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ABSTRACT
A geo-spatial object with non-deterministic boundaries and
compositions is commonly known as a fuzzy geo-spatial ob-
ject. The advancement of data capturing devices such as
sensors and satellite imaging technologies enable us to iden-
tify fuzzy geo-spatial objects from a large and complex image
of an area. The nearest neighbor (NN) query processing on
fuzzy objects, which finds the nearest fuzzy object to the
given query point, has been addressed recently. In this pa-
per, we envision a new set of applications that require finding
the nearest fuzzy geo-spatial object for a group of fuzzy geo-
spatial query objects. For example, when an oil spill occurs
at a sea, the primary concern of an emergency response plan-
ner is to find an environmentally sensitive area, e.g., port or
harbor, that will be affected the most by the oil spill. To
support such applications, in this paper, we propose a new
query type, called a fuzzy group nearest neighbor (FGNN)
query. Given a set of fuzzy geo-spatial data objects, and a
group of fuzzy geo-spatial query objects, an FGNN query
returns a fuzzy geo-spatial object that minimizes the ag-
gregate distance to the group. To solve FGNN queries, we
develop an efficient technique in this paper. Our extensive
experimental study reveals the efficacy and efficiency of our
proposed technique.

Categories and Subject Descriptors: H.2 [Database
Management]: Spatial Database

General Terms: Algorithms, Experimentation

Keywords: Fuzzy geo-spatial objects, geographical infor-
mation system, group nearest neighbor query.

1. INTRODUCTION
Recent growth in the availability of geo-spatial data due

to the advancement of sensors and satellite imaging tech-
nologies has introduced a new type of object with non-
deterministic boundaries and compositions. Figure 1 ex-
hibits a satellite image of islands in a coastal area. The
boundaries of these islands cannot be identified accurately.
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Figure 1: A set of oil spilled areas {q1, q2, q3} and a set of
unaffected areas {p1, p2, p3}, here, p3 is the unaffected area
that will get affected next by the group of oil spilled areas

Fuzziness lies in the composition of such objects, i.e., a point
may or may not belong to an object. Moreover, not all parts
of an object are equally important (e.g., kernel vs. bound-
ary). Fuzziness may also lie in the data collected from the
sensor readings as sensor readings are not always precise.
In addition, measurements from multiple sensors may vary
even if they are located close to each other. For example,
consider a scenario where we want to determine whether
an inhabited island in a coastal area is affected by a sud-
den oil spill at a sea. Imprecise readings of sensors of that
area give blurred information about different borders of is-
lands. Therefore, to represent fuzziness of these objects, we
assign different probabilities as membership values to differ-
ent points of an island, e.g., high probabilities are assigned to
the points on the kernel, and low probabilities are assigned
to the points on the boundary. These objects are known as
fuzzy geo-spatial objects.

Recently, query processing, in particular nearest neighbor
(NN) queries [3], on fuzzy objects has received attention due
to its wide range of applications in geo-spatial and medicine
domain. For a given query fuzzy object and a set of fuzzy
data objects, an NN query finds the data object that mini-
mizes the Euclidean distance from the query object.

We envision a new set of applications that require find-
ing the nearest fuzzy geo-spatial object with respect to a
group of fuzzy geo-spatial query objects. Let us consider
the following scenario. An oil spill occurs at a sea and an
emergency response planner tries to find an environmentally
sensitive area, e.g., a port or a harbor, from a set D of areas
that will be affected the most due to the combined impact of
a group Q of oil spilled areas. This problem can be modeled
as an instance of the group or aggregate nearest neighbor
problem [5], i.e., finding an area p from D that minimizes
the total distance, adist(Q, p) with respect to a group Q
of affected areas, i.e., oil spilled areas. Here, the aggregate



distance is the summation of distances to the data object
from the group of query objects. Besides, a response plan-
ner may also need to find an unaffected area that has the
highest chance to get affected by all the oil spilled areas at
the earliest time. In this case, we need to minimize the max-
imum distance from all the affected areas to an unaffected
area. Such queries can enhance the functionality of an oil
spill trajectory modeling tool [1].

Figure 1 exhibits an example - where the affected areas,
i.e., oil spilled areas {q1, q2, q3} are query objects and the
unaffected areas {p1, p2, p3} are the data objects. In this
example, p3 minimizes the total distance (i.e., SUM) with
respect to all the query objects, and thus p3 is the area that
will be affected most by the combined impact of all the oil
spilled areas.

Motivated by the above applications, we propose a new
query type called a fuzzy group nearest neighbor (FGNN)
query. Given a set of fuzzy geo-spatial data objects, a group
of fuzzy geo-spatial query objects, an FGNN query returns
a fuzzy geo-spatial object that minimizes the aggregate dis-
tance to the group. Besides, if a user is interested in finding
k nearest data objects for the group, then we term the query
as an FkGNN query.

A straightforward application of the existing group near-
est neighbor algorithm for point objects [5, 6] for answer-
ing an FGNN query requires considering every point in a
fuzzy geo-spatial object independently, where each fuzzy
geo-spatial object is represented as a large collection of points.
This will incur a higher computational and I/O overhead.
Besides, the existing group nearest neighbor method for ex-
tended objects [7] considers only the query objects as ex-
tended regions instead of the entire data set. Moreover, we
need to incorporate a user-specified probability threshold
for our envisioned FGNN queries. This is because since all
parts of a fuzzy geo-spatial object are not equally impor-
tant, a user may want to select a fraction of the object for
query processing by specifying a probability threshold. For
example, an emergency response planner may need to find
a region of a port or harbor that will be affected by specific
regions of oil spilled areas.

In this paper, we propose efficient techniques for the pro-
cessing of an FGNN query over fuzzy geo-spatial objects.
To support the query processing approach, we first approxi-
mate each fuzzy geo-spatial object using a bounding rectan-
gle based on a probability threshold defined by a user. Then
we compute the group nearest neighbor query with respect
to these rectangles to find a candidate answer set. Finally,
we refine the answers by computing the actual aggregate
distances of the candidate fuzzy geo-spatial objects.

In summary, the contributions of this paper are as follows.

• We formulate the problem of group nearest neighbor
query for fuzzy geo-spatial objects.

• We propose efficient approaches for processing an fuzzy
group nearest neighbor (FGNN) query, to determine
the nearest neighbor with respect to a set of query
objects for a specific probability threshold.

• We conduct an extensive experimental study to show
the effectiveness and efficiency of our approaches.

2. MODELS AND PROBLEM DEFINITIONS
In this section, we first present the preliminaries of mod-

eling fuzzy objects and then formulate the FGNN query.

Figure 2: A fuzzy object O

2.1 Modeling of Fuzzy Objects
A fuzzy geo-spatial object O is represented as a set of

points o along with a membership value δO(o), which indi-
cates the probability of o belonging to O [2, 3].

O = {(o, δO(o))|δO(o) > 0}

Since a fuzzy geo-spatial object is represented as a collection
of points with different probabilities, not all parts of the
object are equally important. Thus, we define the term α-
cut. Given a fuzzy geo-spatial object O and a probability
threshold α, the α-cut contains only those points that have
membership values greater than α. For example, the set
Oα = {oεO|δO(o) >= α} is the α-cut for a fuzzy object O.
Fig. 2 demonstrates a fuzzy object O with α-cuts at two
probabilities 0.3 and 0.5.

2.2 Problem Setup
When a group of query objects is involved in a query and

returns the object that minimizes the aggregate distance for
the group, the query is known as the group nearest neighbor
(GNN) query. In this paper, we focus on two aggregate
functions SUM and MAX as these address two key potential
applications in the geo-spatial domain.

Given a set of fuzzy geo-spatial objects, and a group of
fuzzy query objects, a fuzzy group nearest neighbor (FGNN)
query returns a fuzzy geo-spatial object that minimizes the
aggregate distance for that group. Besides, for an FGNN
query, we allow the user to select parts of the fuzzy object
instead of the entire object, specifying a probability thresh-
old. We formally define an FGNN query as follows.

Definition 2.1. Given a data set D of fuzzy geo-spatial
objects, a set of n fuzzy query objects Q = {q1, q2, .....qn},
a user specified probability threshold α ∈ [0, 1], an FGNN
query returns a fuzzy geo-spatial object O such that for any
O∗ ∈ D − {O}, adistα(O,Q) ≤ adistα(O∗, Q).

Here, adistα is the aggregate distance at a probability thresh-
old α. For a group of n fuzzy query objectsQ = {q1, q2, ...., qn}
and a fuzzy data object O from the data set D of fuzzy geo-
spatial objects, we define the aggregate distance at a user
specified probability threshold α as follows.

adistα(O,Q) = gni=1(distα(O, qi)) (1)

Here, g is an aggregate distance function and it can be SUM
or MAX. Besides, distα is the distance between two fuzzy
objects at a probability threshold α. For two fuzzy objects
X and Y , the distα is defined as follows.

distα(X,Y ) = min(x,y)∈Xα×Yα ||x− y|| (2)

Here, Xα and Yα are the α-cut of fuzzy objects X and Y
respectively. ||x− y|| is the Euclidean distance between two
points x and y, where x and y belongs to Xα and Yα re-
spectively. In general, a user may be interested in finding
k fuzzy data objects that have the k smallest aggregate dis-
tances from the group, which is known as fuzzy k group
nearest neighbor (FkGNN).



3. RELATED WORK
To capitalize the potential of enriched geo-spatial data in

GIS, recent research has focused on modeling and developing
efficient techniques that find answers for different queries
over fuzzy objects. Processing the nearest neighbor (NN)
query on fuzzy objects is studied in the literature [3, 4].

In [3], the authors have proposed solutions to solve k-NN
and range queries over fuzzy objects. For both types of
queries, the required probability threshold of a query can
be a fixed value or a range denoting a probability interval.
The first one is known as a single probability threshold based
query and the second one is known as a continuous probabil-
ity threshold based query. Here, the authors have provided
an efficient approach to compute the minimum bounding
rectangle (MBR) for each fuzzy object. In addition, to re-
duce the number of distance computation the authors have
adopted the idea of lazy probe introduced in [9]. We adopt
the MBR computation and the lazy probe method for the
processing of our envisioned group nearest neighbor (GNN)
query for fuzzy geo-spatial objects.

The GNN query was first proposed by Papadias et. al. [5,
6] for point objects, which returns data points that minimize
the aggregate distances (i.e., SUM, MAX, and MIN) with
respect to a set of query points. Papadias et. al. [6] have
proposed three different techniques: multiple query method
(MQM), single point method (SPM), and minimum bound-
ing method (MBM) to evaluate a GNN query with the as-
sumption that all the points are indexed using an R-tree.
MQM performs an incremental search (e.g., depth-first or
best-first) to find the nearest data points for each of the
query point and then compute the aggregate distance for
each of the retrieved data points. On the other hand, SPM
computes the centroid of the query objects and incremen-
tally retrieves the nearest data points in order of their min-
imum distances from the centroid. Finally, MBM incremen-
tally retrieves the nearest objects in order of their minimum
aggregate distance from all the query points. Experimental
results reveal the superiority of MBM over SPM and MQM.

A flexible version of the GNN query is proposed by the
authors in [11]. Their proposed flexible aggregate similarity
search FANN query finds the most similar data objects with
respect to a subgroup of the query objects in both low and
high dimensions.

The studies of [6, 11] consider the locations of the objects
as static. However, Elmongui et.al. [10] address the GNN
problem for moving objects in spatio-temporal data stream.
Jaijia et. al. [12] study the problem of GNN query on the
uncertain database where the location of the data object
is uncertain. They propose a probabilistic GNN (PGNN)
query that finds a nearest uncertain data object that has the
probability to be in the GNN results exceeds a user-specified
threshold. For our envisioned FGNN query, a fuzzy object is
represented as a collection of points with probabilities. On
the other hand, an uncertain object is represented as a single
point that may be located at any point within a region with
arbitrary probability distributions.

All the above studies have considered point data for GNN
queries. Hashem et.al. [7] have proposed an efficient al-
gorithm of GNN queries for extended objects that preserve
location privacy of users. They have considered only the
query objects as regions.

All the previous approaches for GNN cannot directly be
applied to process an FGNN query. This paper is the first

study to propose efficient techniques for processing an GNN
query over fuzzy geo-spatial objects.

4. PROCESSING FGNN QUERIES
We assume that the data objects are indexed using an

R∗-tree in the database. In the leaf node of an R∗-tree [8],
we store the MBR of the α-cut at a probability threshold 1
along with a pointer referring to the actual location of the
fuzzy object on the disk. We use the algorithm presented in
[3] for the computation of MBRs at different user specified
probability thresholds. Due to space limitation, we omit the
details about the computation. To improve the performance
of an FGNN query, we utilize the upper and lower bounds
of the actual aggregate distance (Equation 1). For a set of n
query objects, Q = {q1, q2, ...., qn}, a probability threshold
α, and a fuzzy geo-spatial object O, the upper and lower
bounds of the aggregate distance are defined as follows.

LB adistα(O,Q) = gni=1(MinDist(MBRO(α),MBRqi (α)))
(3)

UB adistα(O,Q) = gni=1(MaxDist(MBRO(α),MBRqi (α)))
(4)

Here, g could be SUM or MAX.

4.1 Basic approach
In this subsection, we illustrate our first algorithm FGNN-

Basic for processing an FGNN query. Our algorithm fol-
lows the best first search technique to access the data ob-
jects incrementally and to find the results for an FkGNN
query. We maintain a priority queue Wq to store the inter-
mediate or leaf nodes. We start our search from the root
node and insert it in Wq along with its lower and upper
bounds of the aggregate distances, LB adistα(Root,Q) and
UB adistα(Root,Q) respectively. The elements of Wq are
stored in order of their lower bound of aggregate distance
with respect to query objects.

In each iteration, we encounter any of the three different
types of elements (i.e., an intermediate node, a leaf node, or
an object) from the priority queue Wq and we treat each of
them differently.

Whenever we encounter an intermediate node, we do not
immediately insert its child nodes into the priority queue.
Rather, for each child node, we check if the node contains
the candidate answers for an FGNN query with respect to
query objects. Hence, we adopt two layer pruning conditions
of [7] to prune the unqualified nodes. For this purpose, we
maintain an array distmax of size k, to store at most k
maximum distances found so far, which is initialized to ∞.

Condition 1. An R∗-tree node P can be pruned if it sat-
isfies, n ×MinDist(Mα,MBRP (α)) > distmax[k] for the
aggregate function g = SUM, and if it satisfies
MinDist(Mα,MBRP (α)) > distmax[k] for the aggregate
function g = MAX.

Here, n is the number of query objects and Mα is the min-
imum bounding box that encloses the MBRs of the query
objects. The minimum distance between the MBR of P
and the MBR of the group of query objects at a probability
threshold α is denoted by MinDist(Mα,MBRP (α)). Fig.
3a illustrates this condition using an example for an FkGNN
query with respect to a group of query objects Q = {q1, q2}
with k=2 and the aggregate function g = MAX at a proba-
bility threshold α. At an intermediate state of the traversal,
let us consider node V and node S are dequeued from the
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Figure 3: Pruning conditions

priority queue. For example, the lower and upper bounds of
the aggregate distances of these nodes are {V, 30.2, 60.45},
{S, 45.5, 65.34}, and hence at this stage distmax[1] = 60.45
and distmax[2] = 65.34. Next, we dequeue another inter-
mediate node P from the priority queue, we first compute
the minimum distance between the MBR of node P and the
MBR that encloses the group of query objects. Suppose this
distance is 71.32. We then compare this minimum distance
with the 2nd maximum distance found so far, which is stored
in distmax[2]. As the minimum distance is larger than the
maximum distance found so far, then it is obvious that the
node P cannot be in the top k = 2 solution. Therefore, the
node P can be pruned safely.

However, for the first pruning rule, we consider the MBR
that encloses the given group of query objects. Though this
stage involves less distance computation, it may require vis-
iting extra nodes that cannot contain qualifying objects for
an FGNN query. Therefore, we introduce a second prun-
ing condition, which presents a tighter bound and avoids
retrieving unnecessary objects.

Condition 2. An R∗-tree node P can be pruned if it sat-
isfies, LB adistα(P,Q) > distmax[k].

Here, LB adistα(P,Q) is the lower bound of the aggregate
distance computed using Equation (3). Fig. 3b illustrates
this pruning condition with an example. Without loss of
generality, we reconsider our previous example for explaining
the pruning Condition 2. At an intermediate state, when a
node P is dequeued from the priority queue, we try to filter
it using the first pruning rule. If P is not pruned by the first
pruning condition, then we compute the lower bound of the
aggregate distance between P andQ (i.e., LB adistα(P,Q) )
using Equation (3). For example, LB adistα(P,Q) = 85.75.
We compare this distance with distmax[2] which is 65.34.
The lower bound of aggregate distance is larger than the
maximum distance found so far, we conclude that the node
P cannot be in the top 2 solution.

Next, if we encounter a leaf node, then we retrieve the
corresponding object from the disk and reinsert it into the
priority queue. Again, if we encounter an object, then we
insert this object in the result set. Finally, our algorithm for
FkGNN query terminates when the priority queue is empty
or the k nearest objects are found.

Following theorem proves the correctness of our algorithm.
Theorem 1. If k is the number of required data objects

for an FkGNN query with respect to a set Q = {q1, q2, .., qn}
of n query objects, then the result set of our proposed ap-
proach includes all the data objects that have the ith (1 ≤
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Figure 4: Delaying the probing of leaf nodes

i ≤ k) minimum value for the aggregate function g (SUM or
MAX) with respect to Q.
Proof. (By contradiction) Assume that O∗ is a data object
that does not belong to the result set, but has the ith min-
imum value (1 ≤ i ≤ k) for the aggregate function g (SUM
or MAX) with respect to Q. O∗ does not belong to the re-
sult set because it has been pruned before inserting into the
priority queue. However, O∗ is only pruned if it satisfies the
pruning Condition 1 or Condition 2, which again indicates
that the lower bound of the aggregate distance of O∗ with
respect to Q (i.e., LB adistα(O∗, Q)) is greater than the
maximum aggregate distance found so far (i.e., distmax[k]).
It contradicts with our assumption that the object O∗ is one
of the k FGNNs with respect to Q.

4.2 Performance improvement using delay probe
Our proposed basic algorithm for an FkGNN query re-

trieves objects from the disk and computes the actual aggre-
gate distance (Equation (1)) for all these objects. However,
the computation of the aggregate distance is very time con-
suming, which results in a high query processing cost. To
avoid such high computational overhead, we deploy the idea
of delay probe presented by Kriegel et.al. [9], which helps us
to determine a true hit without retrieving the actual object
from the disk and reduces the I/O overhead significantly.
We name this new algorithm as FGNN-DP. The basic idea
is to include some objects in the result set based on the up-
per bound of aggregate distance, which is relatively easier
to compute than the actual aggregate distance. Hence, we
require another temporary priority queue T to store at most
k leaf nodes/objects.

The idea of delay probing is illustrated in Fig. 4 with an
example. Suppose an FkGNN query with k = 2 is issued
for a group of n = 2 query objects Q = {q1, q2}, aggregate
function g = MAX at a probability threshold α. At an inter-
mediate stage of the search, the priority queue Wq contains
the leaf nodes V, S, P and the temporary queue T is empty.
At first, the leaf node V is dequeued from the queue. Since
it has the smallest LB adistα(V,Q) it is reinserted into T .
The next element is dequeued from the queue Wq is S. Here,
the lower bound of aggregate distance of S is less than the
upper bound of aggregate distance of V , hence S is inserted
into the temporary queue T as well. Finally, the leaf node
P is dequeued from the queue Wq and found that the lower
bound of aggregate distance of P is greater than the upper
bound of aggregate distance of an element V in temporary
queue T . Hence, V is better than any other objects in the
priority queue Wq. V is removed from the temporary queue
T and inserted directly to the result set.



Table 1: Experiment setup
Parameter Range Default

Data set size 5K, 10K, 20K, 50K 20K
k 4, 8, 16, 32 20

Group size 4, 16, 32, 64 32
Probability threshold 0.3, 0.5, 0.7, 0.9 0.6

Point distribution Uniform, Zipfian Uniform
Area of query space 10%, 20%, 30%, 40% 30%

If we encounter a leaf node from the temporary queue T ,
only then we retrieve the corresponding object from the hard
disk and compute the actual aggregate distance and finally
reinsert the object again in the priority queue Wq. Again, if
we encounter an object from the temporary priority queue
T then we insert the object into the result set.

5. EXPERIMENTAL EVALUATION
In this section, we present an extensive experimental study

to evaluate the performance of our proposed algorithm. We
generate synthetic data sets to resemble the scenario of our
oil spill modeling applications where an emergency rescue
planner needs to determine an environmentally sensitive area
that would be affected most by the impact of a group of
oil spilled areas during an oil spill at a sea. In this sce-
nario, we need to model each affected/unaffected area as a
fuzzy geo-spatial object. We consider each object as a circle
containing n points using both uniform and Zipfian distri-
butions. We then generate N such objects and distribute
them into 100 × 100 square units. The different probabili-
ties of the points are generated by the Gaussian distribution
with mean at the center and standard deviation of 0.5. The
values are normalized across 0 to 1. We evaluate the num-
ber of object access from the disk and the running time to
measure the efficiency of our algorithms under different set-
tings of parameters (Table 1). For each set of experiments,
we evaluate 30 randomly generated groups of query objects
and present the average experimental results. We imple-
ment all the algorithms in C++ and run experiments on a
desktop with Core i5 2.40 GHz CPU and 2 GB memory.

5.1 Effect of varying group size
We study the impact of group size on the performance of

FGNN query by varying the group size using 4, 16, 32, and
64 and measuring the required running time along with the
number of object access from the disk. Fig. 5 depicts the
number of objects accessed and the running time of FGNN
query for MAX (a–b) and SUM (c–d). Fig. 5a and 5c depict
that all the algorithms need to access more objects from
the disk with an increase in the group size. For example,
for an increase of the group size from 4 to 16, the number
of object access increases approximately 1.6 and 1.7 times,
respectively, for aggregate function MAX and SUM of all
the algorithms. The reason behind such behavior: we expect
that an increase in the group size increases the kth maximum
aggregate distance found so far in our array distmax and
hence there is more chance that less number of nodes or
data objects will be pruned. Since more objects are accessed,
and more aggregate distances are computed we find that the
running time also increases for larger group size (Fig. 5b,
5d). The superiority of our proposed FGNN-DP is evident
for larger group size.

5.2 Effect of varying k

In this set of experiments, we evaluate the impact of k
on the performance of FGNN algorithms by varying k from
4 to 32. Fig.6 depicts that the number of object access
and the running time increase as k increases for both MAX
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Figure 5: Effect of varying group size

 0

 200

 400

 600

 4  8  16  32

#
 o

f 
o
b
je

ct
 a

cc
e
ss

k

FGNN-Basic
FGNN-DP

(a) FGNN Query (MAX)

 0

 100

 200

 300

 400

 4  8  16  32

R
u
n
n
in

g
 t
im

e
 (

se
c)

k

FGNN-Basic
FGNN-DP

(b) FGNN Query (MAX)

 0

 200

 400

 600

 800

 4  8  16  32

#
 o

f 
o
b
je

ct
 a

cc
e
ss

k

FGNN-Basic
FGNN-DP

(c) FGNN Query (SUM)

 0

 100

 200

 300

 400

 4  8  16  32

R
u
n
n
in

g
 t
im

e
 (

se
c)

k

FGNN-Basic
FGNN-DP

(d) FGNN Query (SUM)

Figure 6: Effect of varying k

(Fig. 6a, 6b) and SUM (Fig. 6c, 6d). The reason behind
such increase: the kth maximum aggregate distance stored
in the array distmax, which we used for pruning the R∗-
tree nodes and data objects increases with the increase in
k. Therefore, less number of nodes and data objects will be
pruned for larger value of k. We need to process more nodes
or data objects. It requires more computation of aggregate
distances that eventually increases the running time. Exper-
imental results reveal that FGNN-DP is approximately 1.5
times faster and access on average 16.25 times less objects
in comparison to FGNN-Basic algorithm for MAX (Fig. 6a,
6b). For the other aggregate function SUM (Fig. 6c, 6d),
we see a similar trend as MAX.

5.3 Effect of varying data set size
Fig. 7 depicts the impact of data set size on the per-

formance of FGNN query for fuzzy objects by varying the
number of objects using 5K, 10K, 20K, and 50K for MAX
(a–b). Here, we see that the performance of FGNN query
degrades as the data set grows. When the number of ob-
jects grows, the density of whole data space becomes higher,
hence it makes more difficult to prune R∗-tree nodes or data
objects. Therefore, FGNN query accesses more objects with
an increase in the data set size (Fig. 7a). The running time
of all the algorithms also increases as the number of aggre-
gate distance computation increases with the growth of data
set (Fig. 7b). For both aggregate functions, FGNN-DP out-
performs the basic algorithm. Due to space limitation, we
omit the graphs for SUM as the results are similar to MAX.
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Figure 7: Effect of varying data set size for MAX
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Figure 8: Effect of varying the query space

5.4 Effect of varying the query space
In this set of experiments, we vary the query area, i.e.,

the area to which the group of query objects is confined
to as 10%, 20%, 30%, and 40% of the entire data space.
Fig. 8 shows the required running time and object access
for our proposed methods for aggregate function MAX (a–
b). Here, we see that the processing time and object access
increase with an increase of the query space for all the pro-
posed methods. The reason behind such behavior: with the
increase in the query space, the kth maximum aggregate dis-
tance of the array distmax increases. Therefore, less number
of R∗-tree nodes or data objects will be pruned, which result
in access of more objects and aggregate distance computa-
tion and an increase in the processing time. Experimental
results reveal the superiority of FGNN-DP over the basic
approach, which is more obvious for a larger query space.
Since the graphs for SUM exhibit similar results as MAX
we omit them.

5.5 Effect of varying probability threshold
We study the impact of user specified probability thresh-

old on the performance of FGNN query by varying the prob-
ability threshold using 0.3, 0.5, 0.7, and 0.9 for MAX. Fig.
9 depicts that the number of object access and running time
increase with an increase of the probability threshold. Here,
we see that FGNN-DP is 1.5–2.5 times faster and accesses 6–
9 times less objects than FGNN-Basic for aggregate function
MAX. Again, we omit the graphs for SUM, as the results
exhibit similar trends.

5.6 Effect of varying point distribution
The impact of point distribution of a fuzzy object in the

performance of FGNN query is illustrated for both uniform
(U) and Zipfian (Z) point distribution for aggregate function
MAX (Fig. 10). For uniform distribution the points have
equal probability to locate anywhere within an object. On
the other hand, in the Zipfian distribution more points are
located around the kernel. Gaussian distribution of proba-
bilities of points ensures that points around the kernel have
a high probability threshold. Therefore, for computing the
aggregate distance in Zipfian distribution we need to con-
sider more points than the uniform distribution. Hence, the
number of object access and the running time are high for
Zipfian distribution (Fig. 10a, and 10b) compared to uni-
form distribution. We omit the graphs for SUM, as the
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Figure 9: Effect of varying probability threshold for MAX
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Figure 10: Effect of varying point distribution for MAX

results are similar to MAX.

6. CONCLUSION
In this paper, we have introduced a fuzzy group near-

est neighbor (FGNN) query for fuzzy geo-spatial objects.
An FGNN query has potential applications in geographi-
cal information systems. To efficiently process an FGNN
query we have proposed two algorithms: FGNN-Basic and
FGNN-DP. An extensive experimental study depicts the ef-
ficacy and efficiency of our algorithms. Experimental re-
sults reveal that for aggregate function MAX, FGNN-DP
is approximately 2.64 times faster and accessed 3.8 times
less objects compared to FGNN-Basic algorithm. On the
other hand for aggregate function SUM, FGNN-DP is ap-
proximately 2.52 faster and accessed 4.14 times less objects
than FGNN-Basic. In future, we plan to extend our work
for other advanced queries such as reverse nearest neighbor
queries, and skyline queries for fuzzy geo-spatial objects.
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