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ABSTRACT
The increasing popularity and growth of mobile devices and location-
based services enable us to utilize large-scale geo-tagged data to
support novel location-based applications. This paper introduces
a novel problem called the best region search (BRS) problem and
provides efficient solutions to it. Given a set O of spatial objects, a
submodular monotone aggregate score function, and the size a× b
of a query rectangle, the BRS problem aims to find a×b rectangular
region such that the aggregate score of the spatial objects inside the
region is maximized. This problem is fundamental to support sev-
eral real-world applications such as most influential region search
(e.g., the best location for a signage to attract most audience) and
most diversified region search (e.g., region with most diverse facil-
ities). We propose an efficient algorithm called SliceBRS to find
the exact answer to the BRS problem. Furthermore, we propose an
approximate solution called CoverBRS and prove that the answer
found by it is bounded by a constant. Our experimental study with
real-world datasets and applications demonstrates the effectiveness
and superiority of our proposed algorithms.

1. INTRODUCTION
Due to the prominence of mobile devices and increasing popular-

ity of location-based services (e.g., Foursquare (www.foursquare.
com), Yelp (www.yelp.com)), massive amount of geo-tagged data
are being generated everyday. Nowadays, in such location-based
services, users can share their geo-positions with their friends. Mean-
while, points of interests (POIs) are increasingly tagged with cate-
gory information and textual descriptions. The availability of such
large-scale geo-tagged data can facilitate understanding of users
who are active in a particular region or information related to the
POIs in a specific region. More importantly, such data can be lever-
aged to search for “best” location or region based on certain crite-
ria. Consider the following motivating examples of such region
search problems.

Example 1: [Most Influential Region Search] Suppose a com-
pany wishes to build a signage to market their new product. The
aspiration is that when people see the advertisement in the signage,
they may purchase the advertised product. More importantly, these
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people may also recommend the product to their friends with a cer-
tain probability. The company wants to find the best location for the
signage to attract as many people as possible to adopt the product.
How can it select such location? 2

Example 2: [Most Diversified Region Search] George is plan-
ning a trip to Rome. Rather than visiting a region in Rome with a
specific attraction (e.g., shopping), he wishes to visit a region that
has the most diverse collection of services and attractions (e.g., cin-
emas, shopping malls, restaurants, and museums). This will enable
him to experience many different attractions and services in one
place without the need to travel to different regions to experience
them all together. How can George select the “most diversified re-
gion” in Rome? 2

Observe that in the aforementioned scenarios, it is important for
a user to specify a query rectangle of size a×b that she is interested
in. For instance, in Example 2, different users may prefer regions of
different sizes to explore. Hence, it is desirable for a user to specify
as input the query rectangle of size a × b that she is comfortable
to explore. Similarly, in Example 1, the region a company wishes
to advertise its product largely depends on its business goal, inter-
est, and budget among others. Consequently, in Examples 1 and 2,
there is one running theme throughout the problems encountered,
despite the differences in domain: we wish to find a rectangular
region with a given size from a 2-dimensional space such that the
aggregate score of the spatial objects in the region is maximized.
Specifically, in Example 1, given the query rectangle of size a× b,
we wish to find the most influential region of the given size, such
that the expected number of influenced users is maximized. On the
other hand, in Example 2, given the query rectangle of size a× b ,
we wish to find the most diversified region of the given size, such
that the number of different categories of services and attractions
in the region is maximized.

In this paper we refer to the above problem as the best region
search (BRS) problem. In the aforementioned problems, the two
aggregate score functions are both submodular monotone set func-
tions as the aggregate score has a “diminishing return” property1.
Hence, given a set of spatial objects O, a query rectangle of size
a× b, and a submodular monotone aggregate score function f , the
BRS problem aims to identify an a × b rectangular region r such
that the aggregate score f(Or) of all spatial objects inside the re-
gion is maximized, where Or is the set of spatial objects inside the
region r. We use an example to illustrate our problem.

Example 3: Reconsider the motivating example in Example 2.
Assume that each object o ∈ O is associated with a label to in-

1The marginal gain from adding an element to an input set decreases as the size of the
input set increases, i.e., f(S ∪ v)− f(S) ≥ f(T ∪ v)− f(T ) for all elements v
and all pair of sets S ⊆ T .
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Figure 1: Example for the BRS problem.

dicate its category, denoted by L(o). Consider the seven spatial
objects o1, o2, . . ., and o7 shown in Figure 1 and their associated
labels L(o1) = . . . = L(o5) = {Restaurant}, L(o6) = {Mall}
and L(o7) = {Cinema}. The BRS problem aims to identify a most
diversified region of a given size, where the diversity is measured
by the number of different categories in the region. Though there
are four spatial objects in the dashed-line rectangular region, all of
them are restaurants and the diversity of the region is one. In the ex-
ample, the solid-line rectangular region has the maximum diversity,
since the spatial objects in it have three different categories. Thus,
the solid-line rectangular region is an answer to the BRS problem.

2

In the BRS problem, there are infinite points in the space and it
is prohibitively expensive to consider all these points in the search
of the best region. This is more so because submodular mono-
tone functions are often expensive to compute [17]. Furthermore,
a user may search for the best region in an exploratory manner.
That is, she may initiate a search with a specific query rectangle as
input, view the corresponding results, iteratively refine the query
rectangle (by increasing or decreasing a or b) and execute the re-
fined search until she is satisfied with the search results. Such ex-
ploratory framework demands techniques that can efficiently pro-
cess the BRS queries over very large volumes of spatial objects.

At first glance, it may seem that the BRS problem can be ad-
dressed by the techniques designed to tackle the maximizing range
sum (MaxRS) problem [7,12,21]. Given a setO of weighted spatial
points and a rectangle r of a given size, the MaxRS problem aims
to identify a location of r such that the sum of the weights of all the
points covered by r is maximized. However, this is not the case.
Consider the example shown in Figure 1, the dashed-line rectangu-
lar region is the result for the MaxRS problem since there are four
spatial objects in the region. However, the solid-line rectangular
region is the answer to our BRS problem. Instead of the SUM func-
tion, the BRS problem is a generalized problem that can employ
any submodular monotone function. Thus, the MaxRS problem is
a special case of the BRS problem (detailed in Section 2).

In this paper, we propose two novel algorithms to tackle the BRS
problem. The first algorithm, SliceBRS, finds an exact answer to
the BRS problem by reducing it to the submodular weighted rect-
angle intersection (SIRI) problem, which greatly reduces the search
space. Specifically, we prove that only O(n2) candidate regions
need to be considered. However, it is still inefficient to consider
all O(n2) candidate regions (especially in an exploratory search
environment) when the number of spatial objects is very large.
This leaves us a challenge whether we can further prune the search
space. The second algorithm, CoverBRS, assumes that slight im-
precision to the solution is acceptable and finds an approximate an-
swer to the BRS problem bounded by a constant. In SliceBRS, we
propose several new concepts, including “maximal regions” and
“maximal slabs” to prune the search space. Based on these con-
cepts, we cut the space into slices and find maximal slabs in all
slices. Then we prune unnecessary slices and maximal slabs to re-
duce the search space. It takesO(n×ns) time to find the best point,
where n is the number of spatial objects and ns is the number of

Table 1: Table of notations
Notation Definition

P The 2-dimensional space
O, T The set of spatial objects
o, p A spatial object, a point
a× b The size of the query rectangle
ra,bp The a× b rectangular region centered at p
O
r
a,b
p

The set of objects inside the rectangle ra,bp
f , fT The submodular monotone function on O and T
R The set of rectangles
r A disjoint region
S, s A set of maximal slabs, a maximal slab

maximal slabs that we actually processed. According to our exper-
iments, ns is usually a very small number, which is much smaller
than n. The CoverBRS algorithm first selects a smaller set of spa-
tial objects T using a novel concept of c-cover. Then it generates
a new instance of the BRS problem by defining a new aggregate
score function and a new query rectangle on the set of spatial ob-
jects T . Lastly, it invokes the SliceBRS algorithm to answer the
new instance. We prove that the answer to the new instance is a
constant-bounded approximate answer to the original instance. The
approximate ratio is determined by the parameter c.

In summary, the key contributions of this paper are as follows.

• To the best of our knowledge, this is the first work to for-
mulate the best region search (BRS) problem for finding a
rectangular region with a given size such that the submodu-
lar monotone aggregate score of the spatial objects inside the
region is maximized.

• We develop an exact algorithm called SliceBRS and a constant-
bounded approximate algorithm called CoverBRS to address
the BRS problem.

• By applying the proposed algorithms to several real-world
and synthetic datasets, we experimentally demonstrate their
efficiency and effectiveness in finding the best regions in the
context of most influential region search and most diversified
region search problems. Furthermore, we also demonstrate
how the SliceBRS algorithm can be adapted to address the
MaxRS problem.

The remainder of this paper is organized as follows. The related
work is reviewed in the next section. Section 3 formally introduces
the best region search problem. In Section 4, we present the ex-
act algorithm, namely SliceBRS. Section 5 presents the approxi-
mate algorithm CoverBRS. The experimental study is discussed in
Section 6. Finally, the last section concludes this paper. The key
notations used in this paper are given in Table 1.

2. RELATED WORK
The best region search (BRS) problem is related to range aggre-

gate query processing, location selection problem, and the region
search problem. We relate research in these areas in turn.

Range Aggregate Query Given a set O of spatial objects and a
query range q, the range aggregate (RA) query [6, 14, 18, 22, 23]
returns the total weight of the spatial objects that are inside the
given query range. An RA query aim to answer “what is the total
weight of objects in a given query range?” In contrast, our BRS
problem focuses on providing answer to “where is the range of a
given size such that the aggregate of objects in the range is maxi-
mized?” Clearly, these two problems are different as the queries are
different. In fact, there is no systematic way to apply any method
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designed for RA query processing to solve the BRS problem. More-
over, the aggregate function used in these studies is different from
the submodular monotone function used in the BRS problem.

Location Selection Problem Our BRS problem is related to the lo-
cation selection problem.The existing work on location selection
defines different optimization objectives, based on which we clas-
sify the existing work. First, Zhang et al. propose the min-dist
optimal-location query [31], which takes as input a set of servers,
a set of clients, and a spatial region Q. The query returns a loca-
tion in Q for a new server such that the average distance from each
client to its closest server is minimized. The problem is also con-
sidered in the context of road networks [5, 28] with road network
distance. Second, given a set of servers and a set of clients, several
efforts [9, 26] aim to find a location where a new server can maxi-
mize its influence. Zhou et al. [32] and Yan et al. [29] consider the
problem with extensions to the definition of influence respectively.
In addition, the problem of selecting top-k locations is also studied
in the literature [11, 27, 30].

All the aforementioned types of location selection queries are
fundamentally different from our BRS problem. Specifically, our
BRS problem aims to find a region with the maximum aggregation
value based on a submodular monotone function, which is different
from the criteria used in location selection queries.

Region Search Liu et al. [20] study the problem of finding subject
oriented top-k hot regions in spatial databases. Cao et al. [2] study
the problem of finding a region with relevant objects from a road
network, where the region is defined by a connected subgraph in
the road network. The concept of region in these work is different
from that of in the BRS problem.

Most germane to our work is the maximizing range sum (MaxRS)
problem [7, 12, 21]. Given a set of weighted spatial objects, and a
query rectangle, the MaxRS problem aims to find the location of a
rectangle such that the sum of the weights of all spatial objects cov-
ered by the rectangle is maximized. The problem was first studied
by the computational geometry community. Imai et al. propose an
O(n logn) optimal algorithm [12] for finding the position of a rect-
angle of the given size enclosing the maximum number of spatial
objects, where n is the number of spatial objects. This algorithm
can be employed to solve the MaxRS problem. Later Nandy and
Bhattacharya [21] propose another line-sweeping-based algorithm
with the same O(n logn) cost. The MaxRS problem is systemati-
cally investigated by Choi et al. [7] where an elegant external mem-
ory algorithm based on the in-memory O(n logn) algorithm [21]
is proposed. Recently, Tao et al. [25] extend the MaxRS problem
to (1− ε)-approximate MaxRS problem and propose efficient algo-
rithms for answering the MaxRS query approximately.

The aforementioned types of region search problem are different
from the BRS problem as they have a different definition of region.
Although the MaxRS problem is closest to our work, it is still a dif-
ferent problem from our BRS problem. Recall that they return dif-
ferent results for the example in Figure 1. We shall further validate
this in Section 6. The MaxRS problem takes SUM as the aggregate
score function, while the BRS problem use a general submodular
monotone function as the aggregate score function. In other words,
the MaxRS problem is a special case of our BRS problem when the
aggregate function is SUM. In addition, techniques [7, 12, 21] de-
veloped for the MaxRS problem cannot be deployed or adapted to
solve the BRS problem because their pruning techniques are tightly
integrated to the SUM function and hence cannot be generalized to
other submodular monotone functions.

Alexander et al. propose Semantic Window [15] and Search-
light [16] to study the region search problem in an interactive data

exploration manner for multidimensional data. In this setting, a
user explores a data space by posing a number of queries to find
rectangular regions that she is interested in. In contrast to our solu-
tion to the BRS problem, Semantic Window [15] is build on top of
PostgreSQL to search the underlying data space quickly while pro-
viding online results. Searchlight [16] combines Constraint Pro-
gramming machinery and DBMS to support generic search, explo-
ration and mining over large multi-dimensional data collections.

3. BEST REGION SEARCH (BRS) PROBLEM
In this section, we formally introduce the best region search

(BRS) problem that we address in this paper. We consider a set
of spatial objects O in a 2-dimensional space, denoted by P . Each
object o ∈ O has a location represented by (o.x, o.y) in space P .
We use ra,bp to denote the a × b rectangular region centered at the
point p ∈ P . Without ambiguity, we also use ra,bo to denote the
a × b rectangular region centered at a spatial object o ∈ O. For a
rectangular region ra,bp , we denote by O

r
a,b
p

the set of spatial ob-

jects inO that are located in ra,bp . We define submodular monotone
function f as follows:

DEFINITION 1. [Submodular monotone function [8]]A set func-
tion f : 2|O| → R, which maps subsets of O to a real number is
a monotone submodular function if for every Oi ⊆ Oj ⊆ O and
o ∈ O\Oj , it satisfies: (1) f(Oi∪{o})−f(Oi) ≥ f(Oj∪{o})−
f(Oj); and (2) f(Oi) ≤ f(Oj).

Example 4: Assume that each object o ∈ O is associated with a
set of class labels (e.g., Greek restaurant), denoted by L(o). Func-
tion f(X) = |

⋃
o∈X L(o)| is a submodular monotone function,

where X ⊆ O. For example, consider 3 objects o1, o2, and o3
and their associated labels L(o1) = {a, b, c}, L(o2) = {a, d},
L(o3) = {c, d}. Let O1 = {o2}, and O2 = {o2, o3}. If we add
o1 into O1, we can get an increase in the score of f(O1 ∪ {o1})−
f(O1) = 2. If we add o1 into O2, we can get an increase in the
score of f(O2 ∪ {o1})− f(O2) = 1. Adding o1 to the subset O1

can cause a higher increase in the aggregation score. 2

Based on the above definition of submodular monotone function
f , we now formally define the best region search (BRS) problem:

DEFINITION 2. [BRS problem] Given a set of spatial objects
O, a submodular monotone function f : 2O → R, and the size
a× b of query rectangle, the best region search (BRS) problem is
to find a location p from the entire space P such that the aggregate
score of the spatial objects in the a× b rectangular region centered
at p, f(O

r
a,b
p

), is maximized:

p = argmax
p∈P

f(O
r
a,b
p

)

Without loss of generality, objects on the boundary of rectan-
gles are excluded. For simplicity, we assume that no two objects
have the same x coordinate or y coordinate. However, our pro-
posed techniques can be easily extended to the case when some
objects have the same x coordinate or y coordinate (detailed in Ap-
pendix A).

4. AN EXACT SOLUTION
Intuitively, the BRS problem requires us to select a point from in-

finite points in space P . However, the naive approach of scanning
each point in P to find a solution to this problem is prohibitively
expensive. Hence, in this section we present an efficient exact so-
lution to the BRS problem to address this challenge. To this end,
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Figure 2: Reduction from BRS to SIRI.

we first introduce the submodular weighted rectangle intersection
(SIRI) problem and show that we can reduce the BRS problem to
the SIRI problem. Next, we discuss the SliceBRS algorithm to solve
the SIRI problem (and thus BRS problem). The proofs of the theo-
rems and the lemmas of this section can be found in Appendix B.

4.1 The SIRI Problem
We now give the formal definition of the SIRI problem. In the

next subsection, we shall present an interesting property of the SIRI
problem, which provides the justification behind our goal to reduce
the BRS problem to the SIRI problem.

DEFINITION 3. [SIRI Problem] Consider a set of rectangles of
size a × b, R, and a submodular monotone function
h : 2R → R that maps a set of rectangles to a real number. We
say a rectangle r is affected by a point p if p is inside r. We denote
by A(p) the set of rectangles that are affected by p. The weight of
point p is defined by the submodular monotone function h on the set
of rectangles A(p), which is denoted by h(A(p)). The SIRI prob-
lem aims at finding a point p with the maximum weight in space
P :

p = argmax
p∈P

h(A(p)).

The BRS problem can be reduced to the SIRI problem as fol-
lows. For each spatial object o ∈ O, we draw an a × b rectangle
ra,bo centered at o. For a set of rectangles Ri = {ra,bo1 , . . . , r

a,b
oi },

let h(Ri) = f({o1, . . . , oi}). Therefore, we get an instance of the
SIRI problem. We illustrate the reduction with an example. Con-
sider the example in Figure 2. In Fig 2(a), O comprises 4 spatial
objects(each represented by a black dot) in space P . The size of
the query rectangle is a× b. To reduce the BRS problem to the SIRI
problem, for each spatial object oi ∈ O, i ∈ [1, 4], we draw an a×b
rectangle centered at oi, denoted by ri, as depicted in Fig 2(b).

To prove the answer to the SIRI problem is also an answer to the
BRS, we first present the following lemma.

LEMMA 1. Consider a point p and a spatial object o in space
P . Object o is inside the a×b rectangular region ra,bp iff p is inside
the a× b rectangle ra,bo that centers at o.

As shown in Figure 2, point p is inside the a × b rectangle cen-
tered at o1 and o1 is also inside the rectangle centered at p.

Then we can have the following theorem.

THEOREM 1. Given an instance of the BRS problem and the
instance of the SIRI problem which is reduced from the BRS prob-
lem, an answer to the SIRI problem is an answer to the BRS prob-
lem.

Note that the reduction is inspired by the idea of transforming
the MaxRS problem to the rectangle intersection problem [7, 21].
The rectangle intersection problem is defined as “Given a set of
weighted rectangles, find an area such that the sum of the weights of
rectangles that intersect with this area is maximized.” However, the
techniques designed for solving the rectangle intersection problem
cannot be used to solve the SIRI problem.

1

0 2

4

8
10

53

6

11
7

9

space P

r1

r2

r3

r4

Figure 3: Disjoint regions.

Figure 4: O(n2) maximal re-
gions

4.2 Disjoint Regions
Next, we present an interesting property of the SIRI problem,

which also enables us to justify the reason behind the reduction of
the BRS problem to the SIRI problem and solve the reduced SIRI
problem instead of solving the BRS problem directly.

DEFINITION 4. [Disjoint Regions] The edges of the rectangles
inR divide the space P into regions. We say a region ri is a disjoint
region iff: (1) ri is the intersection of a set of rectangles Ri; (2)
there exists no region rj such that (a) rj is the intersection of a set
of rectangles Rj , (b) Ri ⊆ Rj , and (c) rj ⊆ ri. We denote the set
of rectangles whose intersection is ri as ri.Ri.

Example 5: Consider the example in Fig 3. There are four rect-
angles, r1, r2, r3 and r4 in the space. The four rectangles together
divide the space into 12 disjoint regions, each is marked with an
ID. Disjoint region r9 (filled with grey color) is the intersection of
the set of rectangles {r2, r3}. 2

LEMMA 2. All the points in a disjoint region can affect the
same set of rectangles, whose intersection forms the disjoint region.

THEOREM 2. There are at most O(n2) disjoint regions, where
n is the number of rectangles in R.

Observe that for both the BRS problem and the SIRI problem, we
find a point from the infinite points in space P . Lemma 2 and The-
orem 2 together enable us to significantly reduce the search space.
According to Lemma 2, instead of considering the infinite points
in space P , we only need to consider a point for each disjoint re-
gion. Theorem 2 tells us there are at mostO(n2) regions to be con-
sidered. Consequently, by reducing the BRS problem to the SIRI
problem, we convert our problem from selecting a point from in-
finite points in space P to selecting a disjoint region from O(n2)
disjoint regions.

4.3 Disjoint Region-based Solution
We proceed to present an efficient approach to solve the SIRI

problem using the notion of disjoint region. To solve the SIRI prob-
lem, based on Lemma 2 and Theorem 2, a straightforward strategy
is outlined as follows: we find all disjoint regions, and for each dis-
joint region ri and the set of rectangles, denoted by ri.Ri, that are
affected by points in region ri, we compute its weight, denoted by
h(ri.Ri). After we find the disjoint region with maximum weight,
any point in the region can be an answer to the SIRI problem. How-
ever, there are O(n2) disjoint regions in the worst case and it is
inefficient to examine every disjoint region. The question here is
whether we need to examine all the disjoint regions. We next use
an example to show that we do not need to examine every disjoint
region.

Example 6: Consider the example in Fig 3. The points in disjoint
region r3 can affect {r1, r4} and the points in disjoint region r5
can affect {r1, r3, r4}. The rectangles affected by the points in r3
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Figure 6: Find maximal slabs.

is a subset of the rectangles affected by the points in r5. Since h is
a submodular monotone function, h({r1, r4}) ≤ h({r1, r3, r4})
always holds. Thus there is no need to examine r3. 2

Inspired by the above example, we propose the notion of maxi-
mal region and show that we only need to check the maximal re-
gions instead of all disjoint regions.

DEFINITION 5. [Maximal Region] Consider a set of rectan-
gles R. The edges of the rectangles divide the space into a set of
disjoint regions R. A disjoint region r ∈ R is defined as a maximal
region if:

(1) r is a rectangular region;
(2) r’s left edge is part of the left edge of a rectangle in R;
(3) r’s right edge is part of the right edge of a rectangle in R;
(4) r’s top edge is part of the top edge of a rectangle in R;
(5) r’s bottom edge is part of the bottom edge of a rectangle in

R.

Example 7: In Fig 3, r5 is a maximal region because (1) it is
a rectangular region; (2) its left edge is part of the left edge of
rectangle r3; (3) its right edge is part of the right edge of rectangle
r1; (4) its top edge is part of the top edge of rectangle r4; and (5) its
bottom edge is part of the bottom edge of rectangle r1. As another
example, r8 is also a maximal region. However, r3 is not a maximal
region because its right edge is not part of the right edge of any
rectangle, but is part of the left edge of rectangle r3. As another
example, r1 is not a maximal region because it is not a rectangular
region. 2

LEMMA 3. For any disjoint region ri, there exists a maximal
region rj such that A(pri) ⊆ A(prj ), where pri is a point from ri
and prj is a point from rj .

From Lemma 3, we know that to find a point p with maximum
weight h(A(p)), we only need to check the points in the maximal
regions instead of all disjoint regions. Usually, the number of max-
imal regions is much smaller than the number of disjoint regions.
However, in the worst case, there are still O(n2) maximal regions.

LEMMA 4. In the worst case, there are O(n2) maximal re-
gions, where n is the number of rectangles.

4.4 Maximal Slab-based Solution
Observe that the solution proposed in the preceding subsection

requires us to examine all maximal regions in order to find only
one region that is the answer to the SIRI problem. Thus, a natural
question is whether we have to examine all maximal regions to
find this region? In this subsection, we propose a novel approach to
enable us to prune the search space of examining maximal regions.

Our idea is based on the concept of maximal slab. Each maxi-
mal region intersects at least one maximal slab. We show that there

are at most O(n) maximal slabs, where n is the number of rectan-
gles. Furthermore, we show that we can compute an upper bound
for each maximal slab and prune the maximal slabs based on the
estimated upper bounds. Consequently, the maximal regions that
overlap with the pruned maximal slabs are pruned.

DEFINITION 6. [Maximal Slab] Consider a set of rectangles
R in space P . A maximal slab is the area between two horizon-
tal lines in the space where (1) the top horizontal line passes the
top edge of a rectangle; (2) the bottom horizontal line passes the
bottom edge of a rectangle; and (3) the area between the two hori-
zontal lines does not contain top or bottom edge of any rectangle.

Example 8: We use the example in Figure 6 to illustrate maximal
slab. For each rectangle, we extend its top edge and bottom edge
to get two horizontal lines, as shown in Figure 6(b). The vertical
edges are ignored. We use solid line for the horizontal line passing
the top edge of a rectangle and dashed for the bottom edge. The
grey-filled slab s1 in Figure 6 (b) is the only maximal slab. 2

Based on the definition of maximal slab, we can derive the fol-
lowing lemma:

LEMMA 5. For any maximal region r, there exists at least one
maximal slab s such that r intersects with s.

LEMMA 6. There are at most O(n) maximal slabs, where n is
the number of rectangles.

Lemma 5 guarantees that we will not miss the answer to the SIRI
problem if we only search inside the maximal slabs. Inspired by
this, we only consider the space in all maximal slabs and search for
the answer to the SIRI problem in each maximal slab. We can com-
pute an upper bound for each maximal slab and prune the maximal
slabs using the estimated upper bounds.

LEMMA 7. Given a maximal slab s, let Rs denote the set of
rectangles that intersect with s. For any point p in s, h(Rs) is an
upper bound of h(A(p)), denoted as upper(s).

Example 9: Consider the maximal slab s2 in Fig 5. We com-
pute upper(s2) = h({r1, r2, r4}). For any point p in s2, we have
h(A(p)) ≤ upper(s2). 2

Approach We now present how to utilize maximal slabs to effi-
ciently find an exact answer to the SIRI problem. Our approach
broadly comprises two steps. First, we find the maximal slabs by
using a sweep line to scan the space bottom-up to find the set S
of maximal slabs together with their upper bounds. Second, we
find the exact answer by checking the maximal slabs s in descend-
ing order of their upper bounds and searching for the point with
maximum weight in each processed maximal slab. Once the upper
bound of any remaining maximal slab in S is smaller than the best
known result, we stop checking the remaining maximal slabs. We
elaborate on these steps in turn.

Finding maximal slabs The main idea is to use a sweep line to
scan bottom-up. While scanning, we maintain the edges that the
sweep line has encountered. According to the definition of maxi-
mal slab, if the sweep line encounters a bottom edge and a top edge
consecutively, then a maximal slab is found. The outline of the pro-
cedure is reported in Function ScanSlab. The function takes as
input the set of rectangles R and returns all maximal slabs S in the
space. It uses a horizontal line, denoted by l, to sweep bottom-up,
and uses a queue Rec to store the rectangles that the sweep line
has met. It uses flag to denote whether the last edge that l met is
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Function ScanSlab(R)
Output: A list of maximal slabs S.

1 Rec← ∅, S ← ∅, f lag ← bottom;
2 while Sweeping the horizontal line from bottom to top do
3 if l meets the bottom edge of a rectangle r then
4 Rec← Rec ∪ {r};
5 flag ← bottom;
6 else

/* The sweep line meets the top edge
of a rectangle */

7 if flag = bottom then
8 s←new maximal slab, s.UB = h(Rec);
9 S ← S ∪ {s};

10 Rec← Rec \ {r};
11 flag ← top;
12 return S;

a top edge of a rectangle or a bottom edge and flag is initialized
by bottom. When the sweep line l encounters a bottom edge of a
rectangle r, it pushes r into Rec (line 4) and mark flag as bottom
(line 5). When the sweep line l encounters a top edge of a rectan-
gle r, if flag is bottom, it finds a new maximal slab with upper
bound h(Rec) and add it to S (lines 8–9). Next, it removes r from
Rec and mark flag as top (lines 10–11). The algorithm terminates
when the sweep line reaches the top of the space.

Example 10: Suppose we invoke the ScanSlab procedure on
the example shown in Figure 5(b). A horizontal line sweeps from
bottom to top. It first comes across the bottom edge of r3 and
r3 is added into the tail of Rec. The flag is marked as bottom.
Then the bottom edges of r2 and r1 are processed consequently
and Rec = [r3, r2, r1], flag = bottom. After that, the sweep
line comes across the top edge of r3. Since flag = bottom, the
algorithm finds a maximal slab s1. We assume h({r1, r2, r3}) =
5. The algorithm then pushes s1 into S. Then r3 is removed from
Rec andRec = [r2, r1] and flag is marked as top. The sweep line
keeps moving and it meets the bottom edge of r4. The algorithm
adds r4 intoRec and mark flag as bottom again. Then it meets the
top edge of r2 and Rec = [r2, r1, r4], flag = bottom. Another
maximal slab s2 is found. We assume that h({r2, r1, r4}) = 4 and
s2 is pushed into S. The algorithm terminates when the sweep line
meets the top edge of r4. 2

Finding the answer In the second step, we search for the answer
iteratively. In each iteration, we pop out the maximal slab s with
maximum upper bound. If the upper bound of s is smaller than the
current result, we can conclude that the current result is the final
result. Otherwise, we process the maximal slab as follows: We use
a vertical sweep line to scan s from left to right. During the scan,
we maintain the edges that the sweep line has encountered. If the
sweep line encounters a left edge and a right edge consecutively,
then the area between the two edges may belong to a maximal re-
gion and we check whether it has a better weight than the current
result.

The formal algorithm is outlined in Function SearchMR. We
use pc to store the current answer to the problem and it is initialized
as null(line 1). It keeps searching while there exists a maximal
slab s ∈ S such that upper(s) > h(A(pc)) (lines 2–14). Specifi-
cally, it finds the maximal slab s with maximum upper bound in S
(line 2) and uses a vertical line l to sweep from left to right (lines
5–14). The variable flag is used to denote whether the last edge
that the sweep line l encountered is a left edge or a right edge and
it is initialized as left. The variable Rec denotes the rectangles that
intersect with the sweep line l (line 4). While the vertical sweep

Function SearchMR(R,S)
Output: A point p

1 pc ← null;
2 s← argmaxs∈S s.UB;
3 while s.UB > h(A(pc)) do
4 flag ← left, Rec← ∅;
5 while Sweeping the vertical line l from left to right in s do
6 if l meets the left edge of a rectangle r then
7 flag ← left, Rec← Rec ∪ {r};
8 else
9 if flag = left then

10 p← midpoint of l ∩ s;
11 if h(A(p)) > h(A(pc)) then
12 pc ← p;
13 Rec← Rec \ {r}, f lag ← right;
14 s← argmaxs∈S s.UB;
15 return pc;

line l meets the left edge of rectangle r, the algorithm sets flag
as left and adds r into Rec (lines 6–7). Otherwise, if the last edge
that l met is a left edge (line 9), it takes the midpoint of segment
l ∩ s (line 10). It then compares its weight and the current result
and update pc if it has a larger weight (lines 11–12). Then r is
removed from Rec and the algorithm sets flag as right (line 13).
When the upper bounds of the maximal slabs in the remaining S
are smaller than the current result, it returns pc as the answer to the
SIRI problem.

4.5 Search Space Reduction by Slicing
We next present a strategy to further reduce the search space.

Our main idea can be explained as follows: We divide the space
into slices with equal width along the x-axis and process each slice
separately by following the divide-and-conquer strategy. We es-
timate an upper bound for each slice and prune the slices whose
upper bound is smaller than the current result.

To realize our idea, we need to answer the following question:
How to set the width of the slices? Observe that if the width of
each slice is too small, then each rectangle will intersect with many
slices. In other words, we need to consider a rectangle in many
slices, which yields redundant computation. If the width of each
slice is too large, then there will be fewer slices, and thus it is likely
that only few slices can be pruned by our strategy. Therefore, it is
important to set an appropriate width of the slices. However, if we
set the width as a constant independent of the query, then given a
rectangle r, the number of slices that intersect with r is dependent
on the query rectangle, and is not bounded. Therefore, we may
consider a rectangle unbounded number of times (for each slice
that it intersects), and this incurs redundant computation. To this
end, we propose to set the width of slices to be query dependent.
Specifically, we set the width of each slice as θb, where b is the
width of the query rectangle and θ is a positive real constant, which
can be set empirically (as we shall see in Section 6).

Example 11: Consider the example in Fig 7. The width of each
slice is θb and θ > 1. r3 intersects with slice 1 and slice 2. {r1, r3}
is the set of rectangles that intersect with slice 1. {r2, r3, r4} is the
set of rectangles that intersect with slice 2. 2

We can derive the following lemma:

LEMMA 8. Let the width of each slice be θb. Each rectangle r
intersects with at most d 1

θ
e+ 1 slices.

Lemma 8 guarantees that each rectangle is processed a constant
number of times if we process each slice by invoking the ScanSlab
procedure. Thus, we further have:

1060



Algorithm 1: SliceBRS
Input: A set of objects O, query size a× b, aggregate function f
Output: A point p

1 pc ← null;
2 R← the set of a× b rectangles centered at each o ∈ O;
3 Divide the space into slices with width θb;
4 for each slice i do
5 Ri ← the set of rectangles that intersect with slice i;
6 Si ← ScanSlab(Ri);
7 while there exists a slice i s.t. maxs∈Si

s.UB > h(A(pc)) do
8 p← SearchMR(Ri, Si);
9 if h(A(p)) > h(A(pc)) then

10 pc ← p;
11 return pc;

r1
r2

r3

r4

slice 1 slice 2

b

Figure 7: Equal-width slices.

c·a

c·b

o1

o2
o3

Figure 8: c-cover

LEMMA 9. There are at most (d 1
θ
e+ 1)n maximal slabs in all

slices, where n is the number of rectangles.

According to Lemma 9, it still takes O(n) time to find maximal
slabs in all slices, where n is the number of rectangles. Note that we
can find the maximal slabs Si in slice i by invoking the ScanSlab
procedure in slice i.

4.6 The SliceBRS Algorithm
We now have all the machinery in place to discuss the Slice-

BRS algorithm to address the BRS problem. The key idea of the
algorithm is as follows. We first transform the BRS problem into
the SIRI problem and divide the space vertically into several slices
with a fixed width. Next, in each slice, the algorithm performs a
fast check and finds the list of maximal slabs together with their
upper bounds. It uses the maximum upper bound of the slabs in a
slice as the upper bound of the slice. Then, it greedily processes
slices. The slice with a larger upper bound is processed first. In
each slice, the algorithm searches each maximal slab greedily. A
maximal slab with a larger upper bound is searched first. The algo-
rithm terminates when the weight of the known best point is larger
than the upper bound of the unprocessed slices, or all the slices
have been processed.

The SliceBRS algorithm is presented in Algorithm 1. It takes
as input a set O of spatial objects, an aggregate score function f ,
and the size a × b of a query rectangle. It returns the point p with
maximum h(A(p)). It uses pc to maintain the point with maximum
weight that has currently been found and it is initialized by null
(line 1). The algorithm first transforms the BRS problem to the SIRI
problem by drawing an a×b rectangle centered at o for each spatial
object o ∈ O (line 2). Then it vertically divides the space into
slices with width θb (line 3). After that, for each slice i, it estimates
the upper bound and finds maximal slabs in the slice (lines 4–6).
Based on the upper bounds, the algorithm processes the slices that
are most likely to contain the best point and update pc once a better
point is found (lines 7–10). The algorithm terminates when the
upper bound of the remaining slices is worse than the current result.

Complexity The SliceBRS algorithm comprises three phases: (1)
Cutting the space into slices, (2) Scanning maximal slabs, and (3)

Searching in maximal slabs. We analyse the time complexity of
the three phases in turn. Let n be the number of spatial objects
in O. In phase 1, it takes O(n) time to cut the space into slices.
In phase 2, according to Lemma 9, there are at most (d 1

θ
e + 1)n

maximal slabs in all slices, where θ is a predefined constant. Thus,
it takes Function ScanSlab O(n) time to process all slices. In
phase 3, it takes Function SearchMR O(n) time to search one
maximal slab. Since we can safely ignore the maximal slabs whose
upper bounds are lower than the current result, we assume only ns
maximal slabs are actually searched by Function SearchMR. Thus
the complexity of phase 3 is O(n · ns). Putting these together, we
can conclude that in the worst case, it takes O(n + n + n · ns) =
O(n · ns) time to find the best point.

Although ns can be n in the worst case, ns is usually a very
small value. To have a better idea, we consider the complexity of
SliceBRS for the following case.

LEMMA 10. Consider a setO consisting of n spatial objects in
a W ×W space P . We assume that the objects in O are uniformly
distributed in space P . The complexity of SliceBRS for this case
is O(n).

In practice, according to our experiments, usually only a few of
maximal slabs are actually searched and ns is a very small value
(from 30 to 3000).

5. APPROXIMATE SOLUTION
Although the SliceBRS algorithm can efficiently find an exact an-

swer to the BRS problem, we observed that its runtime performance
degrades when the number of spatial objects grows or the spatial
objects in the space get denser (detailed in Section 6). Hence in
this section, we present a constant-bounded approximate algorithm
called CoverBRS for answering the BRS problem efficiently espe-
cially for large datasets. The proofs of the theorems and the lemmas
of this section can be found in Appendix B.

5.1 Overview
The key idea behind our approximate algorithm for solving the

BRS problem is as follows: we select a set of points, denoted by T ,
from the space P so that each point in T can represent some spatial
objects in O. The points in T together preserve some properties of
O such that the rectangle region found on the set of objects T can be
an approximation of the result on O with performance guarantees.
This idea has two potential benefits: (1) T contains fewer spatial
objects than O; (2) The spatial objects in T are sparser than those
in O. These benefits enable us to answer the BRS problem more
efficiently.

How to select and utilize the set T such that we can achieve a
bounded approximate answer? To address this challenge, we pro-
pose a novel concept called c-cover of O, where c is a parameter to
control the approximation ratio of our proposed solution. The con-
cept lays the foundation of our proposed algorithm called Cover-
BRS. Specifically, we first select a c-cover T of O. Next, we gener-
ate a new instance of BRS problem for the c-cover T by defining a
new aggregate score function fT and a new size (1−c)a×(1−c)b
of the query rectangle. Lastly, we invoke the SliceBRS algorithm
to solve the new instance and prove that the answer to the new in-
stance of BRS problem is a constant-bounded approximate answer
to the original one. In the subsequent subsections, we elaborate on
these issues.

1061



5.2 c-cover
We first introduce the concept of c-cover. Then we show some

properties of c-cover which we shall use to achieve a constant-
bounded approximate answer to the BRS problem.

DEFINITION 7. [c-cover] Consider a set of spatial object O in
space P and a query rectangle of size a × b. Let T be a set of
spatial points in P . We say T is a c-cover of O iff for any object
oi ∈ O, there exists one point t ∈ T such that oi is inside the
ca× cb rectangular region centered at t.

Hereafter, we refer to the points in T as spatial objects.

Example 12: Consider the example shown in Fig 8. The set of
black and white nodes is a set of spatial objects, denoted byO. The
set of black nodes {o1, o2, o3} is a c-cover of O. 2

Based on the definition of c-cover, we can derive the following
lemma, which is the foundation to get a constant-bounded approx-
imate answer to the BRS problem. Based on this lemma, we shall
establish the approximation bound of our proposed algorithm in
Section 5.6.

LEMMA 11. Consider a set of spatial objects O, a query rect-
angle of size a× b. Let T be a c-cover of O, where c ∈ (0, 1). For
each spatial object t ∈ T , let Ortca,cb be the set of spatial objects
inside the ca× cb rectangular region centered at t. Given a point p
in space P , if an (1− c)a× (1− c)b) rectangular region centered
at p can cover t, then the a × b rectangular region centered at p
can cover all objects in O

r
ca,cb
t

.

5.3 Selection of c-cover
We next study how to select a c-cover of O. Ideally, we would

like to select a minimum c-cover, on which we define a new in-
stance of the BRS problem. This is because it would be more ef-
ficient for answering the new instance defined on a smaller set of
spatial objects.

THEOREM 3. Finding a minimum c-cover is NP-hard.

Since finding the minimum c-cover is a special case of set cover
problem, at first glance it may seem that we can approximate the
minimum c-cover by using a greedy algorithm with an approximate
ratio of 1 − 1/e, where e is the Euler’s number. Specifically, in
each iteration, we select the spatial object t that can maximize the
number of uncovered objects inside the ca× cb rectangular region
centered at t, referred to as neighborhood of t.

Although the greedy algorithm works, unfortunately its com-
plexity is high. It involves too many range queries in the computa-
tion. A range query in 2D space can be answered in O(logn+ k)
time [3], where n is the number of spatial objects and k is the num-
ber of spatial objects in the query range. In the worst case, there
will be O(n) iterations in the greedy algorithm and we have to per-
form O(n) range queries in each iteration. The greedy algorithm
takes O(n2 logn) time to select a c-cover in the worst case. Thus,
we need to devise a more efficient solution to select a c-cover.

Quadtree-based c-cover selection We propose a quadtree-based
heuristic algorithm in order to select a c-cover efficiently. Before
we present the algorithm, we first explain how we use the quadtree
to index the spatial objects and give a lemma, which enables us to
select a relatively small c-cover efficiently.

We use a quadtree to index all spatial objects in the space. The
quadtree recursively partitions the space into four equal-sized rect-
angular regions2 until each leaf node contains one spatial object.
2We use a minimum bounding rectangle (MBR) to enclose all spatial objects, thus we
refer to the partitions as “rectangular regions” instead of “quadrants”.

o1

o3

o5 o4

o2

{o1}{o2,o3,o4,o5}

{o4}

{o5} {o3}

{o2,o4}

{o2}

level:0

level:1

level:2

level:3

v1

v2 v3

v4 v5 v6

v7 v8

Figure 9: Selection of c-cover T .

Each node v in the quadtree corresponds to a rectangular region
together with the spatial objects in the region. For each node v in
the quadtree, we maintain a point, denoted by v.t. Specifically, if
v is an internal node, let v.t be the center point of the correspond-
ing region. If v is a leaf node, let v.t be the spatial object in the
corresponding region.

Example 13: Consider the example in Figure 9. We consider five
spatial objects o1, . . . o5 in the space. We construct a quadtree to
index these five spatial objects as shown in the figure. Node v1
corresponds to the entire space and v1.t is the center of the entire
space. Node v3 corresponds to the top-right rectangular region. It
is a leaf node and it contains spatial object o1. Thus v3.t is spatial
object o1. 2

We proceed to derive the following lemma:

LEMMA 12. We denote by v.l the level of a node v in the quadtree.
Let V 1

l be the set of maintained points of internal nodes at level l
in the quadtree, i.e., V 1

l = {v.t|v is an internal node ∧ v.l = l}.
Let V 2

l be the set of maintained points of leaf nodes at any level
not lower than l, i.e., V 2

l = {v.t|v is a leaf node ∧ v.l ≥ l}. If the
corresponding region of a node at level l can be fully covered by a
ca× cb rectangle, then V 1

l and V 2
l together form a c-cover.

Example 14: Consider the example in Figure 9. Let the size of
the dashed-line rectangle be ca× cb. The corresponding region of
nodes at level 2 can be fully covered by the dashed-line rectangle.
In this case, {o1, o3, o5} together with the center of the region in
v6 form a c-cover. 2

Lemma 12 tells us that we can select a c-cover by retrieving V 1
l

and V 2
l once we identify a level l such that the corresponding re-

gion of a node at level l can be fully covered by a ca×cb rectangle.
However, there may exist several possible values for level l. Which
value should we select? As we have discussed at the beginning
of this subsection, we would like to select a c-cover with smaller
number of spatial objects. The center of a higher level region can
cover more spatial objects than any center of its descendant regions
at lower levels. Therefore, to get a smaller c-cover, we use the
highest level that can satisfy the condition in Lemma 12. Since
the quadtree recursively partitions the space into four equal-sized
rectangular regions, we can directly compute the level by:

l = max (dlog2
Height

ca
e, dlog2

Width

cb
e). (1)

whereHeight andWidth are the height and the width of the entire
space, respectively.

Now we are ready to present our quadtree-based heuristic algo-
rithm. The algorithm comprises three steps: (1) identify the highest
level l; (2) collect the centers of regions in all internal nodes at level
l; and (3) collect the spatial objects in all leaf nodes at any level not
lower than l. The algorithm is outlined in Function Select. It takes
as input a set of spatial objects O and a parameter c. We use a
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Function Select(O, c)
Output: A set of objects T

1 QT ←the indexing quadtree;
2 T ← ∅;
3 l← max (dlog2

Height
ca
e, dlog2 Width

cb
e);

4 foreach internal quadtree node v s.t. v.l = l do
5 T ← T ∪ {v.t};
6 foreach leaf quadtree node v s.t. v.l ≥ l do
7 T ← T ∪ {v.t};
8 return T ;

Algorithm 2: CoverBRS
Input: A set of objects O, query rectangle size a× b, parameter c
Output: A point p

1 T ← Select(O, c);
2 fT ← New aggregate function;
3 p← SliceBRS(T, (1− c)a, (1− c)b, fT );
4 return p;

quadtree QT to index all spatial objects in the space (line 1). The
quadtree is independent of the size of the query rectangle and is
constructed in advance. Each node in the quadtree is associated
with a rectangular region and each leaf node in the quadtree con-
tains only one spatial object. Given a query rectangle of a × b, in
order to select a c-cover of the spatial objects O, we compute the
highest level l in the quadtree using the Equation 1 (line 3). Then
for each internal node at level l in the quadtree, we add the center
of the associated rectangular region into T (lines 4–5). For each
leaf node whose level is not lower than l in the quadtree, we add
the object in the node into T (lines 6–7). Consequently, we find a
c-cover of O.
Complexity We can compute the level l in O(1) time. We retrieve
the center of internal nodes at level l and all leaf nodes whose level
is not lower than l in the quadtree. We use a list to maintain all
leaf nodes sorted by their level. Thus, it takesO(n) time to select a
c-cover T , where n is the number of spatial objects inO. The com-
plexity of our proposed quadtree-based algorithm is much better
than the complexity of the aforementioned greedy algorithm.

5.4 Generate a New Instance of BRS
We next present how to generate a new instance of the BRS prob-

lem based on the generated c-cover of O, which is denoted by T .
Specifically, we need to (1) define a new aggregate score function
over T , and (2) define a new size of query rectangle. We first intro-
duce how to define the aggregate function over the c-cover T .

Aggregate score function over c-cover To define a new aggregate
score function, we need to represent all the objects in O by objects
in T . We utilize the quadtree in Function Select to decide which
objects in O can be represented by an object in T . Specifically, as
we have presented, an object ti in T is selected from a node v in the
quadtree. We let ti represent all spatial objects inside the region in
v. Since the objects in T belongs to different nodes in the quadtree,
an object o in O will be represented by exactly only one object in
T .

Let D(ti) denote the set of objects represented by ti for ti ∈ T .
Then we can define the new aggregate score function fT for the
objects in T in the new instance as follows:

DEFINITION 8. [New aggregate score function] We define the
new aggregate score function fT as: fT : 2T → R, which maps
a subset of T to a real number such that for any Ti ⊆ T and

Ti = {t1, . . . , tj}

fT (Ti) = f(D(t1) ∪ . . . ∪D(tj))

One can easily verify that fT is still a submodular monotone
function.

New size of the query rectangle We next present how to define
the size of new query rectangle and the intuition behind it. Accord-
ing to Lemma 11, we define the size of query rectangle in the new
instance as (1−c)a×(1−c)b. Note that if a (1−c)a×(1−c) rect-
angular region centered at a point p can cover an object ti ∈ T in
the new instance, then the a×b rectangular region centered at p can
cover all objectsD(ti) represented by ti in the original instance. In
this way, the answer to the new instance is a good approximation of
the answer to the original BRS problem. We shall prove later that
the answer to the new instance is a constant-bounded approximate
answer to the original one. Observe that once we have generated a
new instance of the BRS problem with the newly defined aggregate
score function and the size of the query rectangle, we can invoke
the SliceBRS algorithm to solve the new instance.

5.5 The CoverBRS Algorithm
We are now ready to present the CoverBRS algorithm which is

outlined in Algorithm 2. It takes as input a set of objectsO, the size
a×b of query rectangle, and a parameter c for selecting the c-cover
T . It first selects a set T of spatial points from space P by invok-
ing the Select procedure with the parameter c (line 1). Then it
defines a new aggregate score function, denoted by fT , based on
Definition 8 for the c-cover T (line 2). Lastly, it invokes the Slice-
BRS algorithm to answer the new instance of the BRS problem on
the subset T with aggregate function fT and query rectangle of size
(1− c)a× (1− c)b.
Complexity It takes O(n) for our quadtree-based heuristic algo-
rithm to select the subset T , where n is the number of spatial ob-
jects in O. It takes O(nt × nts) time to invoke the SliceBRS algo-
rithm to solve the new instance, where nt is the number of spatial
objects in T and nts is the number of maximal slabs that are actually
searched. Hence, the overall time complexity of the CoverBRS al-
gorithm isO(n+nt×nts). Recall that the complexity of SliceBRS
is O(n × ns). Since the c-cover is a subset of all spatial objects
and only a few maximal slabs are searched, CoverBRS has a better
efficiency than SliceBRS. In our experiment, we can observe that
CoverBRS is always more efficient than SliceBRS, especially when
there are tens to hundreds of millions of spatial objects in the space.

5.6 Approximation Ratio
Finally, we present the approximation ratio of the answer re-

turned by the CoverBRS algorithm for different values of c and also
prove that the approximation ratio is tight. The proofs of the fol-
lowing lemma and theorems can be found in Appendix B.

LEMMA 13. Let p be any point in the space, O
r
a,b
p

be the set of

objects inO that are covered by ra,bp , and T
r
(1−c)a,(1−c)b
p

be the set

of objects in T that are covered by r(1−c)a,(1−c)bp . The following
holds:

fT (Tr(1−c)a,(1−c)b
p

) ≤ f(O
r
a,b
p

)

THEOREM 4. When c = 1/3, Algorithm CoverBRS returns a
(1/4)-approximate answer to the optimal solution.

THEOREM 5. The 1/4 approximation ratio is tight for the Cover-
BRS algorithm when c = 1/3.
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THEOREM 6. When c = 1/2, Algorithm 2 returns a (1/9)-
approximate answer to the optimal solution.

THEOREM 7. The 1/9 approximation ratio is tight for the Cover-
BRS algorithm when c = 1/2.

6. EXPERIMENTAL STUDY
In this section, we first present the setup of our experiments.

Then, we study the performance of our algorithms w.r.t quality of
results, efficiency, and scalability using real-world datasets and ap-
plicaitons. All algorithms are implemented in C++ and compiled
by VS 2013. All experiments are run on a Windows PC with Intel
Xeon 3.70GHz CPU and 64GB memory.

6.1 Experimental Setup
Real-world applications Recall from Section 1, the BRS problem
can be exploited to address the problem of (1) finding the most in-
fluential region and (2) finding the most diversified region. Hence,
we evaluate the performance of our algorithms in the context of
these two applications. Here, we briefly describe the setup for these
two applications.

Application 1: Most Influential Region. Recall that the goal of
this application is to find the most influential region in the context
of the influence maximization problem [17]. Specifically, given
the size of a region, we can apply our proposed algorithms to find
the most influential region satisfying the size constraint such that
the expected number of influenced users is maximized. In this
application, we adopt the widely used Independent Cascade (IC)
Model [17] to model the influence propagation. Specifically, we
use a weighted directed graph to model the users and their relation-
ships. A node in the graph represents a user. Each edge (u, v) is
assigned with a propagation probability which ranges over (0,1].
In the IC model, each node is either active or inactive and a node
is only allowed to turn from inactive to active, but not vice versa.
By assuming that a regional marketing strategy can directly affect
the people who visit the region, these people will serve as the set
of seeds S in the influence propagation following the IC model.
Specifically, let St denote the set of users activated at time step t
and S0 = S. At time step t + 1, each user v ∈ St has a single
chance to activate each currently inactive neighbor u with a prob-
ability p(v, u). The propagation process terminates when St = ∅.
Thus, the influence of a region is the expected number of influenced
users.

Application 2: Most Diversified Region. The second application
of the BRS problem is to find the most diversified region. Specif-
ically, given the size of a region, we can apply our algorithms to
find a region with maximum diversity. We consider a set of spatial
objects, each of which is associated with a set of tags to indicate its
categories, e.g., “restaurant” and “bar”. The diversity of a region is
then measured by the number of different tags of the spatial objects
inside the region. In this application, the submodular monotone
function is f(Oi) = |

⋃
o∈Oi

L(o)|, for Oi ⊆ O, where O is the
set of spatial objects, and L(o) is the set of tags that are associated
with spatial object o.

Table 2: Summary of datasets
for Application 1.

Property Brightkite Gowalla
# of objects 693,362 1,256,692

# of check-ins 4,491,143 6,442,890
# of users 58,228 196,591

Width 314.391 495.658
Height 359.823 353.771

Table 3: Summary of datasets
for Application 2.

Property Yelp Meetup
# of objects 48,753 589,715

# of tags/POI 48 14.7
Width 23.165 355.839
Height 123.936 180
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Figure 10: Quality vs. kq.

Datasets To support evaluation of our algorithms for the first appli-
cation, we use two real-life datasets3, Brightkite and
Gowalla, whose properties are given in Table 2. We use another
two datasets, Meetup and Yelp4, to evaluate our algorithms for
the second application. The properties of these two datasets are
reported in Table 3. In Appendix C.1, we present a more detailed
description of the datasets.
Evaluated algorithms We evaluate the following algorithms. (a)
SliceBRS algorithm; (b) CoverBRS algorithm with parameter c =
1/3, denoted as CoverBRS4; (c) CoverBRS algorithm with param-
eter c = 1/2, denoted as CoverBRS9, and (d) Optimal Enclosure
algorithm proposed in [21] for addressing the MaxRS problem, de-
noted as OE. Recall that the CoverBRS algorithm returns an ap-
proximate answer to the BRS problem while SliceBRS finds the ex-
act answer. In the SliceBRS algorithm, we need to partition the
space into slices with fixed width. In our experiments, we set the
width of each slice as b, where b is the width of the given rectangle.
The OE algorithm is designed for the MaxRS problem and can be
regarded as a heuristic algorithm for the BRS problem. Note that
the aggregation of the objects in the region found by the OE algo-
rithm for the BRS problem does not have an approximate bound to
the optimal value. Due to space constraints, experiments related to
the adaptation of SliceBRS algorithm to efficiently solve the MaxRS
problem is reported in Appendix C.2.
Query Rectangles As the cardinality of the datasets has an influ-
ence on the efficiency of the algorithms, it is not a good idea to
use the same size of query rectangle on different datasets. There-
fore, we consider the cardinality of the datasets by setting q =
Height
|O| ×

Width
|O| as the unit size of query rectangle where Height

and Weight are the height and width of the minimum rectangular
space that can include all spatial objects and |O| is the number of
spatial objects. Let k · q = (k · Height|O| ) × (k · Width

|O| ). We vary
the size of query rectangle by using different values for k.
Performance measures We consider the following performance
measures: (a) The runtime of each algorithm and (b) the aggregate
score of the spatial objects in rectangular region ra,bp , where p is the
point returned by each algorithm and the aggregate score is denoted
by f(.) in our problem definition. In the subsequent discussion, we
refer to the latter measure as “quality” of the results.

6.2 Quality and Efficiency
We first conduct a set of experiments to evaluate the performance

of our algorithms in the aforementioned applications. We use the
following five sizes for query rectangles, q, 5q, 10q, 15q, and 20q.

Application 1 (Most Influential Region). We first study the per-
formance of our algorithm for Application 1, i.e., finding the most
influential region, in terms of both quality and runtime. Figure 10
reports the quality of the returned region for query rectangles of dif-

3http://snap.stanford.edu/data/index.html
4http://www.yelp.com.sg/dataset_challenge
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ferent sizes. First, we observe that the regions returned by Cover-
BRS4 and CoverBRS9 have comparable quality to the regions re-
turned by SliceBRS. Second, the region returned by OE has the
worst quality. This is because OE is designed for the MaxRS prob-
lem, which adopts different aggregate function from that used in
the BRS problem. Thus, it is inappropriate to adopt OE to solve the
BRS problem. In the subsequent discussions related to efficiency
and scalability, we do not compare OE with our techniques.

Figure 11 depicts the runtime of our three algorithms for query
rectangles of different sizes. Note that the y-axis is in logarith-
mic scale. Observe that although SliceBRS can complete in rea-
sonable time, it is less efficient than CoverBRS4 and CoverBRS9.
This is due to the reasons mentioned in the preceding section: (1)
the CoverBRS algorithm can efficiently select a c-cover T , (2) the
c-cover T is sparser and has less spatial objects than the original
set of spatial objects O, and (3) the new problem instance defined
on T needs less computation.

Application 2 (Most Diversified Region). Next, we investigate
the performance of our algorithm for Application 2. Figure 12
and Figure 13 report the quality and runtime of the evaluated al-
gorithms, respectively. We can make similar observations as those
on Figure 10 and Figure 11.

6.3 Usefulness of Optimization Strategies
We conduct several experiments to validate the usefulness of the

various strategies we proposed in Sections 4 and 5 to improve effi-
ciency of our proposed algorithms.
Usefulness of Maximal Region We first evaluate the usefulness
of maximal region in improving the performance of our algorithm.
We use 10q as the size for the query rectangle for each dataset. We
compare (1) the number of disjoint regions, denoted by #DR, and
(2) the number of maximal regions, denoted by #MR. The results
are reported in Table 4. Observe that compared to the number of
disjoint regions, the number of maximal regions is smaller. In fact,
the number of maximal regions is about 1% of the number of dis-
joint regions. Thus, maximal regions enables us to reduce search
space significantly and yield better efficiency.
Usefulness of Maximal Slab Next, we investigate the usefulness
of maximal slabs in improving the efficiency of our algorithm. By
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Figure 13: Runtime vs. kq.

Table 4: Effectiveness of maximal regions.

Dataset #DR #MR

App. 1 Brightkite 38,757,062 247,332
Gowalla 46,582,671 349,723

App. 2 Yelp 6,605,228 40,460
Meetup 22,786,743 167,789

using 10q as the size for the query rectangle, we compare (1) the
number of maximal regions, denoted by #MR, (2) the number of
maximal slabs, denoted by #MS, (3) the number of maximal slabs
that are processed by SearchMR, denoted by #MSP, and (4) the
number of disjoint regions (including maximal regions) that the al-
gorithm actually process, denoted by #DRP (Note that it is possi-
ble that a non-maximal region is processed by our algorithm). The
results are reported in Table5. We can see that only a small part
of the maximal slabs are processed by SearchMR. Furthermore,
compared to the number of maximal regions, only a small set of dis-
joint regions is processed. Note that our maximal slab-based prun-
ing technique has a better performance on Yelp, Brightkite
and Gowalla. This is because that two venues in Meetup share
many common tags, the upper bound that we estimate for a maxi-
mal slab is loose. Since the upper bounds of many maximal slabs
are larger than the current result, we need to keep processing these
maximal slabs by invoking SearchMR.
Usefulness of Cutting Space into Slices In this set of experiment,
we evaluate the usefulness of the idea of cutting the space into
slices. We implement an algorithm, namely SliceBRS-NoSlice, which
is the SliceBRS algorithm without cutting the space into slices.
We use 5 sizes of query rectangles, q, 5q, 10q, 15q, and 20q on
Brightkite and compare the runtime of SliceBRS and SliceBRS-
NoSlice. Note that SliceBRS-NoSlice runs out of memory when the
size of query rectangle is 20q. Figure 14 reports the runtime of the
two algorithms for 4 query rectangles of different sizes, q, 5q, 10q
and 15q. Notice that SliceBRS is orders of magnitudes faster than
SliceBRS-NoSlice. Thus, the idea of cutting the space into slices
greatly improves the efficiency of the SliceBRS algorithm.
Usefulness of c-cover We now evaluate the usefulness of c-cover
in improving the efficiency of our algorithms. We use 10q as the
size for the query rectangle and compare the (1) the number of
spatial objects in the original set of spatial objects O, denoted by
|O|, (2) the number of spatial objects in the c-cover, denoted by
|T |, (3) the number of disjoint regions in the new instance, denoted
by #DRT , (4) the number of maximal regions in the new instance,
denoted by #MRT , and (5) the number of disjoint regions that the
algorithm actually processed, denoted by #DRPT . Table 6 reports
the results. We can observe that the number of spatial objects in the
new instance is smaller than in the original set of spatial objects.
In addition, both the number of maximal regions and the number
of disjoint regions that are processed are greatly reduced compared
to the original instance. Therefore, the c-cover is very useful in
efficiently finding an approximate answer to the BRS problem.
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Table 5: Effectiveness of maximal slabs.

Dataset #MR #MS #MSP #DRP

App. 1 Brightkite 247,332 649,442 39 1,249
Gowalla 349,723 1,206,367 132 8,417

App. 2 Yelp 40,460 33,699 170 6,342
Meetup 167,789 516,379 3,257 199,975

Table 6: Effectiveness of c-covers.

Dataset |O| |T | #DRT #MRT #DRPT

App. 1 Brightkite 693,362 91,308 223,769 39,156 8
Gowalla 1,256,692 158,069 390,003 70,656 12

App. 2 Yelp 48,753 6,133 36,304 2,301 86
Meetup 589,715 91,547 201,779 32,222 389

6.4 Effect of Parameters
Next, we investigate the effect of parameters on our proposed

algorithms. Specifically, we study the effect of slice width here.
Due to space constraints, the effect of the query rectangle on the
performance of our algorithms is reported in Appendix C.3.

The value for θ controls the width of each slice. In this experi-
ment, we use 10q as the query and vary the value of θ from 1 to 5
with an increment of 1 for each dataset in the two applications.

Application 1 (Most Influential Region). Figure 15 plots the run-
time of the three algorithms with different slice widths in Applica-
tion 1. Observe that as the width increases, the runtime of SliceBRS
increases. This is because that the space will be cut into lesser slices
when the slice width is larger. Consequently, there are potentially
more maximal regions in a slice and lesser maximal regions can be
pruned. We can also observe that CoverBRS4 and CoverBRS9 are
less sensitive to the slice width.

Application 2 (Most Diversified Region). The results for Appli-
cation 2 are reported in Figure 17. We can make similar observa-
tions as those on Figure 15.

In summary, observe that θ can be set to 1 for the aforemen-
tioned applications. More importantly, there are potentially many
maximal regions can be pruned and a little redundant computation
since each rectangle will only be considered in at most two slices.
This set of experiments proves again that the idea of cutting space
into slices greatly improves the efficiency of SliceBRS.

6.5 Scalability with Graph Size
Lastly, we investigate the scalability of our three algorithms. We

generate synthetic datasets under Gaussian distribution for Appli-
cation 2. We set the number of spatial objects of dataset to be from
20,000,000 to 120,000,000 . By following the default setting in
the work that is most germane to our work [7], the spatial objects
fall in a space of 109 × 109 and the size of the query rectangle is
106 × 106. For each spatial object, we randomly assign three la-
bels from 388 categories in Foursquare. We report the runtime of
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Figure 17: Runtime vs. slice width in Application 2.

the three algorithms in Figure 16. Note that the y-axis is in log-
scale. From the figure we can observe that the two approximate
algorithms scale well with the graph size. The exact algorithm be-
comes significantly slower when the number of spatial objects in
the dataset gets larger.

7. CONCLUSIONS AND FUTURE WORK
The quest for high quality location-based services has become

more pressing due to explosive growth of mobile devices and geo-
tagged data. In this paper, we introduce the best region search
(BRS) problem that aims to find a rectangular region with a given
size such that the aggregation of the spatial objects in the region
is maximized. This problem is fundamental to supporting several
location-based applications such as most influential region search
and most diversified region search. To this end, we propose a novel
algorithm called SliceBRS that employs several pruning strategies
to find the exact answer to the BRS problem. Since slight impreci-
sion is acceptable in many real-world applications, we further pro-
pose the CoverBRS algorithm to find a constant-bounded answer
to the BRS problem with a much better efficiency. The experimen-
tal study demonstrates that SliceBRS can find the exact answer to
the BRS problem whereas CoverBRS can find a competitive answer
with a better efficiency. These algorithms scale well with the num-
ber of spatial objects. As part of future work, we intend to explore
efficient techniques to find top-k regions in the context of the BRS
problem and explore BRS problem in the context of road networks.
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APPENDIX
A. EXTENSION TO OBJECTS WITH SAME

COORDINATES
In this paper, we consider the case that the coordinates of each

spatial object is unique. In real-life, it is possible that several spatial
objects share the same x or y coordinate. To handle the extension,
we just need to assign a strict order on all spatial objects and al-
ways use this order to break ties. For example, consider two spatial
objects oi and oj . We draw two a× b rectangles centered at oi and
oj , denoted by ri and rj respectively. Assume that oi and oj have
the same x-coordinate and we assign an order such that oi � oj .
When we scan from left to right, the sweep-line always meets the
left edge of ri before it meets the left edge of rj .

B. PROOFS
Proof of Lemma 1:

PROOF. If o is inside the a× b rectangular region ra,bp , we have,
p.x− b

2
< o.x < p.x+ b

2
and p.y − a

2
< o.y < p.y + a

2
. We can

easily derive: o.x− b
2
< p.x < o.x+ b

2
, o.y− a

2
< p.y < o.y+ a

2
.

Thus p is inside the rectangular region ra,bo . Similarly, we can prove
that if p is inside the a× b rectangular region ra,bo , then o is inside
the rectangular region ra,bp . Putting these together, we conclude
that object o is inside ra,bp iff p is inside ra,bo .

Proof of Theorem 1:
PROOF. Let P be the space in the BRS problem and the SIRI

problem and p ∈ P is a point in space P . According to Lemma 1,
for any spatial object oi ∈ O, we have oi ∈ Ora,b

p
iff ra,boi ∈ A(p).

Thus f(O
r
a,b
p

) = h(A(p)) holds. If p ∈ P can maximize h(A(p))
in the SIRI problem, then it can also maximize f(O

r
a,b
p

) in the BRS
problem. Consequently, an answer to the SIRI problem is also an
answer to the BRS problem.

Proof of Lemma 2:
PROOF. Since each disjoint region is the intersection of a set of

rectangles Ri, all points in the disjoint region can affect all rectan-
gles in Ri.

Proof of Theorem 2:
PROOF. We draw 2 · n horizontal lines passing the horizontal

edges of the n rectangles and 2 ·n vertical lines passing the vertical
edges of the n rectangles. The horizontal lines and the vertical lines
divide the space into O(n2) cells. Each disjoint region comprises
at least one cell. Thus there are at mostO(n2) disjoint regions.

Proof of Lemma 3:
PROOF. We first consider two horizontally consecutive disjoint

regions, r1 and r2. They are separated by a vertical edge from
rectangle r. There are two cases:
Case 1: The vertical edge is the left edge of rectangle r, and then
the points in disjoint region r2 are inside rectangle r. The points in
r2 can affect rectangle r besides all rectangles that the points in r1
can affect. In other words, the set of rectangles affected by points
in r1 is a subset of the rectangles affected by points in r2.
Case 2: The vertical edge is the right edge of rectangle r, then the
points in disjoint region r1 are inside rectangle r. We can draw a
similar conclusion that the set of rectangles affected by points in r1
is a subset of the rectangles affected by points in r2.

For two vertically consecutive disjoint regions, we have similar
conclusions.

Given a disjoint region ri, if it is a maximal region, then Lemma 3
holds, where ri = rj . Otherwise, we can always find a neighbor-
ing disjoint region rj of ri such that A(pri) ⊆ A(prj ). Since
there are finite disjoint regions, we will find a sequence of dis-
joint regions < ri, ..., rk > and rk is a maximal region such that
A(pri) ⊆ ... ⊆ A(prk ).

Put these together, we have the conclusion.

Proof of Lemma 4:
PROOF. We use an example to show that n rectangles can gen-

erate O(n2) maximal regions. As shown in Fig 4, the black re-
gions are maximal regions. When there are 4 rectangles, there is
1 × 1 = 1 maximal region. When there are 8 rectangles, there are
2×2 = 4 maximal regions. Similarly, when there are n rectangles,
there are n/4 maximal regions each row and there are n/4 rows.
So there could be n2/16 = O(n2) maximal regions in the worst
case.

Proof of Lemma 5:
PROOF. For a maximal region r, if there exists no horizontal

line between the top and bottom edges of the region, then the area
between the two horizontal lines passing through the top and bot-
tom edges of the region is a maximal slab. If there exists horizontal
lines between the top and bottom edges of the region, then there
exists at least one maximal slab between the top and bottom edges
of the region.

Proof of Lemma 6:
PROOF. There are at most n horizontal lines passing the top

edge of a rectangle and each of them can be paired with zero or
one horizontal line passing the bottom edge of a rectangle. Thus
there are at most n maximal slabs.

Proof of Lemma 7:
PROOF. Since Rs is the set of rectangles that intersect with s,

for any point p in s, we have A(p) ⊆ Rs. As the function h is
submodular and monotone, h(Rs) ≥ h(A(p)) holds.

Proof of Lemma 8:
PROOF. We project each rectangle to the x-axis and get a line

segment with a length of b. Similarly, we project each slice to the
x-axis and get a line segment with a length of θb. A rectangle
intersects with a slice iff their projections on x-axis intersect. The
projection of a rectangle can intersect at most d 1

θ
e + 1 projections

of slices. Thus, each rectangle r intersects with at most d 1
θ
e + 1

slices.

Proof of Lemma 9:
PROOF. Since each rectangle intersects at most d 1

θ
e + 1 slices,

the top edge of a rectangle can contribute to at most d 1
θ
e+ 1 max-

imal slabs. Thus there are at most (d 1
θ
e+ 1)n maximal slabs in all

slices, where n is the number of rectangles.

Proof of Lemma 10:
PROOF. Since the objects inO are uniformly distributed in space

P , there are
√
n spatial objects in a row and a column. The dis-

tance dh between two horizontal adjacent spatial objects, as well as
the distance dv between two vertical adjacent objects, are given by
dv = dh = W√

n
. Let the size of the query rectangle be a×b. We re-

duce the BRS problem to the SIRI problem by drawing an a×b rect-
angle centered at o for each object o ∈ O. We still analyse the com-
plexity of the 3 phases of SliceBRS in turn: It takes O(n) time to
cut the space into slices in phase 1, and O(n) time to find all max-
imal slabs in phase 2. In phase 3, we first consider the complexity
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Figure 18: Approximate Ratio.

of Function SearchMR searching one maximal slab. Recall that
there are O(

√
n) spatial objects in a row in the space. We draw

a rectangle centered at o for each spatial object o and thus there
are O(

√
n) left edges and O(

√
n) right edges. Since the space is

equally divided into W
θb

slices, there areO(
√
n÷ W

θb
) = O( θb·

√
n

W
)

left edges and right edges in one slice. Therefore, it takesO( θb·
√
n

W
)

time for Function SearchMR to process one maximal slab. There
are O(

√
n) maximal slabs in one slice and W

θb
slices in the space.

Thus, it takes O( θb·
√
n

W
·
√
n · W

b
) = O(n) time to find the best

point. Putting these together, we can conclude that the complexity
of SliceBRS for this case is O(n).

Proof of Lemma 11:
PROOF. Let oi be an object in O

r
ca,cb
t

. We have |oi.x− t.x| <
cb
2

, |oi.y− t.y| < ca
2

. Since t is inside a (1−c)a× (1−c)b region
centered at p, we have |t.x−p.x| < (1−c)b/2, |t.y−p.y| < (1−
c)a/2. Obviously, |oi.x−p.x| < cb

2
, |oi.y−p.y| < ca

2
. Therefore,

oi is inside the a× b rectangular region centered at p.

Proof of Theorem 3:
PROOF. Consider the geometric version of set cover problem.

Given a finite set of points and a set of rectangles with predefined
size in a 2 dimensional space, the problem is to find the minimum
number of rectangles that cover all points. This problem is NP-
hard even when the rectangles are identical squares with their sides
parallel to the axes [10]. This problem is a special case of finding
a minimum c-cover when the query rectangle is a square. Thus,
finding a minimum c-cover is NP-hard.

Proof of Lemma 12:
PROOF. We consider the following two cases: (1) If a spatial

object o is in a leaf node whose level is not lower than l, then o ∈
V 2
l ; (2) If a spatial object o is in a leaf node v whose level is lower

than l, then we can traverse along the path from v to the root until
we find an internal node u at level l. Spatial object o is in the
corresponding region of u. Since the corresponding region of u can
be fully covered by a query rectangle, object o is inside a ca × cb
rectangular region centered at u.t.

Therefore, for any spatial object o ∈ O, there exists a t ∈ V 1
l ∪

V 2
l such that o is inside the ca × cb rectangular region centered at
t. We conclude that V 1

l ∪ V 2
l is a c-cover of O.

Proof of Lemma 13:
PROOF. We have

fT (Tr(1−c)a,(1−c)b
p

) = fT ({ti, . . . , tj})

= f(D(ti) ∪ . . . ∪D(tj)) ≤ f(Ora,b
p

)

Proof of Theorem 4:
PROOF. Let popt be the optimal center point for the a × b rect-

angular region with maximum aggregation. Let p be the point re-
turned by the CoverBRS algorithm, which is the center point for

the 2
3
a × 2

3
b rectangular region with maximum aggregation with

respect to the set T . We can find 4 2
3
a × 2

3
b rectangles r1, . . . , r4

such that for any object o covered by ra,bpopt , its representor is cov-
ered by r1 ∪ . . .∪ r4. Consider the Example in Figure 18a, objects
o1,. . . , o4 represent o5,. . . , o8 respectively and o1,. . . , o4 are cov-
ered by r1∪. . .∪r4. Thus, we can achieve the following derivation:

f(O
r
a,b
popt

) ≤ fT (Tr1 ∪ . . . Tr4)

≤ fT (Tr1) + . . .+ fT (Tr4) ≤ 4fT (T
r
2
3
a, 2

3
b

p

),

where Tri is the set of objects in T that are covered by rectangle ri
for i ∈ [1, 4].

From Lemma 13, we have

f(O
r
a,b
popt

) ≤ 4f(O
r
a,b
p

)

Proof of Theorem 5:
PROOF. We prove this with a worst case example. Consider an

instance in Figure 18a where the solid-line rectangle is a a × b
rectangle and the dashed-line rectangles are 2

3
a × 2

3
b rectangles.

The c-cover is T = {o1, o2, o3, o4} and they represent o5, o6, o7
and o8, respectively. We assume f({o1}) = . . . = f({o4}) =
1, f({o5}) = . . . = f({o8}) = 1 − β, where β is a small
positive real number, f({o1, o5}) = . . . = f({o4, o8}) = 1,
and f({o4, . . . , o8} = 4 − 4β. In this case, the CoverBRS al-
gorithm may choose any of o1, . . . , o4 as the approximate solution
while the optimal solution should be the center of the solid-line
rectangle. Since β can be any small value, our answer is (1/4)-
approximate.

Proof of Theorem 6:
PROOF. Similar to the proof of Theorem 4, Let popt be the opti-

mal center point for the a×b rectangle with maximum aggregation.
Let p be the point returned by CoverBRS algorithm, which is the
center point for the 1

2
a× 1

2
b rectangle with maximum aggregation

with respect to the set T of spatial objects. Different from the proof
of Theorem 4, we need 9 1

2
a × 1

2
b rectangles r1, . . . , r9 to guar-

antee that for any object o ∈ O covered by ra,bpopt , its representor is
covered by r1 ∪ . . .∪ r9, as illustrated in Figure 18b. Thus, we can
achieve the following derivation:

f(O
r
a,b
popt

) ≤ fT (Tr1 ∪ . . . Tr9)

≤ fT (Tr1) + . . .+ fT (Tr9) ≤ 9fT (T
r
1
2
a, 1

2
b

p

)

From Lemma 13, we have

f(O
r
a,b
popt

) ≤ 9f(O
r
a,b
p

).

Proof of Theorem 7:
PROOF. We prove this by giving a worst case example. Con-

sider an instance in Figure 18b where the solid-line rectangle is a
a× b rectangle and the dashed-line rectangles are 1

2
a× 1

2
b rectan-

gles. The c-cover is T = {o1, . . . , o9} and they represent o10, . . . ,
o18 respectively. We assume f({o1}) = . . . = f({o8}) = 1 and
f({o9}) = . . . = f({o17}) = 1 − β and f({o18}) = β where β
is a small positive real number. We assume f({o1, o10}) = . . . =
f({o8, o17}) = 1 and f({o9, o18}) = 1 − β. We also assume
that f({o10, . . . , o18} = 9 − 9β. In this case, since the Cover-
BRS algorithm only consider the objects in the c-cover which lo-
cate at o1, . . . , o8, we may end up choosing any one of o1, . . . , o8
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as the approximate solution. However, the optimal solution should
be the center of the solid-line rectangle and it aggregation is 9 −
9β. Since β can be any small positive value, our answer is (1/9)-
approximate.

C. DATASET DESCRIPTION AND MORE
EXPERIMENTAL RESULTS

C.1 Datasets Description
Application 1 (Most Influential Region). Brightkite and

Gowalla are from location-based social networks where users
shared their locations by check-ins. Each dataset consists of a so-
cial graph, a set of points of interests, and a set of check-ins made
by users. Brightkite contains 4,491,143 check-ins made in
693,362 places from 58,228 users. Gowalla contains 6,442,890
check-ins made in 1,256,692 places from 196,591 users. For each
edge (u, v) in the social graph, we generate its propagation prob-
ability by a widely adopted random method [4, 13, 19], i.e., the
propagation probability of each edge is randomly selected from
{0.1, 0.01, 0.001}. We compute the probability of a user u visiting
a place p by # of check-ins in p of u

# of check-ins of u , which is the ratio of the number of
check-ins in p made by u to the number of check-ins made by u.
We adopt the method [1, 24], referred to as the Reverse Influence
Sampling, to approximate the influence spread of a set of users.

Application 2 (Most Diversified Region) Meetup is crawled by
ourselves from an event-based social network meetup.com from
July 2013 to Oct 2013. Each user can specify the topics that they
are interested in and the website helps them to arrange a place to
meet. Each spatial object represents a venue where people have
held at least one event. For each venue, we select the most frequent
topics of the users who have attended an event in this place and as-
sociate such topics with this venue. To generate the Yelp dataset,
we collect the reviews for each POI. After removing the stop words
and stemming, we collect the most frequent words in the reviews
and let them be the tags of each POI.

C.2 Application to the MaxRS Problem
Recall that the MaxRS problem is a special case of the BRS prob-

lem as discussed in Section 2. Hence, our proposed algorithm can
also be applied to solve the MaxRS problem. In this set of exper-
iments, we compare the runtime of OE and an adapted version of
SliceBRSfor the MaxRS problem. We show that our SliceBRS algo-
rithm can also be adapted to efficiently solve the MaxRS problem.
For each dataset, we find the region of given size such that the
number of POIs that are inside the region is maximized. We adapt
the SliceBRS algorithm to make use of the SUM aggregate score
function as it is used in OE. Specifically, in each slice, we mark
all maximal slabs whose upper bounds are higher than the current
result. The rectangles which do not intersect with these marked
maximal slabs can be safely ignored. Then, we modify Function
SearchMR to incorporate the idea of OE to find the point p with
maximum h(A(p)) in the remaining maximal slabs. In this case,
the complexity of SliceBRS is O(n logn). Note that the modifica-
tion to SliceBRS cannot work with a general submodular monotone
aggregate function. Table 7 reports the ratio of the runtime of the
adapted SliceBRS to that of OE. We can see that the time cost of
the adapted SliceBRS is about 20% to 40% of OE. In other words,
our SliceBRS algorithm can also be adapted to efficiently solve the
MaxRS problem.

Table 7: The ratio of SliceBRS’s runtime to OE’s runtime.

Query Rectangle Brightkite Gowalla Yelp Meetup
q 32.3% 29.9% 35.2% 33.5%
5q 22.9% 24.2% 32.1% 27.6%
10q 22.5% 25.1% 30% 22.4%
15q 23.4% 21.2% 35.2% 21.8%
20q 25.8% 23.9% 39.2% 22.2%
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Figure 19: Effect of Aspect Ratio.

C.3 Effect of the Query Rectangle
We study the effect of the query rectangle on the performance of

our algorithms from two aspects: the size and the aspect ratio.
We first study the effect of the size of the query rectangle. We

use five sizes for query rectangles, q, 5q, 10q, 15q, and 20q.
Application 1 (Most Influential Region). We first study the effect

of the size for the query rectangle in Application 1. Figure 10 re-
ports the quality of the returned region when we vary the size for
the query rectangle in the Application 1. We can see that as the
size for the query rectangle gets larger, the gap between the quality
of the region returned by SliceBRS and OE gets smaller. Figure 11
reports the runtime of our three algorithms and the OE algorithm
when we vary the size for query rectangle. We observe that as the
size of the query rectangle gets larger, the runtime of SliceBRS gets
larger. The runtime of CoverBRS4 and CoverBRS9 also increase as
the size of the query rectangle gets larger, but at a slower rate.

Application 2 (Most Diversified Region). Figure 12 reports the
quality of the returned region when we vary the size of query rect-
angles in the Application 2. Figure 13 presents the runtime of the
algorithms. We can make similar observations as those on Fig-
ures 10 and 11.

Lastly, we study the effect of the aspect ratio of the query rect-
angle. We use 5 aspect ratios, 1:2, 2:3, 1:1, 3:2, 2:1, i.e., the query
rectangle varies from wide rectangle to tall rectangle. Due to the
limitation of space, we only report the results on Gowalla. Sim-
ilar observations can be made on other datasets. Figure 19 reports
the runtime of our three algorithms for different aspect ratios. We
observe that, the runtime for a square query rectangle is slightly
larger than those on other rectangles. To explain this, we consider
a query rectangle of size a × b where a takes a very small value.
Then based on the SIRI problem, the rectangles centered at each
object can hardly intersect with each other, yielding nearly nmaxi-
mal regions. Consequently, it is likely to take more time to process
a square query rectangle.
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