For each Gi, the corresponding Ti

which is a subtree of T is shown in solid lines. For simplicity, the
graph G0 is shown the same as the S-Graph Σ , which is a DAG
by contracting the SCC {E,H} into a virtual node EH . Three
S-edges in Σ are (B,EH), (K,EH), and (K,B). 2
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6.3 Division Algorithm Divide-TD
Recall that the aim of the division algorithm is to maximize the

number of divided subgraphs. In the Divide-Star algorithm, given
a graph G and a spanning tree T , the division is computed based
on a star structure T0 with the same root as T . Such a division
algorithm has two drawbacks. First, the S-Graph Σ is computed on
top of T0 which is constructed based on only one level of nodes in
T . When the root r0 of T has a small number of child nodes, or
the relationship of the subgraphs induced by the subtrees rooted at
the child nodes of r0 is complex, after computing the division by
contracting all SCCs, it is possible that only few divided subgraphs
are left. Second, the S-Graph Σ is created by scanning the graph
G on disk once and compute the set of S-edges (r′i, r

′
j) with both

r′i and r′j be the child nodes of r0 in T , however, when the number
of child nodes of r0 is small, the number of such S-edges is small
comparing to the number of all possible S-edges existing in the
graph. Therefore, a large number S-edges are computed but not
used when scanning the edges. This is obviously a waste of I/Os.

According to the above discussion, the key issue to overcome the
above drawbacks is to enlarge the size of T0 and the corresponding
S-Graph Σ as long as they can fit in the main memory. In order
to do so, instead of considering only one level of nodes in T , we
can consider several levels of nodes in T to construct T0 and the
corresponding S-Graph Σ. This motivates us to explore a multi-
level subtree of T denoted as a cut-tree which is defined as follows.

Definition 6.5: (Cut-Tree) Given a tree T with root t0, a cut-tree
Tc is a subtree of T which satisfies two conditions: (1) the root of
Tc is t0, and (2) for any node v, suppose the child nodes of v in T
are v1, v2, · · · , vk, if v ∈ V (Tc), then v is either a leaf node in Tc,
or a node in Tc with child nodes v1, v2, · · · , vk. 2

The reason for condition (2) in the above definition is that, for
any S-edge (wu, wv), we need to make sure either both wu and wv

belong to V (Tc) or none of wu and wv belong to V (Tc), such that
the corresponding S-Graph can capture the relationship of divided
subgraphs connected using S-edges.

Given a spanning tree T , and a cut-tree Tc, we can construct
T0 and the S-Graph Σ based on Tc. The question is, given the
memory budget M ′, how to construct Tc such that the size of Tc

is maximized and the corresponding S-Graph Σ can fit in memory.
In the following, we discuss this issue.

Cut-Tree Construction: Given a tree T with root r0 and the mem-
ory budget M ′, the cut-tree Tc can be constructed as follows. Ini-
tially, Tc contains one node r0. Then, we iteratively pick a leaf
node v from Tc and all child nodes of v in T as the child nodes of
v in Tc. Note that the corresponding S-Graph w.r.t. Tc contains
at most |V (Tc)|2 edges. Therefore, the process stops when after
adding the next node, |V (Tc)|2 > M . Here, for simplicity, we
assume that each edge consumes one unit of memory.

Note that after constructing Tc, we can compute a S-Graph Σ
with V (Σ) = V (Tc), however, when Σ is not a DAG, we still need
to use the SCC contraction technique used in the SCC-aware graph
division (see Section 6.2) to make it a DAG. However, in such a
case, after we construct T0 based on the new S-Graph Σ and Tc,
we need to make sure that each virtual node in T0 is a leaf node
of T0, because each virtual node represents a SCC with multiple
nodes in the original Σ, and the nodes in an SCC cannot be further
divided. Based on such an idea, we construct T0 in a top-down
manner based on Tc, and design our algorithm Divide-TD which is
introduced below.

The Divide-TD Algorithm: The Divide-TD algorithm is shown in
Algorithm 4. It first computes a cut-tree T ′0 of T using the above
discussed method, and initializes Σ to be T ′0 (line 1-2). Then it
scans all edges (u, v) inG on disk and add (wu, wv) = S-edge(u, v)

Algorithm 4 Divide-TD(graph G, tree T , memory size M)

1: T ′
0 ← a cut-tree of T ;

2: Σ← T ′
0;

3: for all edge (u, v) ∈ E(G) in sequential order on disk do
4: w ← the LCA of u and v in T ;
5: if (u, v) is a cross-edge and w is a non-leaf node in V (T ′

0) then
6: (wu, wv)← S-edge(u, v);
7: E(Σ)← E(Σ) ∪ {(wu, wv)};
8: if Σ is not a DAG then
9: for all SCC S in Σ do
10: if |S| > 1 then
11: modify T and Σ using the node contraction operation w.r.t. S;
12: r0 ← the root of T ;
13: T0 ← ∅;Q← ∅;
14: Q.push(r0);
15: whileQ 6= ∅ do
16: u← Q.pop();
17: if u is not a virtual node then
18: for all child node v of u in T do
19: if v ∈ V (T ′

0) then
20: add edge (u, v) into T0;
21: Q.push(v);
22: remove nodes that are not in V (T0) and their corresponding edges from Σ;
23: {r1, r2, · · · , rp} ← the leaf nodes of r0 in T0;
24: for i = 1 to p do
25: Ti ← the subtree rooted at ri in T ;
26: for i = 0 to p do
27: Gi ← the subgraph induced by nodes in Ti;
28: return (G0, G1, · · · , Gp;T0, T1, · · · , Tp; Σ);

into Σ if both wu and wv belong to V (T ′0) (line 3-7). In line 8-11,
the algorithm contracts all SCCs in Σ using the same method used
in Algorithm 3. The top-down process to construct T0 is shown in
line 12-21. After initilizing T0 and a FIFO queue Q (line 12-13), it
first pushes the root r0 of T into Q (line 14). Then the algorithm
iteratively adds edges into T0 until Q becomes ∅. In each iteration,
it first gets the top node u in Q (line 16), and adds all child nodes v
of u into T0 if u is not a virtual node and v is in the tree T ′0 (line 17-
20). For each such v added into T0, it is pushed into Q for further
expansion (line 21). After computing T0, the S-Graph Σ is updated
by removing all nodes that are not in V (T0) from Σ. Finally, the
subtrees T1, T2, · · · , Tp and the divided subgraphs G0, G1, · · · ,
Gp are computed similarly to those computed in Algorithm 3.

Remark 6.1: For both Divide-Star and Divide-TD, the input graph
G can be a general directed graph. According to Theorem 6.1,
in order to compute a valid division for G, we need to make the
S-Graph Σ to be a DAG using the contraction operations by com-
puting all SCCs of Σ. Recall that Σ is a light-weight memory-
resident graph, therefore, we can apply any in-memory SCC com-
putation algorithm to compute the DAG. 2

Example 6.4: A graph G is shown in Fig. 5 (a) with a spanning
tree T marked in solid lines. Suppose a cut-tree T ′0 of T consists
of all nodes in T with depth no larger than 2 (suppose the depth of
rootA is 0). Obviously, when constructing the S-Graph Σ based on
T ′0, nodes E and H belong to the same SCC. Consequently, when
we construct T0 based on T ′0 and S-Graph, the decedent nodes of
E and H in T ′0 will not be contained in T0. The new S-Graph Σ
is the graph G0 shown in Fig. 6 (b), and the corresponding tree T0

is shown in the solid lines in graph G0. Based on T0 and Σ, the
division results in 5 subgraphs as shown in Fig. 6 (b). Comparing
to the division in Fig. 6 (a), the subgraph G3 is further divided into
two smaller subgraphs G3 and G4 in Fig. 6 (b). 2

Discussion: Divide-TD is an improvement of Divide-Star by con-
sidering multiple levels of nodes in the spanning tree T for each
round of scanning of the graph G. Divide-TD is a generalization
of Divide-Star by making full use of the memory whenever possi-
ble. Therefore, Divide-TD outperforms Divide-Star, as confirmed
by our experiments in Section 8.
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Algorithm 5 Merge(subtrees T0, T1, · · · , Tp, S-Graph Σ)

1: T ← T0;
2: topological sort all nodes in Σ;
3: reorder all nodes in T according to the reverse topological order of the corre-

sponding nodes in Σ;
4: for i = 1 to p do
5: combine Ti into T ;
6: for all virtual node v ∈ V (T ) do
7: u← parent node of v in T ;
8: remove (u, v) from T ;
9: for all child node w of v in T do
10: remove (v, w) from T ; add (u,w) into T ;
11: return T ;
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Figure 7: Example for Merge
7. MERGE ALGORITHM

In this section, we discuss the merge algorithm. Recall that the
Merge procedure in Algorithm 2 takes the divided DFS-Trees T0,
T1, · · · , Tp, and the corresponding S-Graph Σ as input and outputs
a DFS-Tree of the graph G. Two problems need to be solved in
Merge. (1) How to organize the DFS-Trees T0, T1, · · · , Tp in the
merged tree T such that T is a DFS-Tree of graphG? and (2) How
to handle virtual nodes in the DFS-Trees T0, T1, · · · , Tp?
(1) In order to address the first problem, we need to use the in-

formation contained in the S-Graph Σ. Recall that Σ is a graph
that maintains the topology of the edges across different divided
subgraphs, and in our division algorithm, we make sure that Σ is a
DAG and V (Σ) = V (T0). Therefore, we can simply topological
sort all nodes in Σ and reorder nodes in T0 according to the reverse
topological order of the corresponding nodes in Σ, and then com-
bine all Ti (1 ≤ i ≤ p) with T0 to get the DFS-Tree ofG. Here we
use the reverse topological order because we need to avoid forward-
cross edges w.r.t. the DFS-Tree.
(2) In order to handle the second problem, suppose by combining

all DFS-Trees T0, T1, · · · , Tp, we get a tree T . For each virtual
node v ∈ V (T ), suppose the parent node of v in T is u, then we
remove edge (u, v) from T , and for each child node w of v in T ,
we remove edge (v, w) from T and add a new edge (u,w) into T .
It is easy to verify that the resulted tree T is a DFS-Tree of G.

Our Merge algorithm is shown in 5 and is self explained accord-
ing to the above discussion.
Example 7.1: Suppose we divide the graph G shown in Fig. 5
(a) using the Divide-Star algorithm (Algorithm 3), the four divided
subgraphs are shown in Fig. 6 (a), where the S-Graph Σ is the same
as G0. By topological sorting Σ, the reverse topological order for
the three leaf nodes are EH , B, and K. After reordering nodes in
T0 accordingly, the subtrees T0, T1, T2 and T3 are shown in Fig. 7
(a). After combing them into T , a virtual node EH exists in T
with parent node A and a child node E. Thus, we remove edges
(A,EH) and (EH,E) from T and add a new edge (A,E) into T .
The final T is shown in Fig. 7 (b), which is obviously a DFS-Tree
of the original graph G. 2

8. PERFORMANCE STUDIES
In this section, we show the experimental results by comparing

our results with the SEMI-DFS approach [14]. Our algorithms are
all based on divide & conquer. The algorithm Divide-Star is to find
the DFS-Tree by dividing the graph according to the children of the

Parameter Range Default
Size of |V | 30M, 40M, 50M, 60M, 70M 50M
Average DegreeD 3, 4, 5, 6, 7 5
Power-Law-Ness |A|/D 0.25, 0.5, 1, 2, 4 1
Memory SizeM (GB) 0.5, 0.75, 1, 1,25, 1,5 1

Table 1: Range and Default Value for Parameters
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root. Divide-TD is to divide the graph into smaller subgraphs in a
top-down manner. All the algorithms are implemented using Visual
C++ 2010 and tested on a PC with Intel Core2 Quard 2.66GHz
CPU and 3.50GB memory running Windows 7 Enterprise. The disk
block size is 64KB. In all experiments, we report the processing
time and the number of I/Os, which include the cost spent on all
operations to compute the DFS-Tree from the original graph. We
set the max time cost to be 8 hours. If a test does not stop in the
time limit, the result will not appear in the corresponding figure.
Datasets: We use 4 real massive datasets, and several synthetic
datasets. The real datasets are: wikilink, arabic-2005, twitter-2010,
and webspam-uk2007. The wikilinks [15] is a large-scale cross-
document coreference corpus labeled via links to wikipedia5. It
contains 25,942,246 nodes and 601,038,301 edges, with average
degree 23.16 per node. Arabic-2005 is a 2005 crawl for websites
that contain pages written in Arabic6. The graph of arabic-2005
contains 22,744,080 nodes and 639,999,458 edges, with average
degree 28.14 per node. Twitter-2010 remembers the direction of
tweets transmission7. Nodes are users and there is an edge from
u to v if v is a follower of u. It contains 41,652,230 nodes and
1,468,365,182 edges. Comparing to wikipedia and arabic-2005, the
twitter-2010 is a hard-to-compress dataset, and the dataset contains
a huge SCC with 33,479,734 nodes, which is 80.4% to the size of
the whole graph. For webspam-uk20078, it consists of 105,896,555
webpages in 114,529 hosts in the .UK domain. The graph contains
105,895,908 nodes and 3,738,733,568 edges, with the average de-
gree 35 per node. For the four real datasets used in our experi-
ments, namely, wikilink, arabic-2005, twitter-2010, and webspam-
uk2007, they consume 4.6 GB, 4.8 GB, 11.4 GB, and 29.2 GB
space on disk respectively to store only the topological structure of
the graphs. For these datasets, we set the memory as 2GB.

We also generate synthetic graph datasets in order to test the scal-
ability of our approaches. Given node size |V | and average degree
D, the first is random graph. We randomly generate a node pair
and add to the graph until the number of edges is D · |V |. The
second is power-law graph. We generate it using a preference at-
tachment method in [7]. Parameter A (the “power-law-ness”) is
used in the graph generation with |V | and D. The smaller the |A|

D
is, the smaller the fraction of high-degree nodes is in all nodes. The
default memory size M is 1GB for these datasets. The range and
default value of all parameters are shown in Table 1.

5 http://www.iesl.cs.umass.edu/data/wiki-links
6http://law.di.unimi.it/webdata/arabic-2005/
7http://law.di.unimi.it/webdata/twitter-2010/
8http://barcelona.research.yahoo.net/webspam/datasets/uk2007/links/
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Figure 12: Power-Law Graph (Varying Node Size)

Exp-1 (Performance on Real Large Datasets): We test our ap-
proaches on 4 real datasets, webspam-uk2007, twitter-2010, wik-
ilinks and arabic-2005. For each dataset, we randomly select edges
from E and vary the size of edges |E| from 20% to 100% for all
graphs as shown in x-axis. The results of time and I/O cost for
the datasets webspam-uk2007, twitter-2010, wikilinks, and arabic-
2005 are shown in Fig. 8, Fig. 9, Fig. 10, and Fig. 11 respectively.
Among all the approaches, Divide-TD performs best in all cases.
Divide-Star has better performance than SEMI-DFS, but will cost
more than Divide-TD.

While increasing |E|, the cost for all the approaches increases.
Divide-TD has the slowest increasing rate followed by Divide-Star.
The reason is, when |E| becomes larger, the cost will increase as it
needs to scan and restructure more edges in each iteration. How-
ever, Divide-TD can result in more subgraphs after division. Once
the graph is divided, each subgraph will be smaller and more edges
can be loaded in. Then the cost to find the DFS-Tree for each
subgraph will be smaller compared with the original graph. Thus
Divide-TD has the best performance, but SEMI-DFS costs most.

For the graph webspam-uk2007, SEMI-DFS cannot find the DFS-
Tree even when the graph size is 20% of the original graph. How-
ever, Divide-TD can find the DFS-Tree in limited time even the
graph size is 100% of the original graph. For the graph of twitter-
2010, Divide-TD performs best and SEMI-DFS can only work out
in limited time when the graph size is at most 40% of the original
graph. For the graph of wikilink, Divide-TD also performs best.
When the graph size is less than 40% percentage, all approaches
have the same cost because the whole graph can reside in the main
memory. The main cost is to load the graph from disk into main
memory and the external-memory stack used in the DFS procedure.
For the graph of arabic-2005, its cost is small when the graph size
is less than 80% percentage, but increases sharply when it reaches
100% of the original graph. The reason is that, if |E| is less than
80% of the original graph, most or all edges can reside in the mem-
ory. When 20% more edges are added, these edges are all kept
on disk. Divide-TD has a marginal increasing rate because it di-
vides the graph into subgraphs and for each subgraph the number
of edges is smaller compared with other approaches. SEMI-DFS
has the largest increasing rate as it takes the original graph as a
whole and needs more iterations to find the DFS-Tree.

Exp-2 (Vary Node Size |V | in Synthetic Data): We vary the num-
ber of nodes |V | from 30M to 70M. The results of time and I/O
cost for power-law graphs are shown in Fig. 12(a) and Fig. 12(b)
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respectively. Similarly, the results of random graphs are shown in
Fig. 13(a) and Fig. 13(b). While increasing |V |, the time and I/O
cost of all algorithms increase. SEMI-DFS cannot find the DFS-
Tree in limited time when |V | is larger than 50M. Among all the al-
gorithms, Divide-TD has the lowest increasing rate and SEMI-DFS
has the highest increasing rate. Divide-Star has higher increasing
rate than Divide-TD, but still performs better than SEMI-DFS, be-
cause Divide-Star and Divide-TD are based on divide & conquer
approach, and although |V | increases, after division, our algorithms
deal with smaller graphs. When the node size is small, Divide-Star
and Divide-TD have similar performance. This is because that the
memory can hold more than half of the original graph. Even di-
viding the graph according to the children of root by Divide-Star,
after division, the memory can hold a large part of each subgraph
and the procedure to find the DFS-Tree for each subgraph is fast.
However, without division, SEMI-DFS still needs much more time
even when the memory can keep a large part of the graph.

When |V | becomes larger, Divide-Star has a higher increasing
rate compared with Divide-TD. The reason is that, it is divided
according to the children of the root. In this scenario, it will result
in a smaller number of subgraphs and the size for each subgraph
is larger. Compared with random graphs and power-law graphs,
Divide-Star will have a higher increasing rate in random graph be-
cause in random graph, the distribution of edges is even. It will
result in several large subgraphs. The largest subgraph after divi-
sion is still quite large which makes the cost for Divide-Star high.

Exp-3 (Vary Average Degree in Synthetic Data): We vary the av-
erage degree of graphs from 3 to 7 and we test on power-law and
random graphs. The default node size is 50,000,000. The results
of time and I/O cost for power-law graphs are shown in Fig. 14(a)
and Fig. 14(b) respectively and the results for random graphs are
shown in Fig. 15(a) and Fig. 15(b). When the average degree is
larger than 5, SEMI-DFS cannot find the DFS-Tree in limited time.
With larger degree, the time and I/O cost for all these algorithms in-
crease. SEMI-DFS has the largest increasing rate and Divide-TD
has the smallest. With more edges, divide & conquer approaches
need more iterations. However, Divide-Star and Divide-TD out-
perform SEMI-DFS. This is because after division, all these ap-
proaches only need to deal with smaller subgraphs. The divide &
conquer approaches are stable when the number of edges increases.

Exp-4 (Vary Memory Size in Synthetic Data): We vary the mem-
ory size from 0.5GB to 1.5GB and we test on power-law and ran-
dom graphs. The graph tested in this experiment has 50,000,000
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Figure 16: Power-Law Graph (Varying Memory Size)
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Figure 17: Random Graph (Varying Memory Size)

nodes and 250,000,000 edges. The results of time and I/O cost for
power-law graphs are shown in Fig. 16(a) and Fig. 16(b) respec-
tively and the results for random graphs are shown in Fig. 17(a) and
Fig. 17(b). When the memory size is less than 1GB, SEMI-DFS
cannot find the DFS-Tree in limited time for both graphs. With
more memory, the cost for Divide-TD decreases sharply. The rea-
son is that with more memory, the corresponding S-Graph has more
nodes and edges and the graph will be divided into more subgraphs
according to the larger S-Graph. For Divide-Star approaches, its
decreasing rate will be slower than Divide-TD. The reason is that
the size for S-Graph cannot be tuned according to the memory
size in these two approaches, so the number of subgraphs will
not increase a lot with larger memory. All divide & conquer ap-
proaches perform much faster than SEMI-DFS. The gap between
SEMI-DFS and our approaches becomes larger with smaller mem-
ory. This is because when the memory size is not large, the number
of edges that can be loaded in addition to the spanning tree is small.
In this scenario, if the graph can be divided, the spanning tree that
needs to be kept in the memory can be smaller. Then less iteration
and less cost are needed to find the corresponding DFS-Tree.
Exp-5 (Vary Power-Law-Ness A in Power-Law Graphs): We
vary the parameter A in power-law graphs. The more the |A|

D
is,

the more the fraction of high-degree nodes is among all nodes. We
vary A from 0.25D to 4D. D is average degree and it is 5 in this
testing. The graph being tested has 50,000,000 nodes and the time
and I/O cost are shown in Fig. 18(a) and Fig. 18(b) respectively.
With larger A value, divide & conquer approaches will increase
slightly. The reason is that larger A indicates that more nodes have
high degree. In this scenario, dividing the nodes with high degree
will cost more than dividing those with small degree. So the cost
will increase. However, the increasing rate is quite slow. For the
SEMI-DFS approach, it increases with larger A. The reason is that
more nodes with high degree indicates larger intermediate results
in DFS procedure. Such intermediate results are kept on disk and
results in an increase of I/O cost.
Exp-6 (Vary Start Node): In this experiment, we test the effect of
the start node to the performance of Divide-Star and Divide-TD.
We use the synthetic power-law graph by setting all parameters to
their default values. We divide the nodes evenly into 5 partitions
according to their degrees, such that nodes in partition i (1 ≤ i ≤
4) have degrees no larger than nodes in partition i + 1. In each
partition, we randomly select one node as the start node, and we
repeat each test for 10 times and take the average. The results for
processing time and I/O cost are shown in Fig. 19(a) and Fig. 19(b)
respectively. When the degree of start node increase, the processing
time and I/O cost for Divide-Star increase very slightly because
when the degree of the start node is larger, computing the S-Graph
is more costly, but cannot be the dominant cost. The performance
of Divide-TD is not sensitive to the degree of the start node because
it considers multiple levels of nodes in each round whose size is
dependent on the size of the memory.
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9. CONCLUSION
In this paper, we study the problem of I/O efficient DFS in a

large graph that cannot reside entirely in the main memory, which
is widely used in many real applications. We analyze the drawbacks
of the existing semi-external DFS algorithms, and observe that the
I/O efficiency of the DFS algorithm can be largely improved when
we conduct DFS in a divide & conquer manner. We discuss the
challenges of divide & conquer, and discuss four properties in order
to find a valid graph division. Based on the properties, we design
two novel graph division algorithms and a graph merge algorithm to
significantly reduce the I/O cost of DFS. We conduct extensive per-
formance studies on both real and synthetic web-scale datasets, one
of which contains more than 3.7 billion edges. The experimental
results show that our divide & conquer based DFS algorithms out-
perform the existing semi-external DFS algorithms significantly.
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APPENDIX
Proof of Theorem 5.1:

(1) We prove⇒: This is trivial, since E(Gi) ∩ E(Gj) = ∅ indi-
cates that there is no edge connection between two graphs. So the
DFS-Trees are independent.

(2) We prove⇐: For any two graphs Gi and Gj (1 ≤ i < j ≤ p),
the result of DFS-Tree in Gi will not affect that in Gj indicates
that for nodes in V (Gi) ∩ V (Gj), there will be only one visiting
order. If E(Gi) ∩ E(Gj) 6= ∅, there exist at least one edge (u, v)
such that (u, v) ∈ Ei and (u, v) ∈ Ej . Suppose there is a virtual
node γi that is connected to all nodes in Gi as a root node to DFS
Gi, and a virtual node γj that is connected to all nodes in Gj as
a root node to DFS Gj , note that although the order of visiting a
certain node v in a DFS is dependent on the set of nodes that visited
before v, the first node of the DFS can be arbitrarily selected since
there are no proceeding visited nodes before it in the DFS. In such
a situation, we can construct two DFS-Trees as follows:
• In the first DFS-Tree Ti, we visit u as the first node in the DFS

(except for the root node γi) and v will be visited after u. In
such a way, u is an ancestor or sibling of v in the corresponding
DFS-Tree Ti of Gi.
• In the second DFS-Tree Tj , we visit v as the first node in the

DFS (except for the root node γj). In such a case, no matter
how v is visited in the DFS, u cannot be an ancestor of v in the
corresponding DFS-Tree Tj of Gj since node v has only one
ancestor which is γj . If u and v are siblings, v is visited before
u.

In other words, we can get DFS-Trees Ti and Tj for Gi and Gj

respectively, such that the relationships of u and v in Ti and Tj are
inconsistent. Thus the independence property is violated.

According to (1) and (2), the theorem is proved. 2

Proof of Lemma 5.1:
Suppose the union of T0, T1, · · · , Tp is a graph T , i.e., V (T ) =⋃
0≤i≤p V (Ti), and E(T ) =

⋃
0≤i≤pE(Ti), we prove the lemma

by contradiction. Suppose T is a spanning tree/forest of G, and
there exists a certain pair of trees Ti and Tj (0 ≤ i < j ≤ p),
such that none of the conditions C1, C2, and C3 are satisfied. That
means there exists a node v ∈ V (T1) and v ∈ V (T2), where v
is neither a root of T1 nor a root of T2. Suppose the parent node
of v in T1 is u1, and the parent node of v in T2 is u2, according
to the independence property, u1 /∈ V (G2), which indicates that
u1 6= u2. In such a situation, in T , the node v has two parent
nodes u1 and u2. This contradicts with the assumption that T is a
spanning tree/forest of G. Thus, the lemma holds. 2

Proof of Lemma 5.3:
(1) We prove ⇒: We prove this by contradiction. First, T ∗ is a
DFS∗-Tree ofG and the corresponding DFS-Tree is T , then for ev-
ery edge (u, v) ∈ E(T ∗), (u, v) is a cross edge in T ∗ if and only if
it is a cross edge in T . (However, a forward-cross (backward-cross)
edge in T ∗ may become a backward-cross (forward-cross) edge in
T .) Two nodes u, v have ancestor or descendant relationship in T
if and only if they have ancestor or descendant relationship in T ∗.
Next, suppose there exist edges (u1, v1), (u2, v2), · · · , (uk, vk)
and nodes w1, w2, · · · , wk such that for every 1 ≤ i ≤ k, (ui, vi)
is a cross edge, wi is an ancestor of both vi and ui+1 in T ∗, and wi

and wi+1 do not have ancestor/descendent relationship in T ∗, then
according to the above discussion, for every 1 ≤ i ≤ k, (ui, vi)
is also a cross edge w.r.t. T , wi is also an ancestor of both vi and
ui+1 in T , and wi and wi+1 do not have ancestor/descendent re-
lationship in T . Since T is a DFS-Tree, (ui, vi) can only be a
backward-cross edge w.r.t. T . Considering that wi is an ancestor

of both vi and ui+1 in T , and wi and wi+1 do not have ances-
tor/descendent relationship in T , we can get that the DFS order of
ui+1 is smaller than that of ui for any 1 ≤ i ≤ k. Thus we can
derive that the DFS order of uk+1 is smaller than that of u1, this
contradicts with that uk+1 = u1. Thus,⇒ holds.

(2) We prove⇐: We prove this by constructing a DFS-Tree from
T ∗. Given a tree T ∗ such that there do not exist edges (u1, v1),
(u2, v2), · · · , (uk, vk) and nodes w1, w2, · · · , wk such that for ev-
ery 1 ≤ i ≤ k, (ui, vi) is a cross edge, wi is an ancestor of both vi
and ui+1 in T ∗, and wi and wi+1 do not have ancestor/descendent
relationship in T ∗, then for every forward-cross edge (u, v) w.r.t.
T ∗, we eliminate the forward-cross edge by reconstructing T ∗ us-
ing the following operation:

Forward-cross edge elimination operation: Suppose w is the low-
est common ancestor of u and v in T ∗, and u lies in the subtree
rooted at wu, and v lies in the subtree rooted at wv , where wu and
wv are two child nodes of w in T ∗, we simply swap the positions
of the two subtrees rooted at wu and wv in T ∗.

By applying the above forward-cross edge elimination operation,
we claim that no new forward-cross edge is produced. We prove
this claim by contradiction. Suppose after eliminating forward-
cross edge (u, v), a new forward-cross edge (u′, v′) is produced.
Then (u′, v′) is a backward-cross edge in T ∗ before the elimination
operation. Consequently, we find two edges (u, v), (u′, v′), and
two nodes wv and wu w.r.t. T ∗ such that both (u, v) and (u′, v′)
are cross edges, wv is an ancestor of both v and u′ and wu is an
ancestor of both u and v′, and wu and wv do not have ancestor
or descendant relationship. This contradicts with the assumption.
Thus⇐ holds.

According to (1) and (2), the lemma holds. 2

Proof of Lemma 6.1:
(1) We prove ⇒: we prove this by contradiction. Suppose T0 is

not a DFS∗-Tree of Σ∗, then according to lemma 5.3, we can find
edges (u1, v1), (u2, v2), · · · , (uk, vk) and nodes w1, w2, · · · , wk

in Σ∗, such that for every 1 ≤ i ≤ k, (ui, vi) is a cross edge, wi

is an ancestor of both vi and ui+1 in T0, and wi and wi+1 do not
have ancestor/descendent relationship in T0. Let the corresponding
edges of (u1, v1), (u2, v2), · · · , (uk, vk) in the original graph G
be (u′1, v

′
1), (u′2, v

′
2), · · · , (u′k, v

′
k), then obviously, we find edges

(u′1, v
′
1), (u′2, v

′
2), · · · , (u′k, v

′
k) and nodes w1, w2, · · · , wk in G,

such that for every 1 ≤ i ≤ k, (u′i, v
′
i) is a cross edge, wi is

an ancestor of both v′i and u′i+1 in T0, and wi and wi+1 do not
have ancestor/descendent relationship in T0. According to lemma
5.3 and lemma 5.2, the division is not DFS-preservable. Thus ⇒
holds.

(2) We prove ⇐: let T1, T2, · · · , Tp be the corresponding DFS-
Trees of G1, G2, · · · , Gp respectively, and T be the union of T0,
T1, · · · , Tp, we show that if T0 is a DFS∗-Tree of Σ∗ then T is
a DFS∗-Tree of G, thus according to lemma 5.2, the division is
DFS-preservable. Since T0 is a DFS∗-Tree of Σ∗, we can reorder
nodes in T0 such that T0 is a DFS-Tree of Σ∗, suppose we reorder
nodes in T accordingly based on the order of the root nodes r1, r2,
· · · , rp in the new T0, for any cross edge (u′, v′) in T , we consider
two cases as follows:
• Case 1, u′ and v′ belong to the same tree Ti: since Ti is a DFS-

Tree, (u′, v′) should be a backward-cross edge.

• Case 2, u′ and v′ belong to two different trees Ti and Tj : let the
(u, v) inG be the corresponding edge of (u′, v′) in Σ∗, since T0

is a DFS-Tree of Σ∗, (u′, v′) should be a backward-cross edge
in T0 w.r.t. Σ∗, as a result (u, v) should be a backward-cross
edge in T w.r.t. G, since the DFS orders of nodes are consistent
in T0 and T .
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Based on case 1 and case 2, we conclude that there are no forward-
cross edges in G w.r.t. T , thus T is a DFS-Tree of G. As a result,
⇐ is proved.

According to (1) and (2), the lemma holds. 2

Proof of Lemma 6.2:
We prove the case when G′ is a graph by replacing (u, v) in

G with pushup((u, v), T, v), the case by replacing (u, v) with
pushup((u, v), T, u) can be proved similarly.

(1) We prove⇒: Since T is a DFS∗-Tree of G, we can reorder T
such that only backward-cross edges exist in G w.r.t. T , now we
show that only backward-cross edges exist in G′ w.r.t. T . We only
need to show that the edge pushup((u, v), T, u) is a backward-
cross edge. If pushup((u, v), T, u) = (u, v), the case is trivial.
We only need to prove the case for pushup((u, v), T, u) = (w, v)
where w is the parent node of u in T . Since (u, v) is a backward-
cross edge w.r.t. T , w is the parent node of u, but not the parent
node of v, we can get that the DFS order of w is smaller than that
of v, thus, (w, v) is a backward-cross edge w.r.t. T in graph G. As
a result⇒ is proved.

(2) We prove ⇐: Since T is a DFS∗-Tree of G′, we can reorder
T such that only backward-cross edges exist in G′ w.r.t. T , now
we show that only backward-cross edges exist in G w.r.t. T . Given
that pushup((u, v), T, u) is a backward-cross edge in G′ w.r.t. T ,
we only need to show that the edge (u, v) is a backward-cross edge
in G w.r.t. T . If pushup((u, v), T, u) = (u, v), the case is trivial.
We only need to prove the case for pushup((u, v), T, u) = (w, v)
where w is the parent node of u in T . Since (w, v) is a backward-
cross edge w.r.t. T , the DFS order of w is larger than that of v.
Since w is the parent node of u, the DFS order of u is larger than
that of w. We can get that the DFS order of u is larger than that of
v, thus, (u, v) is a backward-cross edge w.r.t. T . As a result⇐ is
proved.

According to (1) and (2), the lemma is proved. 2

Proof of Lemma 6.3:
Given a spanning tree T of G, in order to check whether T is a

DFS∗-Tree, according to Lemma 5.3, we need to find whether there
exist edges (u1, v1), (u2, v2), · · · , (uk, vk) and nodesw1, w2, · · · ,
wk such that for every 1 ≤ i ≤ k, (ui, vi) is a cross edge, wi is
an ancestor of both vi and ui+1 in T , and wi and wi+1 do not have
ancestor/descendent relationship in T . Let ci be the LCA of ui and
vi, since wi−1 is an ancestor of ui and wi is an ancestor of vi, and
wi−1 and wi do not have ancestor/descendent relationship, we can
get that ci is also the LCA ofwi−1 andwi. Now suppose that in the
graph G, all cross edges has been replaced by their corresponding
S-edges, and there still exist edges (u1, v1), (u2, v2), · · · , (uk, vk)
and nodes w1, w2, · · · , wk such that for every 1 ≤ i ≤ k, (ui, vi)
is a cross edge, wi is an ancestor of both vi and ui+1 in T , and
wi and wi+1 do not have ancestor/descendent relationship in T . In
this situation, we can get that if ci is the LCA of ui and vi, then ci
is the parent node of ui and vi. We also have that ci is the LCA of
wi−1 and wi, and wi−1 is an ancestor of ui and wi is an ancestor
of vi. We can easily derive that vi = wi and ui = wi−1, thus we
have vi = wi = ui+1 for any 1 ≤ i ≤ k. In other words, we only
need to check whether there are cycles formed by cross edges in
the new graph G. Therefore, the lemma is proved. 2
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