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ABSTRACT
Influence maximization (IM) on social networks is one of the most
active areas of research in computer science. While various IM
techniques proposed over the last decade have definitely enriched
the field, unfortunately, experimental reports on existing techniques
fall short in validity and integrity since many comparisons are not
based on a common platform or merely discussed in theory. In this
paper, we perform an in-depth benchmarking study of IM tech-
niques on social networks. Specifically, we design a benchmarking
platform, which enables us to evaluate and compare the existing
techniques systematically and thoroughly under identical experi-
mental conditions. Our benchmarking results analyze and diagnose
the inherent deficiencies of the existing approaches and surface the
open challenges in IM even after a decade of research. More fun-
damentally, we unearth and debunk a series of myths and establish
that there is no single state-of-the-art technique in IM. At best, a
technique is the state of the art in only one aspect.

1. INTRODUCTION
Social networks have become an integral part of our day-to-day

lives. We rely on Facebook and WhatsApp to communicate with
friends. Twitter is regularly used to disseminate information such
as traffic news, emergency services, etc. This reliance on social
networks has resulted in wide-spread research in finding solutions
to the influence maximization (IM) problem [3–9,14–18,20,21,23,
24,26,27]. In a social network, each user corresponds to a node and
two users are connected through an edge if they interact. Interac-
tion between two users may depict friendship, such as in FaceBook,
following a user, such as in Twitter, or co-authorship of scientific
articles, such as in DBLP. Generally, it is assumed that an user u
can directly influence user v if u interacts with v, i.e., there is an
edge from u to v. For example, u positing a positive review on a
movie may result in v actually watching the movie. This event may
in turn result in v influencing his/her own friends. The IM problem
is to identify a set of seed nodes so that the total number of users
influenced is maximized.
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Figure 1: (a) Running time of IMM (ε = 0.5) under IC
(W (u, v) = 0.1) and WC on the Orkut dataset. (b-c) Com-
paring IMM (ε = 0.5) with EaSyIM (iter = 100) under the IC
model (W (u, v) = 0.1) on the YouTube dataset.

Kempe et al. [17] in their seminal work established that finding
an optimal solution for IM is NP-Hard and were the first to prove
that a simple GREEDY algorithm can provide the best approxima-
tion guarantee in polynomial time. They incorporated the use of
three diffusion models – Independent Cascade (IC), Weighted Cas-
cade (WC) and Linear Threshold (LT) for information propaga-
tion, which have been almost exclusively followed in majority of
the subsequent work. All these models are essentially a function of
the edge weights in the social network. The higher the edge weight
between u and v, more is the influence of u on v.

Since Kempe et al.’s seminal work [17], almost every year, a new
IM technique has been published that claim to be the state-of-the-
art. Without doubt, this extensive research has promoted prosperity
of the family of IM techniques. However, it also raises several
questions that are not adequately addressed. How to choose the
most appropriate IM technique in a given specific scenario? What
does it really mean to claim to be the state-of-the-art? More funda-
mentally, are the claims made by the recent papers true? To ensure
a streamlined growth of the field, it is critical to benchmark the
existing techniques in a unified setup across common datasets and
answer all of the above questions. We conduct this benchmarking
study and expose a series of myths that could potentially alter the
way we approach IM research.

To highlight the ambiguity that plagues the current maze of IM
techniques, we provide some concrete examples to motivate the
need for a benchmarking study.

IC Vs. WC. WC is a specialized instance of the IC diffusion
model and not IC itself. We discuss their differences in detail in
Sec. 2.1. Multiple techniques [26, 27] have claimed to scale well
under IC, while in reality, they scale only for WC. To provide a con-
crete example, consider Fig. 1a, where IMM [26] is highly efficient
and scales well for WC, however, is relatively inefficient under IC.
In fact, it crashes on our machine beyond 50 seeds for IC on the
Orkut dataset, while consuming more than 256 GB of RAM.

While IMM is just one representative technique, several tech-
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niques equate WC with IC and make a generic claim to perform
well under the IC diffusion model.

What does it mean to be the state of the art? While many
techniques claim to be the state of the art, in reality, they are often
the state of the art in only one aspect of the IM problem. Consider
Figs. 1b-1c. On the same YouTube dataset, while EaSyIM [10]
scales better with respect to memory, IMM [26] scales better with
running time. Thus, neither technique can be termed as better than
the other. More critically, the IM community should also serve as a
decision maker. Specifically, given a problem scenario, we should
be able to identify the technique that is best suited for that purpose.
Our study bridges this gap.

To summarize, IM is associated with a host of parameters: from
the choice of the diffusion model, to the choice of the optimization
objective – (1) quality, (2) computational efficiency, (3) memory
consumption or any possible combination of the three. Owing to
this huge parameter space it is difficult to identify a technique that
is optimal across all the parameters. Consequently, a benchmarking
study is the need of the day. This benchmarking exercise however
is non-trivial and poses an array of unique challenges.

• Given the large diversity in the strategies employed by the
various IM techniques, a universal framework for IM is quite
difficult to be summarized and abstracted. Nonetheless, build-
ing this framework is critical to compare, analyze and diag-
nose the techniques from a common viewpoint.

• In this study, we need to either gather code from the authors
or re-implement them. Given the large body of work, this it-
self is a significant challenge. Furthermore, to integrate them
into the benchmarking framework and interpret the results, it
is critical to have an in-depth understanding of the code.

• When proposing a new approach, authors often testify their
work across limited metrics, datasets, and parameters, on
which they perform well. To evaluate the techniques as com-
prehensively as possible, we need to identify a suite of met-
rics, various classes of datasets, and a diverse set of parame-
ters that can characterize all aspects of the IM problem.

In this paper, we have designed a systematic benchmarking plat-
form for the IM problem. As visible in Fig. 2, the benchmark con-
sists of four core components: (1) Setup, including a set of algo-
rithms, real-world datasets, parameter configurations and a diffu-
sion model; (2) IM Framework, a generalized IM module with
high abstraction of the common workflow of Influence Maximiza-
tion (details in Sec. 3 and 4); (3) Evaluation, which provide tar-
geted diagnoses on these algorithms based on our framework, lead-
ing to directions of improvement over the existing work (Sec. 5);
and (4) Insights, which discusses the key take-away points from
the benchmarking study and generally, summarizes the state of the
IM field after more than a decade of research (Sec. 6).

To summarize, the contributions of our work are as follows.

• We conduct a comprehensive benchmarking study that per-
forms an in-depth analysis, evaluation and comparison of the
extensive work on IM (Sec. 5). 1

• We review the family of IM techniques (Sec. 4, 5) and have
curated the most comprehensive publicly accessible code base.
The code base can be downloaded from https://sigdata.github.
io/infmax-benchmark.

• We unearth and debunk a series of myths that would shape
the future of IM research (Sec. 6). Furthermore, we draw
a set of interesting take-away conclusions, and identify the
skyline techniques for IM (Sec. 7).

1Our benchmarking study considers all IM techniques published
till May, 2016. Thus, we could not include some of the more recent
techniques, such as [23].
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Figure 2: The proposed benchmarking framework for IM.

2. PRELIMINARIES
DEFINITION 1 (SOCIAL NETWORK.). A social network with

n individuals and m social ties can be denoted as an edge-weighted
graph G(V, E, W ), where V is the set of nodes, |V | = n, and E
is the set of directed relationships, E ⊆ V × V , |E| = m, and W
is the set of edge-weights corresponding to each edge in E.

We use the notations W (u, v) to denote the weight of edge e =
(u, v). In(v) and Out(v) denote the set of incoming and outgoing
neighbors of vertex v respectively.

The objective in influence maximization (IM) is to maximize the
spread of information (or influence) in a network through activation
of an initial set of k seed nodes. The dynamics of how information
spreads in a network is guided by an information diffusion model.
To this end, we first define the notions of seed and active nodes.
Next, we use these concepts to define the notion of spread of in-
formation in a network and the most popular information diffusion
models that have been studied in literature.

DEFINITION 2 (SEED NODE). A node v ∈ V that acts as
the source of information diffusion in the graph G(V, E, W ) is
called a seed node. The set of seed nodes is denoted by S.

DEFINITION 3 (ACTIVE NODE). A node v ∈ V is deemed
active if either (1) It is a seed node (v ∈ S) or (2) It receives
information under the dynamics of an information diffusion model
I, from a previously active node u ∈ Va. Once activated, the node
v is added to the set of active nodes Va.

Given a seed node s ∈ S and a graph G(V, E, W ), an informa-
tion diffusion model I defines a step-by-step process for informa-
tion propagation. Independent Cascade (IC) and Linear Threshold
(LT) are the two most well-studied information diffusion models.
For both the IC and LT models, the first step requires a seed node
s ∈ S to be activated and added to the set of active nodes Va.

DEFINITION 4 (INDEPENDENT CASCADE). Under the IC
model, time unfolds in discrete steps. At any time-step i, each
newly activated node u ∈ Va gets one independent attempt to acti-
vate each of its outgoing neighbors v ∈ Out(u) with a probability
p(u,v) = W (u, v). In other words, W (u, v) denotes the probabil-
ity of u influencing v.

DEFINITION 5 (LINEAR THRESHOLD). Under the LT model,
every node v contains an activation threshold θv , which is chosen
uniformly at random from the interval [0, 1]. Further, LT dictates
that the summation of all incoming edge weights is at most 1, i.e.,∑

∀u∈In(v) W (u, v) ≤ 1. v gets activated if the sum of weights
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Algorithm 1 Spread

Input: Graph G = (V, E, W ), seed-set S0, diffusion model I
1: i ← 0
2: repeat
3: i ← i + 1
4: A ← compute the newly active nodes at time-step i under I
5: Si ← Si−1 ∪ A
6: until Si − Si−1 = ∅
7: Va ← Si

8: Return Va

W (u, v) of all the incoming edges (u, v) originating from active
nodes exceeds the activation threshold θv . Mathematically,

∑
∀u∈In(v)∩Va

W (u, v) ≥ θv (1)

Alg. 1 outlines the pseudocode of how information spreads. The
information spreads in discrete time steps. Let S0 be the initial set
of seed nodes at time step 0. These seeds further activate newer
nodes based on the diffusion model I at time step 1 (line 4). Once
a node becomes active, it remains active in all the subsequent steps.
This diffusion process continues until no more activations are pos-
sible, i.e., the active nodes in two consecutive time steps are same
(line 6). The spread of the information is essentially the total num-
ber of nodes (including the seed nodes) that get activated (line 8).

DEFINITION 6 (SPREAD). Given an information diffusion
model I, the spread Γ(S) of a set of seed nodes S is defined as
the total number of nodes that are active, including both the newly
activated nodes and the initially active set S, at the end of the in-
formation diffusion process. Mathematically, Γ(S) = |Va|.

Since the information diffusion under various models (IC/LT)
is defined as a stochastic process the measure of interest is the
expected value of spread. The expected value of spread σ(·) =
E[Γ(·)] is computed by performing a high number (typically 10,000
[17]) of MC simulations of the spread function. The goal in IM, is
therefore to solve the following problem.

PROBLEM 1 (INFLUENCE MAXIMIZATION (IM)). Given an
integer value k and a social network G, select a set S of k seeds,
S ⊆ V | k = |S|, such that the expected value of spread σ(S) =
E[Γ(S)] is maximized.

2.1 Edge weights in Diffusion Models
It is easy to see that the edge weights define the extent to which

information propagates in the network. Ideally, the edge weights
should be learned from some training data and such efforts ex-
ist [12, 13, 19]. However, in this study we incorporate the use of
the standard edge-weighting mechanisms corresponding to the IC
and LT models. The reason for this is three fold: (1) such a rich
set of training data is not readily available for the wide-variety
of publicly available networks; (2) the performance (quality, effi-
ciency and scalability) of the existing IM algorithms vary signifi-
cantly with network properties, scale etc. (details in Sec. 5), thus,
an effective benchmarking requires evaluation across a wide-range
of networks; and (3) most of the existing works on IM assign edge
weights based on some model rather than learning them.

Next, we introduce the various models that have been used to
assign edge weights under the IC and LT models respectively.

2.1.1 Independent Cascade (IC)
• Constant: In this model, each edge W (u, v) has a constant
probability p. In vast majority of the IM techniques, p takes the

Algorithm 2 GreedyIM

Input: Graph G = (V, E, W ), k, diffusion model I
1: S ← ∅
2: i ← 0
3: while (i < k) do
4: i ← i + 1
5: v∗ ← arg max∀v∈V {σ(S ∪ {v}) − σ(S)} under I
6: S ← S ∪ {v∗}
7: end while
8: Return S

value of either 0.01 or 0.1 [4, 9–11, 14, 17]. Additionally, some
techniques use a spectrum of values for p ∈ [0.01, 0.1] [5, 24].
• Weighted Cascade (WC): In WC, p(u, v) = W (u, v) =

1
|In(v)| . In other words, all incoming neighbors of v influence v with

equal probability. As a consequence, it is easier to influence low-
degree nodes than high-degree nodes. [4, 5, 7–11, 14, 16, 17, 26, 27]
• Tri-valency Model: In this model, the probability (or weight)
on an edge is chosen randomly from a set of probabilities. For
example, the weight may be chosen randomly from the set {0.001,
0.01, 0.1}. [4, 7, 16]

2.1.2 Linear Threshold (LT)
• Uniform: The edge-weight on each edge e = (u, v) is assigned
to W (u, v) = 1

|In(v)| . This is similar to the WC model in IC. [6,10]

• Random: In this model, each edge is assigned a value uni-
formly at random in the range [0,1]. Finally, these edge values are
normalized to generate the edge weights so that the weights of all
incoming edges to a node v sum to 1. [6, 26, 27]
• Parallel Edges: Although social networks are generally mod-
eled as a graph, in certain cases, they are actually multi-graphs. A
multi-graph allows multiple edges between a pair of nodes. Con-
sider a phone-call network, where each node corresponds to a user,
and an edge (u, v) models u calling v. Since u may call v more
than once, there may be parallel edges between these users. Now,
to apply LT on such multi-graphs, parallel edges are consolidated
into a single edge to form a traditional graph. In this graph, each

edge (u, v) has the weight W (u, v) = c(u,v)∑
∀u′∈In(v)

c(u′,v)
, where

c(u, v) is the number of parallel edges from u to v. More simply,
it is a generalization of the Uniform model for multi-graphs. [15]

2.2 Properties of the IM problem
THEOREM 1. The problem of IM, as defined in Problem 1 is

NP-hard under both IC and LT.

PROOF. Please see [17].

Fortunately, it has been shown that the spread function Γ(·), and its
expectation σ(·) = E[Γ(·)], is monotone and submodular [17]. If
the function is submodular and monotone, the greedy hill-climbing
algorithm of iteratively choosing the element with maximal marginal
gain approximates the optimal solution within a factor of (1 − 1

e
)

[22]. This result can be utilized to design the greedy seed selection
algorithm shown in Alg. 2.

THEOREM 2. The expected value of spread computed using
the seed set returned by Alg. 2 is within (1 − 1

e
− ε) of the op-

timal. Mathematically,

σ(S) ≥
(

1 − 1
e

− ε
)

σ(S∗) (2)

where S is the seed set computed by Alg. 2 and S∗ is the optimal
seed set. Furthermore, σ(S) is the best possible approximation in
polynomial time.

PROOF. Please see [17].
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While Alg. 2 does provide a polynomial time solution, it is still
not scalable for even moderate sized networks. The non-scalability
stems from line 5, where the node providing the highest marginal
gain is provided. First, the spread due to addition of a seed node
cannot be computed deterministically since it is a function of prob-
abilities guided by the underlying diffusion model. The standard
approach is therefore to simulate the information cascading proce-
dure a high number of times and then report the expected value
of spread. As recommended by Kempe et al. [17], the number
of simulations is typically set to 10,000 [17]. Second, this ex-
pensive spread computation needs to be repeated for each node
in the network. This completes the operation of computing v∗ in
one iteration. In all k subsequent seed selection iterations (line 3),
this entire procedure is repeated making even the greedy pipeline
non-scalable. This non-scalability forms the crux of all subsequent
works on IM.

3. THE BENCHMARKING FRAMEWORK
Having motivated the need of a generic benchmark for IM in

Sec. 1, in this section we present our proposed benchmarking frame-
work with a detailed description of a generalized procedure for in-
fluence maximization.

3.1 The Generalized IM Module
To evaluate the existing IM approaches from a common stand-

point, we formulate a generalized procedure for influence maxi-
mization in this framework. As illustrated in the “IM Framework”
module in Fig. 2, the procedure consists of three phases, includ-
ing seed selection, spread computation and convergence check; and
characterizes the generic workflow of influence maximization via
a series of the key steps involved. Alg. 3 presents the details of
the procedure. M denotes the IM algorithm under consideration,
while P is used to represent the ordered set of associated external
parameters.

3.1.1 Seed Selection
In this phase, nodes of the graph G are added iteratively to the set

of seed nodes S in the order of their influence. Thereby, we abstract
two key steps for this phase, namely – InfluenceEstimate
(line 4) and UpdateDataStructures (line 7). First of all,
the influence values of each node v ∈ V of the graph G is esti-
mated via InfluenceEstimate and collected in the set InfV

(line 4). Note that this procedure takes M as input, and the ex-
act approach for influence estimation may vary from approach to
approach, which we describe in detail in Sec. 4. Once the set
InfV is populated, we then choose the node with the highest es-
timated influence v∗ (line 5) and add it to the set of seed nodes
S (line 6). Since the design of this procedure follows the greedy
paradigm, after every addition made to the set of seed nodes S,
the estimated influence of each node in the graph G is adjusted via
UpdateDataStructures (line 7). This is done to discount the
effect of nodes selected as seeds in the previous iterations on the
current seed selection step.

3.1.2 Spread Computation
This phase takes as input the set of nodes identified as seeds dur-

ing the seed selection phase. Since information diffusion under
various models I is defined as a stochastic process, the purpose
of this phase is to compute a (near accurate) estimate of the ex-
pected value of spread σ(S) of the set of identified seed nodes
S. To this end, the procedure calculates σ(S) by performing r
Monte Carlo (MC) simulations of the information diffusion pro-

Algorithm 3 IMFramework

Input: G = (V, E, W ), I, Algorithm (M, P), Seeds k, MC Simulations r
Output: S, σ(S)
1: for αi ∈ P = {α1, . . . , α|P|} do
2: Sαi

← ∅
3: while |Sαi

| < k do
4: InfV ← InfluenceEstimate (G, Mα)
5: v∗ ← arg max

∀v∈V

(InfV )

6: Sαi
← Sαi

∪ {v∗}
7: UpdateDataStructures (G, Mα)
8: end while
9: σ(Sαi

) ← ComputeSpread(G, Sαi
, I, r)

10: if ¬Converged(M, σ(Sα1 ), σ(Sαi
)) then

11: Return Sαi−1 , σ(Sαi−1 )
12: end if
13: end for
14: Return SαP , σ(SαP )

cess via ComputeSpread (line 9). r is a large number (typically
10, 000 [17]).

3.1.3 Convergence
Majority of IM algorithms M possess an external parameter which

controls its accuracy. As illustrated in Alg. 3, this parameter can
possess values from a broad spectrum P = {α1, . . . , αP}, sorted
in non-increasing order of their obtained accuracy. The more strin-
gent the choice of this parameter the better the accuracy. Conse-
quently, the more the running time. To effectively achieve the best
scalability-accuracy tradeoff for each algorithm M , we perform the
two key phases of IM, namely – (1) Seed Selection and (2) Spread
Computation, across the previously discussed broad spectrum of
parameter values αi ∈ P until we identify the largest value of i for
which convergence holds, which is tested via Converged (lines
10–12). The optimal parameter selection procedure is further dis-
cussed in detail in Sec. 5.

4. IM ALGORITHMS
Influence maximization (IM) being one of the most actively stud-

ied topics in computer science, has witnessed a plethora of ef-
fective approaches over the last decade. We categorize the exist-
ing approaches according to their seed selection process, as shown
in Fig. 3 which covers most representatives from all popular ap-
proaches proposed.

The first category of approaches, such as GREEDY [17], CELF
[20] and CELF++ [14], rely on the explicit MC simulations of
the information diffusion process to estimate the influence of each
node, thereby selecting the seed set. Although possessing theoreti-
cal guarantees on quality, these approaches are not scalable.

Conversely, the second category relies on sampling based explo-
ration instead of estimating the influence of each node explicitly,
thereby, speeding up the seed selection step.

Methods such as RIS [3], TIM+ [27] and IMM [26], construct
Reverse Reachable (RR) sets on nodes sampled from the graph G
and rely on the idea that the higher the number of RR sets a node is
contained in, the more influential this node is. This process indeed
qualifies as the seed selection step for this category.

On the other hand, Snapshots based methods, such as Static-
Greedy (SG) [8] and PMC [24], generate various instantiations Gi

(called snapshots) of graph G apriori, by retaining edges propor-
tional to their edge-weight probability, and estimate node influence
by averaging over all generated snapshots.

Lastly, the third category of approaches incorporate the use of an
alternate way to improve scalability, that of approximate scoring
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Figure 3: Categorization of IM approaches.

mechanisms to estimate the node influence. However, they loose
quality guarantees in the process.

Score Estimation methods, such as degree discount heuristics
[5], PMIA [4], LDAG [6], SIMPATH [15], IRIE [16] and EaSyIM
[10], leverage the idea that influence of a node can be estimated
using a function of the number of simple paths starting at that node.

Rank Refinement methods, such as IMRank [7], instead can
work by taking as input an initial ordering of nodes generated using
any of the score estimation methods discussed above. These meth-
ods then iteratively reorder the nodes based on their ranking-based
marginal influence spread computed according to current ranking.

Next, we discuss eleven state-of-the-art IM algorithms with a de-
scription of how they work under this framework. Notice that, the
spread computation and the convergence phases of the IM Frame-
work are common across the entire spectrum of IM algorithms,
hence, we just describe the seed selection phase for each algorithm
in detail below. Based on specific problem solving perspectives, we
consider the following representatives:
• CELF [20] and CELF++ [14] (Spread Simulation, Sec. 4.1)
• TIM+ [27] and IMM [26] (RR Sets, Sec. 4.2)
• StaticGreedy (SG) [8] and PMC [24] (Snapshots, Sec. 4.3)
• LDAG [6], SIMPATH [15], IRIE [16] and EaSyIM [10] (Score

Estimation, Sec. 4.4)
• IMRank [7] (Rank Refinement, Sec. 4.5)

Note that we do not consider degree discount heuristics [5] and
PMIA [4] as IRIE [16] outperforms them significantly in terms of
running time while achieving comparable spread values. We do not
consider GREEDY as it is significantly outperformed by CELF [20]
and CELF++ [14]. We do not consider RIS [3] as it is outperformed
by TIM+ and IMM. We do not consider [18], as the main contri-
bution of this technique is a parallel IM algorithm, thus, it would
be unfair to include it in a benchmarking study where all other al-
gorithms possess sequential implementations. Moreover, owing to
the highly parallelizable nature of IM and its underlying simulation
processes, all the existing algorithms for IM can be parallelized.
Lastly, we do not include SKIM [9] as TIM+ has been shown to
possess better quality while being similar in running times. Note
that not all the techniques work on all the models. The model to
technique mapping is present in Table 5 in Appendix.

4.1 Spread Simulation
Seed selection. In the InfluenceEstimate step, the spread

simulation based algorithms (CELF [20] and CELF++ [14]) per-
form r explicit MC simulations2 from each node in order to es-
timate their influence, and populate the set InfV . Next, the node
v∗ with the highest estimated influence is added to the set of seed
nodes S. Eventually, in the UpdateDataStructures phase,
all the nodes activated till now Va are marked to be ignored while

2As explained previously and as illustrated in Sec. 5, the larger the
value of r, the better the influence estimation.

estimating the influence of nodes in subsequent iterations. The
above process is performed iteratively until k seeds are obtained.

Remarks. Both CELF and CELF++ exploit the submodularity
property to prune unnecessary node influence estimations while
performing seed selection, and thus, provide significant speed-ups
over GREEDY. However, the pruning strategies incorporated by both
of them are slightly different. CELF uses the simple idea that the
marginal gain of a node in the current iteration cannot be better than
its marginal gain in the previous iterations, and hence, maintains it
while selecting seeds in subsequent iterations. On the other hand,
CELF++ extends this to also include the marginal gain with respect
to the node that has the previous best marginal gain to achieve bet-
ter pruning.

4.2 Reverse Reachable (RR) Sets
Seed selection. TIM+ [27] and IMM [26] perform sampling to

efficiently estimate the influence of nodes and perform seed selec-
tion. The number of samples θ depends upon the error in σ(S) – ε,
k, and various other internal parameters. Here, the Influence-
Estimate step is composed of the following. The first key step
is the construction of RR sets corresponding to the sampled nodes.
To this end, the direction of all the edges in the graph are reversed.
Multiple nodes are sampled from the graph G, and for each sam-
pled node, an instantiation Gi is constructed using the coin-flip
technique. More specifically, edges are retained in proportion to
their edge-weight probability and deleted otherwise. The set of
nodes reachable from each sampled node constitute its RR set.
Once the RR sets corresponding to each sampled node is constructed,
a greedy max covering algorithm [28] is employed to iteratively se-
lect the seed nodes. Note that, the step to find the node with the
maximum influence and the UpdateDataStructures step are
subsumed within the procedure of the max covering algorithm.

Remarks. TIM+ [27] provides several practical optimizations
over RIS [3], by improving the parameter estimation procedure,
thereby removing the correlation issue and improving the scalabil-
ity significantly. Moving ahead, IMM [26] employs the concept of
martingales to further optimize both the node selection and the pa-
rameter estimation phase, thereby resulting in significant improve-
ments in terms of efficiency and scalability.

4.3 Snapshots
Seed selection. As opposed to sampling nodes, SG [8] and PMC

[24] generate various instantiations Gi (called snapshots) of graph
G apriori and estimate the influence of nodes by averaging over
all snapshots. The number of snapshots R control the error in in-
fluence estimation; the larger the R the lesser the error. Similar
to the RR sets based methods, the coin-flip technique is used to
construct snapshots by retaining edges proportional to their edge-
weight probability. Once R snapshots have been constructed, the
InfluenceEstimate step computes a weighted average of nodes
reachable from each node across R snapshots to estimates their in-
fluence. Next, the node v∗ with the highest estimated influence is
added to the set of seed nodes S. Eventually, in the UpdateData-
Structures phase, all the nodes activated till now Va are marked
to be ignored while estimating the influence of nodes in subsequent
iterations. The above process is performed iteratively until k seeds
are obtained.

Remarks. SG [8] does not provide any theoretical guarantee
on the number of snapshots R required to estimate σ(S), while
PMC [24] does. Moreover, PMC [24] proposes intelligent pruning
strategies that help improve its scalability. Lastly, SG does not of-
fer practical scalability over large graphs as illustrated by PMC [24]
and in Sec. 5 as well.
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4.4 Score Estimation
Seed selection. The score estimation heuristics [4–6, 10, 15, 16]

have exploited the exponential decrease of influence probability
with hop/path length to efficiently estimate the approximate influ-
ence of a node. The key idea that, the influence of a node u on
another node v is a function of the number of simple paths between
u and v combined with the exponential decrease of influence prob-
abilities with path length summarizes the algorithmic design em-
ployed by these techniques. Owing to the above observation, these
techniques gain efficiency and scalability, however, at the expense
of quality guarantees. In summary, in the InfluenceEstimate
step each technique either performs node scoring to estimate influ-
ence locally, namely – SIMPATH [15] and LDAG [6]; or globally,
namely – IRIE [16] and EaSyIM [10]. The key difference between
the local and the global estimation procedures are intuitive and in-
line with their names. Global estimation procedures perform the
InfluenceEstimate step in a single attempt on the entire net-
work, however, the local estimation procedures are per node. This
also serves as the key difference between the efficiency and scala-
bility of the two sub-classes of scoring methods. After the node
with the highest score is added to the set of seed nodes S, the
UpdateDataStructures in this group of algorithms discounts
the contribution of the selected seed node in order to get an estimate
of expected marginal gain of subsequent candidate nodes.

Remarks. IRIE [16] and EaSyIM [10] owing to their global
estimation procedure outperform the other local estimation based
heuristics like degree discount [5] and PMIA [4], which thus, are
ignored in this study.

4.5 Rank Refinement
Seed selection. The seed selection phase in IMRank [7] iterates

multiple times in order to get a converged ranking for a particu-
lar set of external parameters. In the first scoring round, the ini-
tial influence (InfluenceEstimate) is estimated using simple
ranking strategies like degree discount heuristics [5] or PageR-
ank [25]. The UpdateDataStructures takes the ranking from
the previous scoring round as an input and estimates the marginal
influence spread of all nodes with respect to the previous rank-
ing. The marginal influence of nodes is calculated in last-to-first
order of ranking. The basic intuition here is that the last node
(the node possessing the least influence) cannot influence anyone
and thus, can help recursively estimate the influence of its pre-
decessors in the ordering. In subsequent steps, this input from
UpdateDataStructures is incorporated to update the rank-
ing of the nodes and the seed selection step stops as soon as the
ranking converges.

5. BENCHMARKING EVALUATION
The four most desirable properties of an IM algorithm are quality

of spread, computational efficiency, memory footprint, and robust-
ness to datasets, diffusion models and parameters. In this section,
we conduct in-depth analysis of the 11 selected IM techniques (as
stated in Fig. 3) to evaluate them across each of these properties.
All experiments are performed using codes written in C++ on an
Intel(R) Xeon(R) E5-2698 64-core machine with 2.3 GHz CPU and
256 GB RAM running Ubuntu3 14.04. We present results on real
(large) graphs, taken from the arXiv [1] and SNAP [2] repositories,
as described in Table 1. In addition to these, a snapshot of the Twit-
ter network crawled from Twitter.com in July 2009 is also used.
We consider a mix of directed and undirected graphs. However,

3IRIE [16] was compiled on a Microsoft Windows 7 machine pos-
sessing the same configuration.

Dataset n m Type Avg. Degree 90-%ile Diameter
Nethept 15K 31K Undirected 2.06 8.8

HepPh 12K 118K Undirected 9.83 5.8

DBLP 317K 1.05M Undirected 3.31 8

YouTube 1.13M 2.99M Undirected 2.65 6.5

LiveJournal 4.85M 69M Directed 14.23 6.5

Orkut 3.07M 117.1M Undirected 38.14 4.8

Twitter 41.6M 1.5B Directed 36.06 5.1

Friendster 65.6M 1.8B Undirected 27.69 5.8

Table 1: Summary of the datasets used in our experiments.

to ensure uniformity, the undirected graphs are made directed by
considering, for each edge, the arcs in both directions.

5.1 Experimental Setup
Information-Diffusion Models: We incorporate the use of three

diffusion models, namely – IC-constant denoted using IC, IC-WC
denoted as W C and LT-uniform denoted as LT (Sec. 2.1). The
IC model is used with a constant probability p(u,v) = 0.1 as-
signed to all the edges of the network. As opposed to the IC and
WC models, the LT model requires an additional parameter. Apart
from the edge weights w(u,v) = 1

|In(v)| , all nodes contain a node

activation threshold θv = rand(0, 1), ∀v ∈ V . Note that the
rand(0, 1) function generates numbers randomly and uniformly
between 0 and 1. The chosen models follow the conventional prac-
tice in the literature and are by far the most popularly used se-
tups [6, 10, 14, 17, 20, 26, 27].

Computing expected spread: As outlined in Fig. 2, we first
let each algorithm output their k most influential seeds. Once the
seeds are identified, we perform 10K MC simulations to compute
the expected spread. In other words, instead of merging the spread
computation and seed selection in a single step, we decouple the
two steps to bring all the techniques at a uniform comparison stand-
point. The number 10K is selected only after extensive experiments
ensuring that the spread reported is stable and has converged. The
details are in Fig. 12 of appendix.

Parameters: Every technique has two kinds of parameters: in-
ternal and external. The external parameters are exposed through
the API and can be tuned to optimize performance. Table 2 lists the
external parameters of all techniques being benchmarked. On the
other hand, the internal parameters are set based on the authors’
judgements (ex: the length of the influence path in EaSyIM [10]
or the size of the DAG in LDAG [6]). In our experiments, we do
not tune the internal parameters and set them to their default values
as recommended by the authors. However, the external parameters
are extensively analyzed to understand when they perform best. We
next discuss this analysis.

5.1.1 External Parameters
The goal in this set of experiments is to identify the optimum

parameter values for each of the techniques being benchmarked.
Note that LDAG [6], IRIE [16] and SIMPATH [15] do not have any
external parameters, and thus this analysis does not cover them.

Generally, a parameter value is optimum if it provides the best
possible spread for that technique, while being computationally ef-
ficient and robust across datasets and k. As in most algorithms, a

Algorithm Parameter IC WC LT
CELF [20] #MC Simulations 10000 10000 10000

CELF++ [14] #MC Simulations 7500 7500 10000

EaSyIM [10] #MC Simulations 50 50 25

IMRank, l = 1 [7] #Scoring Rounds 10 10 NA

IMRank, l = 2 [7] #Scoring Rounds 10 10 NA

PMC [24] #Snapshots 200 250 NA

Static Greedy [8] #Snapshots 250 250 NA

TIM+ [27] ε 0.05 0.15 0.35

IMM [26] ε 0.05 0.1 0.1

Table 2: Optimal parameter values for the various algorithms.
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Figure 4: Identifying the optimal parameter values for the parameters outlined in Table 2.

higher spread often comes at the cost of higher computational cost.
Hence, we formalize the following generic procedure to identify the
optimal parameter values. Let X be the parameter that dictates the
quality of spread. The parameter for each of the techniques is listed
in Table 2. Now, let X∗ be the value at which the highest spread is
obtained within a reasonable time limit4. We identify X∗ by com-
puting the spread across the entire spectrum of X . The plots cor-
responding to this experiment are available in Fig. 14 in Appendix.
We denote the mean spread at X∗ across the 10K MC simulations
as μ∗ and the standard deviation as sd∗. X∗ is also likely to be
the value that corresponds to highest computational cost. For ex-
ample, as the number of MC simulations is increased, both spread
and the running time goes up for greedy techniques. On the other
hand in TIM+ and IMM, lowering ε increases the number of nodes
sampled, and therefore both the spread and the running time goes
up. Since the optimal value should also optimize the running time
without compromising much on the spread, we set X to the value
where the running time is minimized and the spread is within sd∗

from μ∗ across all datasets. In other words, we choose the value
that optimizes the running time while being at most one standard
deviation away from the best possible spread.

The result of this analysis is presented in Fig. 4. The experiment
is performed on four datasets, namely Nethept, HepPh, DBLP and
YouTube. Fig. 4 shows the results for only HepPh since this is the
largest dataset on which all techniques complete across all diffusion
models and k. The results on the other datasets are provided in the
appendix (Figs. 15 and 16). In each plot in Fig. 4, the x-axis varies

4We stress on the point of “reasonable time limit” since in many
cases although the quality may improve, the parameter values may
not be practically tunable. An example of such a scenario is having
more than 10K MC simulations or ε < 0.05.
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Figure 5: Variance of spread with scoring rounds in IMRANK
on the HepPh dataset.

the number of seeds k and the best parameter value for a particular
k is shown on the y-axis. Since, our goal is to select the parame-
ter value that holds across all ks, we select the optimal parameter
value as the value where the spread is within one standard deviation
from μ∗ on the largest value of k5 (k = 200 for our experiments).
Consequently, the chosen parameter value for an algorithm is the
one that is optimal across all datasets. Such a value is guaranteed
to exist as long as the spread monotonically increases or decreases
with the parameter being optimized. Following this analysis, the
optimal values for all algorithms across each of the three models
is computed and listed in Table 2. Beyond identifying the optimal
values for each technique, we highlight two key observations from
this analysis.

• TIM+ [27] Vs. IMM [26]: IMM claims to be 100 times faster
than TIM+. While this is true if they are both executed at same ε,
we notice that TIM+’s optimal value of ε is higher than IMM for
both WC and LT, which translates to faster running times. While
IMM is still generally faster than TIM+, the gap in their running
times is not as drastic as two orders of magnitude. We provide more
concrete data on this in Sec. 5.3.1.

• IMRank [7]: In IMRank, the general idea is to start with an
initial ranking of top-k seed nodes, and then improve this top-k set
over each scoring round. The stopping criteria present in the im-
plementation of IMRank [7] checks for the state where the set of
top-k seed nodes remain the same over two consecutive iterations
or the number of iterations crosses a certain threshold. It is a little
different from the theoretical convergence condition of the IMRank
framework, which is the ranking of top-k nodes remains the same
over two consecutive iterations. Such a stopping criteria is due to
the observation that the influence spread of the top-k nodes always
converges more quickly than the convergence of the ranking of top-
k nodes. However, we find that the current stopping criteria of the
IMRank framework is defective since it often exits early even be-
fore the convergence of the influence spread of the top-k nodes,
especially when k is large6. Based on the suggestion by the authors
of [7], in this paper we fixed this problem by changing the stopping
criteria to always iterate over 10 scoring rounds. However, ow-
ing to the strange behavior of spread with scoring rounds in some
cases, and specifically as portrayed for HepPh in Fig. 5, how to de-

5This follows from [27], which shows that the parameter value re-
quired to obtain a desired level of quality becomes stricter with
increase in k.
6Please refer to the insights about this observation in M7 (Sec. 6)
and Appendix B.
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Figure 6: Growth of spread against the number of seeds. StaticGreedy is denoted as SG.

sign a better stopping criteria that is compatible with the IMRank
framework is still an open question. Moreover, as mentioned in the
parameter selection process described earlier in this section, owing
to this non-monotonicity of spread with scoring rounds, it is also
difficult to identify its optimal value across k and datasets.

5.2 Quality
Equipped with the optimal parameter values for each algorithm,

we next benchmark their quality. Quality, in our problem, equates
to the expected spread from the k influential seeds identified by an
algorithm. Fig. 6 presents the growth in spread against the number
of seeds across the first four datasets in Table 1. We analyze the
performance in the four larger datasets in Sec. 5.5. Generally, the
spread grows with k although few minor fluctuations are visible.
The key observations from this experiment are as follows.

• Scalability of TIM+ and IMM: Both TIM+ and IMM do not
scale beyond HepPh in terms of memory-consumption under the
IC model. We further elaborate on the reasons behind this non-
scalability in Sec. 5.3.1, where we benchmark the scalability of all
techniques.

• Performance of IRIE [16] and IMRank [7]: The perfor-
mance for both these techniques under the IC model is significantly
weaker when compared to their performance under WC.

• Scalability of CELF [20] and CELF++ [14]: CELF and
CELF++ do not scale beyond HepPh in terms of running-time un-
der both IC and WC and thus they are not included in the results
for DBLP and YouTube.

• CELF and CELF++ work better at low values of k: CELF
and CELF++ provide close to highest spread till k = 25. However,
beyond that, they fail to remain competitive. This is particularly
evident in IC, which is shown in Figs. 6a and 6b. We explain
the reasons behind this behavior in point M2 in the Myths section
(Sec. 6).

• PMC [24] and SG [8]: PMC and SG establish themselves as
the only two techniques that consistently provide high spread and
scale for both IC and WC.

5.3 Scalability
While quality forms one important aspect of IM techniques, scal-

ability is an equally important aspect that determines the utility in
practical scenarios. For an algorithm to be termed scalable, it must
scale well with both running time and memory consumption. We
first analyze the running times.

5.3.1 Running Time
Fig. 7 demonstrates the growth of running times across the first

four datasets in Table 1 against the number of seeds. As expected,
most techniques show growth in running time with increase in num-
ber of seeds. The only exceptions are IMM [26] and TIM+ in LT.
This result however is not an aberration and the reason is discussed
in detail in the respective papers. The key observations derived
from the running time analysis are as follows.

• CELF [20] Vs CELF++ [14]: CELF++ claims to be at least
35% faster than CELF and is considered the state-of-the-art MC
estimation based technique. Our analysis reveals a different be-
havior where both CELF and CELF++ show almost identical run-
ning times. To understand the reason behind this deviation from the
claimed results, we analyze the inner workings of both algorithms
and pinpoint the reason in point M1 of the Myths section (Sec. 6).

• Scalability of TIM+ [27] and IMM [26] under IC and WC:
Although both these techniques scale well under WC, they find it
difficult under IC. In our experiments, both TIM+ and IMM crash
in IC due to running out of memory for all datasets except Nethept
and HepPH. TIM+ and IMM employ a reverse-reachability set based
mechanism to compute the seeds. The size of these sets is propor-
tional to the edge weights and therein lies the difference in the per-
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Figure 7: Growth of running time against the number of seeds. StaticGreedy is denoted as SG.

Dataset
IC WC LT

Spread (%) Time (sec) Memory (MB) Spread (%) Time (sec) Memory (MB) Spread (%) Time (sec) Memory (MB)
PMC EaSyIM PMC EaSyIM PMC EaSyIM PMC IMM EaSyIM PMC IMM EaSyIM PMC IMM EaSyIM TIM+ EaSyIM TIM+ EaSyIM TIM+ EaSyIM

LiveJournal 34.91% 34.90% 1039 33505 31250 1013 3.10% 3.12% 2.97% 1460 126 107147 38081 3655 1051 5.31% 5.09% 35 54083 2580 1050
Orkut 87.63% 87.63% 1327 9464 18122 2385 8.02% 8.03% DNF 4344 395 DNF 29727 6674 DNF 29.26% DNF 46 DNF 4891 DNF

Twitter 44.33% DNF 44886 DNF 292845 DNF Crashed 30.98% DNF Crashed 597 DNF Crashed 27702 DNF 57.32% DNF 87 DNF 27446 DNF

Friendster Crashed DNF Crashed DNF Crashed DNF Crashed 12.36% DNF Crashed 9982 DNF Crashed 107939 DNF 28.75% DNF 2454 DNF 89174 DNF

Table 3: Performance of the scalable techniques on large datasets at 200 seeds. Spread is reported in terms percentage of nodes in
the original network. DNF indicates that the algorithm did not terminate even after 40 hours. Crashed indicates that the algorithm
crashed due to running out of memory. Numbers in bold indicate it to be the best performance in that category.

formance of these two techniques under IC and WC. More specifi-
cally, under the WC model, the edge-weight propagation probabil-
ity is defined as p(u, v) = W (u, v) = 1/|In(v)|. Since typically
the in-degree of a node is high in social networks, most of the edges
are not retained in the sampled graph instantiations. Hence, the size
of the reverse-reachability set is small. On the other hand, in the
generic IC model, if the edge probabilities are higher, which is 0.1
for our experiments, then the size of the reverse-reachability set is
significantly larger. Furthermore, due to more edges being retained,
the computation cost of constructing the reverse-reachability set
also increases significantly. Consequently, both TIM+ and IMM
fail to scale well under IC although they are highly scalable when
the edge-weight probabilities are small such as in WC.

• TIM+ [27] is faster than IMM [26] under LT: As we high-
lighted earlier, the optimal ε value for TIM+ is higher than IMM,
and consequently the number of samples required to compute the
seeds is less in TIM+. As a result, TIM+ emerges as a more effi-
cient technique than IMM in LT. This is a deviation from the gen-
eral consensus in the IM literature, since so far, IMM and TIM+

have only been benchmarked at same ε values. Our study reveals
that such a comparison actually penalizes TIM+ for the inability of
IMM to operate at a higher ε value.

• SIMPATH [15] Vs. LDAG [6] SIMPATH was proposed as
an improvement over LDAG and is generally thought to be more
scalable than LDAG. However, in Fig. 7c, we observe contradic-

tory results where LDAG provides faster performance. Further-
more, SIMPATH fails to finish even after 2400 hours on DBLP and
YouTube. On investigating further, we discover that SIMPATH pro-
vides faster performance than LDAG only on the “parallel edges”
LT model, which is used in the SIMPATH paper [15]. In our ex-
periments, we use the “uniform” LT model (refer to Sec. 2.1.2 for
the definitions of the two LT models). For the sake of complete-
ness, we also compare the performance of SIMPATH with LDAG
under the LT-“parallel edges” model and even in this model LDAG
achieves better performance. We discuss the details further in point
M5 of the Myths section (Sec. 6).

5.4 Memory Consumption
Finally, we evaluate the memory consumption of the various

techniques being benchmarked. Fig. 8 presents the results. As
expected, the memory consumption goes up with increase in the
number of seeds. It is also evident from the plots that sampling
based strategies possess a higher memory footprint. The key in-
sights from this experiment are as follows.

• EaSyIM [10] is most memory-efficient: In contrast to other
techniques that store structural information for each node such as
reverse-reachability sets [26, 27], directed acyclic graphs [6], etc.,
EaSyIM only stores a number per node. Consequently, it is the
most memory efficient technique for IM.

• TIM+ [27] and IMM [26]: The scalability of TIM+ and
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Figure 8: Growth of main memory footprint against the number of seeds. StaticGreedy is denoted as SG.

IMM is significantly weaker under IC when compared to its per-
formance under WC with respect to memory consumption. The
reasons are discussed earlier in Sec. 5.3.1.

5.5 Performance on large datasets
From our experiments, it is clear that the four most promising

algorithms are PMC, IMM, TIM+ and EaSyIM. PMC and SG are
the two fastest and best performing algorithms under the IC model.
However, owing to a gap in the implementation of SG [8], it crashed
on the large datasets due to out of memory errors, and thus, we
could not run SG on the 4 large datasets7. IMM and TIM+ are the
two fastest and best performing techniques in LT and WC. EaSyIM
provides competitive performance with the lowest memory foot-
print. In Table 3, we summarize their performances on the four
largest datasets. In IC, we only include PMC [24] and EaSyIM [10]
since IMM and TIM+ crash due to running out of memory on
all four datasets. In WC, we omit the results of TIM+ since its
spread is identical to IMM with IMM being more than five times
faster. EaSyIM is included to highlight its low memory usage. In
LT, TIM+ is marginally faster than IMM while providing almost
identical spreads. Hence, IMM is omitted for LT. Consistent with
previous results, EaSyIM demonstrates a low memory footprint in
LiveJournal. However, it fails to finish in all of the other datasets.

6. MYTHS
In this section, we outline several results from our benchmarking

study that either contradict published results or have been assumed
to be correct without thorough empirical evaluation.

7We are currently working with the authors to resolve the errors in
the implementation, and once resolved the results of SG on large
datasets will be made available through our website

M1. CELF++ is the fastest IM technique in the MC estima-
tion paradigm: CELF++ [14] claims to be 35% faster than CELF.
However, our experiments reveal that on average there is negligi-
ble difference in the running times of the two techniques (Fig. 7).
Both CELF and CELF++ exploit submodularity of spread to op-
timize the iterative greedy selection of seed nodes. CELF utilizes
the property that the marginal gain of a node can only decrease
over iterations. Thus, if the marginal gain of a node n in a previous
iteration is less than the marginal gain of some node in the cur-
rent iteration, then n need not be updated. CELF++ adopts a more
aggressive approach by pre-empting the node that might provide
the highest marginal gain. Based on this pre-emption, it performs
some extra work with the hope that it will save cost in the future
iterations. Thus, the overall efficiency of CELF++ is dependent on
how well this pre-emption works. Our experiments show that on
average this pre-emption does not provide any significant benefit
on the overall running time above CELF. In Figs. 9a and 9b, we
run 12 independent runs of CELF and CELF++ with k = 50 on
the Nethept dataset under both LT and WC models and as can be
seen, no technique can be termed better than the other. On average,
CELF consumes 147.88 minutes (sd=14.74 minutes) compared to
150.39 minutes (sd=15.91 minutes) by CELF++ on the LT model,
while consuming 67.28 minutes (sd=4.70 minutes) when compared
to 65.82 minutes (sd=5.94 minutes) by CELF++ on the WC model.
We also include experiments comparing the average node-lookup
values of CELF with CELF++, since it is a more robust evaluation
metric. Please see Appendix C for the results on node-lookup and
the corresponding discussion.

M2. CELF (or CELF++) is the gold standard for quality:
Theoretically, the GREEDY algorithm proposed by Kempe et al.
[17] and its efficient versions CELF and CELF++ provide the best
spread (along with TIM+ and IMM). Consequently, various IM
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Figure 9: (a-b) Running time comparison of CELF with CELF++ on the Nethept dataset over 12 independent executions. (c-e)
Comparison of the spreads obtained by CELF at different numbers of MC simulations.

techniques [4–6,10,15,16,29] have claimed state-of-the-art perfor-
mance by showing comparable or better performance than CELF
and CELF++. An important factor that is frequently overlooked is
that the quality of CELF and CELF++ depend on the number of
MC simulations performed to compute the node providing high-
est marginal gain in each iteration. It has been proven that the
number of MC simulations must increase with increase in the num-
ber of seeds to preserve the theoretical guarantees on quality [27].
Figs. 9c-9e showcase this effect empirically. Notice that at 200
seeds, CELF achieves the spread of IMM only after 20,000 MC
simulations. At lower number of seeds though, 1,000 simulations
are enough. It must be mentioned though that anything beyond 10K
simulations make CELF non-scalable even on small networks. For
example, on Nethept, which is the smallest dataset in our study,
CELF consumes 80 hours to finish at 20,000 simulations.

M3. IMM [26] is always faster than TIM+ [27] The empir-
ical results in this study indicate TIM+ and IMM to have similar
running times. In fact, TIM+ is marginally faster than IMM in LT
model. This phenomenon is a direct consequence of TIM+ being
able to provide good spread at a higher ε than IMM, and this obser-
vation has so far remained hidden in IM research.

M4. Spread estimated by TIM+ [27] and IMM [26] decreases
with increase in ε: TIM+ and IMM compute their seeds based on
estimated spreads. These estimated spreads are often inflated due to
the procedure followed to compute them (read our note regarding
their implementation in Appendix A). More specifically, instead
of directly computing the spread through MC simulations, TIM+

and IMM extrapolate the spread of the seed nodes on the sampled
sub-network, over the entire network to compute the spread. Math-
ematically, let R be the nodes reachable from at least one of the
seed nodes on the sampled network, M be the number of sampled
nodes, and N be the number of nodes on the entire network. The
spread is approximated as R

M
× N .

The consequence of computing the spread through extrapolation
is shown in Figs. 10c-10e. As can be seen, the extrapolated spread
is significantly higher from the actual expected spread computed
through MC simulations. More critically, the extrapolated spread
increases with increase in ε, which is counter-intuitive. On the other
hand, the spread computed by MC simulations follows the theoret-
ical expectations. Two important questions arise at this juncture:
Why is the extrapolated spread always higher than the actual ex-
pected spread? Furthermore, why does the extrapolated spread
increase with ε when the opposite behavior is expected?

ε controls the number of sampled nodes, and the seed selection
is performed on the sub-network induced by this sampled nodes.
A perfect sample is the one where σsub({n}) = σ({n}) × M

N
for

all sampled nodes n, where σsub({n}), σ({n}) denote the spreads
of n on the sub-network and complete network respectively, and
M and N denote the number of sampled nodes and total nodes
in the entire network respectively. In reality, chances of generat-
ing such a sample is negligible. Thus, either we over-estimate the

spread of a node or under-estimate. Since, TIM+ and IMM select
the k nodes providing the highest combined spread in the sampled
sub-network, the chances of over-estimating their spread is much
higher than under-estimating. Thus, we see the behavior depicted
in Figs. 10c-10e. Furthermore, the smaller the sample size, the
more error prone is the extrapolated result. Consequently, for larger
ε, the extrapolated spread increases, which in reality is due to the
higher amount of error incurred from a small sample size.

As visible in Figs. 10c-10e, the error in IMM is much higher
than the error in TIM+. In fact, IMM provides comparable spread
to TIM+ only at ε ≤ 0.1. This indicates that the Martingales based
sampling approach is less stable than the sampling algorithm in
TIM+. An obvious question arises at this juncture: What is the
impact of a high ε on the quality in terms of expected spread? The
performance of IMM has been shown to be steady with ε in large
networks, such as Twitter (Fig. 3d (IC model) and 6d (LT model)
in [26]). In our experiments however, Figs. 10c- 10e indicate that
this behavior is not consistent across all datasets. Thus, operating
at a high ε may lead to inferior results in some datasets.

M5. SIMPATH [15] is faster than LDAG [6]: SIMPATH
was proposed as an improvement over LDAG from the scalability
perspective. However, as we identified in Sec. 5.3.1, this result does
not hold in the “uniform” LT model, where LDAG is significantly
faster. On YouTube and DBLP, SIMPATH did not finish even after
running for 2400 hours (Fig. 7k-l).

In the SIMPATH paper, the algorithms are evaluated only on the
LT-“parallel edges” diffusion model and not on LT-“uniform”. We
therefore evaluate these two techniques under the “parallel edges”
LT model as well. Furthermore, for the sake of repeatability, we
obtain the same DBLP dataset from the authors of SIMPATH (de-
noted as DBLP (Large)). This DBLP dataset is different and larger
than the DBLP dataset listed in Table 1. Figs. 10a-10b present the
results on two datasets under LT-“parallel edges”. We observe that
SIMPATH is faster only when the number of seeds is small. In the
SIMPATH paper, these two techniques are not evaluated beyond
100 seeds and thus this observation remained hidden. Table 4 lists
the time taken by the two techniques for 200 seeds. Overall, these
results indicate that LDAG not only scales better than SIMPATH
but is also more robust to the underlying diffusion model.

M6. WC is equivalent to IC: Several techniques have misused
the term IC. Specifically, they have shown good performance only
under the WC model, which is one specific instance of IC, and

Algorithm Nethept Nethept-P HepPH DBLP DBLP (large)-P
LDAG 0.37 min 0.32 min 1.5 min 5.5 min 26.4 min

SIMPATH 1.5 min 1.1 min 8.1 min DNF 34.6 min

Table 4: The times taken by LDAG and SIMPATH for 200 seeds
on four datasets under the LT model. For the columns titled
Nethept-P and DBLP (large)-P, we use the LT-parallel edges
model. For the remaining datasets we use LT-uniform. DNF in-
dicates that the algorithm did not finish even after 2400 hours.
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Figure 11: (a) Summarizing the spectrum of Influence Maximization (IM) techniques based on their strengths. (b) The decision tree
for choosing the most appropriate IM algorithm.

claimed to be the state-of-the-art for IC. In reality, they all fare
poorly on the generic IC model, either due to non-scalability [26,
27] or producing poor spread [7, 16].

M7. Convergence of IMRank [7]: As we have already dis-
cussed, we discovered the convergence criteria of IMRank is prob-
lematic. First, if the convergence criteria proposed in IMRank is
followed, then we observe that the spread decreases with increase
in the number of seeds. Fig. 10f presents the results. This behavior
stems from the fact that the algorithm would often not proceed be-
yond scoring round 1 (read our note regarding the implementation
of IMRank in Appendix B). Based on the authors’ suggestion, we
modified the algorithm to run till 10 scoring rounds regardless of
the number of seeds or diffusion model. However, even after this
modification, as we showed earlier in Fig. 5, the spread does not be-
have monotonically with the number of scoring rounds. Due to this
randomness, the performance of IMRank is unstable, particularly
when the number of seeds is larger than 50.

7. CONCLUDING INSIGHTS
To summarize, a good algorithm for IM stands on three pillars:

quality of spread, running time efficiency, and main memory foot-
print. In addition, it is desirable for the technique to be robust
across diffusion models, datasets, and parameters. We benchmark
the eleven most promising techniques across all of these features.
Fig. 11a summarizes the results. Notice that there is no technique
that stands strong on all three pillars. In other words, there is no
single state-of-the-art technique for IM.

Several techniques exist that stand on two pillars. Among these,
techniques that lie in the “ME” category (memory + efficiency)
do not provide a good solution since ensuring quality is of ut-
most importance. Consequently, in practical scenarios, the choice
of the best IM technique is between those that lie in the “QM”
and “QE” categories. Note that PMC is always either compara-

ble or better than StaticGreedy, hence the latter is omitted in the
following analysis. Towards that goal, Fig. 11b presents the de-
cision tree for choosing the best IM technique given the task and
resources in hand. In terms of quality, TIM+, IMM and PMC
provide the best spread. These three techniques also provide the
fastest performance under LT, WC and IC with uniform weights
respectively. Thus, if main memory budget is not a constraint,
the choice is between these three techniques. When main mem-
ory is scarce, EaSyIM, CELF, CELF++ and IRIE provide alterna-
tive solutions. Among these, EaSyIM easily out-performs the other
three techniques in memory footprint, while also generating rea-
sonable quality and efficiency. Overall, the choice is between four
techniques: IMM, TIM+, EaSyIM, and PMC. Here, we note that
the area of IM is an evolving field and a highly promising tech-
nique has been published in SIGMOD 2016 [23]. Unfortunately,
we could not include the technique in our study due to how re-
cently it is published. Nonetheless, our benchmarking study will
also evolve with the inclusion of more recent techniques, as and
when they get published, and results will be made available at
https://sigdata.github.io/infmax-benchmark. We hope the insights
obtained from this study will provide the directionality and clarity
required for a more streamlined advancement in IM research.
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APPENDIX
A Note on Implementations of TIM+ and IMM

The implementations of both TIM+ and IMM report a spread
that is based on extrapolation and not MC simulations. Since this
important information is not mentioned in the README files and
the only way to identify this missing detail is to study the code of
these two techniques, we want to highlight this aspect for the ben-
efit of the IM community. Note that although the README files
of both implementations claim it to be the exact same code used
to report the results in their respective papers, the authors of these
papers have assured us that they report the expected spreads (by
running MC simulations) in their paper, and not the extrapolated
spreads that their codes output.

B Note on Stopping Criteria of IMRank
The implementation of the IMRank framework provided to us

by the authors possessed a bug resulting from an incorrect initial-
ization of node ranks. This led to the early termination of scor-
ing rounds: IMRank stopped right in the first scoring round for
k > 100. Several engaging discussions before and after the ac-
ceptance of our work, followed by a rigorous analysis of the code
by the authors, led to the discovery of this minute error. We be-
lieve that this find could have an impact on the performance of IM-
Rank as portrayed in Fig. 10f. Since, the authors identified the
bug only a day prior to the camera-ready deadline, modifications
in the results of IMRank, if any, will be updated on our website:
sigdata.github.io/infmax-benchmark.

C Note on Average Node-Lookup Values for
CELF/CELF++

As stated in M1 (Sec: 6), the number of node-lookups provide
a more robust evaluation of the performance of CELF/CELF++.
More fundamentally, node-lookup value for each iteration corre-
sponds to the number of nodes for which the spread is estimated
using MC simulations, or simply the number of spread computa-
tions for each iteration [14]. To this end, measuring the average
number of node-lookups per iteration provides a execution environ-
ment independent way of comparing the performance of CELF++
with CELF. In Figs. 13a and 13b, we run 12 independent runs
of CELF and CELF++ with k = 50 on the Nethept dataset un-
der both LT and WC models, and measure the average number of
node-lookups per iteration. As can be seen, no technique can be
termed better than the other. On average, CELF requires 12.98
node-lookups (sd=0.81 lookups) compared to 12.06 node-lookups
(sd=1.01 lookups) by CELF++ on the LT model, while requiring
17.38 node-lookups (sd=0.87 lookups) when compared to 15.80
node-lookups (sd=0.92 lookups) by CELF++ on the WC model.
Although, average node-lookups of CELF++ tend to be slightly
lower when compared to that of CELF, their running times are still
quite close (M1 in Sec: 6), since the pruning strategy employed by
CELF++ is more rigorous and requires more time when compared
to that of CELF.
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Figure 12: This figure demonstrates how the mean and the standard deviation (error bar) of the expected spread at 200 seeds varies
as the number of MC simulations grows. We choose 10K MC simulations since at his point both the mean and standard deviation
stabilizes. The 200 seeds are chosen using IMM [26] on each of the shown datasets. Note that the underlying algorithm, which is
IMM in this experiment, does not affect the result. In other words, IMM is only used as a representative.
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Figure 13: Comparing average number of node-lookups for
CELF with CELF++ on the Nethept dataset over 12 indepen-
dent executions.

Algorithm Independent Cascade Linear Threshold
CELF [20] � �

CELF++ [14] � �
EaSyIM [10] � �
IMRank [7] �
IRIE [16] �
PMC [24] �

Static Greedy [8] �
TIM+ [27] � �
IMM [26] � �

SIMPATH [15] �
LDAG [6] �

Table 5: The diffusion models supported by the algorithms be-
ing benchmarked.
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Figure 14: Variation of the spread obtained across various values of the external parameter specific to the algorithm.
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Figure 15: Results of our experiments to identify the optimal parameter values for the parameters outlined in Table 2.
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Figure 16: Identifying the optimal parameter values for the parameters outlined in Table 2
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