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ABSTRACT
This study considers approximation techniques for frequent
itemset mining from data streams (FIM-DS) under resource
constraints. In FIM-DS, a challenging problem is handling
a huge combinatorial number of entries (i.e., itemsets) to
be generated from each streaming transaction and stored in
memory. Various types of approximation methods have been
proposed for FIM-DS. However, these methods require al-
most O(2L) space for the maximal length L of transactions.
If some transaction contains sudden and intensive bursty
events for a short span, they cannot work since memory con-
sumption exponentially increases as L becomes larger. Thus,
we present resource-oriented approximation algorithms that
fix an upper bound for memory consumption to tolerate
bursty transactions. The proposed algorithm requires only
O(k) space for a resource-specified constant k and processes
every transaction in O(kL) time. Consequently, the pro-
posed algorithm can treat any transaction without memory
overflow nor fatal response delay, while the output can be
guaranteed to be no false negative under some conditions.
Moreover, any (even if false negative) output is bounded
within the approximation error which is dynamically deter-
mined in a resource-oriented manner. From an empirical
viewpoint, it is necessary to maintain the error as low as
possible. We tackle this problem by dynamically reducing
the original stream. Through experimental results, we show
that the resource-oriented approach can break the space lim-
itation of previously proposed FIM-DS methods.

Categories and Subject Descriptors
H.2 [Database Management]: Database Applications—
Data Mining
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1. INTRODUCTION
A data stream is an unbounded sequence of data arriv-

ing at high speed [15]. Frequent itemset mining from data
streams (FIM-DS) has been extensively studied with a di-
versity of applications, such as monitoring surveillance sys-
tems, communication networks, and internet traffic as well
as mining patterns from on-line transactions in the financial
market, retail industry, and electric power grids [2, 4, 6, 7,
13]. FIM-DS must treat the potentially infinite volumes of
transactions that are infeasible to store in memory and scan
multiple times. Therefore, research interests have been fo-
cused on one-scan approximation algorithms [8, 9, 10, 12, 14,
15]. These approximation algorithms are divided into two
types according to the management of memory consump-
tion. One type of algorithm deletes “unpromising” item-
sets that have lower frequency among the current memory,
which is triggered by receiving a new transaction. The Lossy
Counting (LC) algorithm [12] and the Frequent algorithm
[8, 9] are examples of the deletion approach. The other
is based on a random sampling approach that stochastically
selects transactions to be processed, such as the Sticky Sam-
pling algorithm [12] and the Chernoff-based algorithm [15].
Both approaches provide some guarantee that the resulting
itemsets have frequencies with errors bounded by a given
parameter; thus, they can return no false negatives under
some conditions.

However, these parameter-oriented approaches have some
crucial drawbacks. The sampling approach must make some
statistical assumptions relative to data distribution such as
independence. In contrast, the deletion approach does not
need to make such an assumption; however it must require
O(2L) space for the maximal length L of transactions in
worst case. This may result in a serious “out of memory”
crash if the memory consumption goes beyond a system’s
boundary. Modern FIM-DS methods [8, 10, 12] use compact
data structures, such as a prefix tree using a hash table, to
manage itemsets in memory efficiently. On the other hand,
real data streams often meet sudden and intensive bursty
events that are significantly larger than what the system
assumes, such as meteorological data associated with large-
scale disasters (e.g., earthquakes and hurricanes), web traffic
data caused by DOS attacks and web text data on twitter or
SNS under fire. These extremely large bursty data streams
can cause crucial memory overflow in previously proposed
approaches.
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Thus, we address the problems in FIM-DS by introducing
the following resource constraints.

• Boundary of memory consumption:
We fix the upper bound of the number of entries in
order to prevent memory overflow in case bursty events
occur, which are beyond the scope of user assumption.

• Boundary of memory access times:
We fix the maximal number of candidate sets from
each transaction, which are newly stored in memory.
This can prohibit a fatal delay of response time.

The first constraint may be considered similar to top-k fre-
quent pattern mining [3, 14, 15]. Note that the parameter k
is related to the number of solutions to be outputted. Thus,
k does not indicate the memory size to be consumed. To the
best of our knowledge, the first constraint has not yet been
introduced in online (top-k) itemset mining, though previ-
ous work has examined online top-k item mining [14] and
offline top-k itemset mining [3].

In this study, we examine online approximation algorithms
for FIM-DS under such constraints. We first propose the
LC-SS algorithm that is achieved by integrating LC and the
Space Saving (SS) algorithms. The original SS algorithm
was proposed for online top-k item mining [14]. It bounds
the memory consumption in such a way that if the memory
is full, the most infrequent item is replaced with the newly
arrived item. Using the concept of replacement, the LC-SS
algorithm ensures that the memory consumption is bounded
in O(k) space for some constant k. Note that k denotes the
maximal number of entries to be stored in memory. Then,
k can be fixed as a resource-specified value.

Metwally [14] shows that the SS algorithm requires at least
min(|I|, 1

2ϵ
) space for an error parameter ϵ, where I is the set

of items in a stream. In this paper, we show that parameter-

oriented methods require at least min(|Is|, Σ(2|Ti|−1)
ϵN

) space,
where Is is the set of itemsets in a stream consisting of N
transactions and Ti is the transaction at time i (1 ≤ i ≤ N).
Due to this exponential lower bound of space requirement,
it is difficult to prepare appropriate memory for ensuring a
fixed parameter ϵ. Alternatively, the LC-SS uses the tech-
nique of LC algorithm that monitors the error count of cur-
rently stored itemsets to approximate their supports. Thus,
the LC-SS algorithm achieves no false-negative behavior for
finding frequent itemsets provided the final error count is
less than the minimal support. There is another work [10]
on bursty data streams, which deals with the ratio explo-
sion problem caused by intensively arriving transactions for
a short span. Unlike this problem, we tackle the combi-
natorial explosion problem caused by rarely arriving bursty
transactions that contain a large number of items.

We furthermore propose the Skip LC-SS algorithm. The
key feature of this algorithm is to skip over transactions by
terminating the current process when the number of candi-
date subsets to be newly stored exceeds some upper bound-
ary. Using this feature, the Skip LC-SS algorithm can derive
outputs in O(kLN) time, whereas their frequencies are ap-
proximated within the same error count as the original one.
From an empirical viewpoint, this error count must be kept
as low as possible. We address this problem using the so-
called stream reduction technique. Most items in a bursty
stream occur only a few times. Infrequent items can be
identified by some online item mining methods. Thus, they

should be reduced from the original stream before perform-
ing the Skip LC-SS algorithm. The concept of stream reduc-
tion has been already introduced in some FIM-DS methods
[12, 8]. These methods require O(n) space for n item types,
since they exactly count the frequency of each item. In con-
trast, we apply an approximation algorithm for finding fre-
quent items, and integrate it with the Skip LC-SS algorithm.

We have empirically investigated how the proposed algo-
rithms work in real data streams with bursty events, such
as time series data for 1982-2013 earthquake occurrences in
Japan. The experimental results show that the Skip LC-
SS algorithm can tolerate any bursty transaction without
memory overflow or response time fatal delay. The results
also show that the stream reduction can inhibit error gain
by up to 90%, and can speed up the Skip LC-SS process by
a factor of approximately 30.

The remainder of this paper is organized as follows. Sec-
tion 2 is a preliminary and briefly introduces previously pro-
posed algorithms. We reveal the exponential lower bound
of space requirement in Section 3, and propose the LC-SS
and Skip LC-SS algorithms in Section 4 and 5, respectively.
Next, we embed the stream reduction into the Skip LC-SS
algorithm in Section 6. We then conclude in Section 7.

2. PRELIMINARY AND BACKGROUND
Here, we briefly review the notations and terminology

used in this paper. Let I = {x1, x2, . . . , xu} be a set of
items. An itemset is a non-empty subset of I. Transac-
tional data stream S is a sequence of incoming transactions
〈T1, T2, . . . , TN 〉, where a transaction Ti is an itemset arriv-
ing at time i and N is an unknown large number of transac-
tions. Mining objects for S are configured in accordance with
various mining tasks: in the context of itemset (resp. item)
mining, they correspond to itemsets (resp. items). Note
that mo(Ti) is the set of mining objects generated from a
transaction Ti. For a transactional data stream S, we de-
note by ave and nmo the average size of mo(Ti) and the
cardinarity of the set of mining objects in S, respectively.
In this study, mo(Ti) consists of 2|Ti| − 1 itemsets. Accord-

ingly, ave = Σ(2|Ti|−1)
N

and nmo = |(2T1 ∪ · · · ∪ 2TN ) − {∅}|.
Let α be a mining object. The support of α, denoted by
sup(α), is the number of transactions in S that contain α.
Given a minimal support threshold σ such that σ ∈ (0, 1), α
is frequent if sup(α) ≥ σN . The task of FIM-DS is finding
all frequent objects (itemsets) from S.

Modern FIM-DS algorithms maintain the counter value of
each mining object in memory, called the frequency count.
We call the entity consisting of a mining object α and its
frequency count c(α) in memory an entry. An entry table
D is a table storing entries in memory. |D| denotes the
number of entries in D. A minimal entry is an entry α whose
frequency count c(α) is minimal in D. Given a parameter ϵ
(0 < ϵ ≤ σ), an algorithm is ϵ-accurate if for every frequent
object α, it holds that c(α) − ϵN ≤ sup(α) ≤ c(α), and is
ϵ-honest if c(α) ≤ ϵN holds for every α that is not registered
in D. We call ϵ an error parameter.

2.1 Lossy Counting algorithm
The LC algorithm [12] is a well-known one-scan approx-

imation algorithm. Given a minimal support σ, an error
parameter ϵ (0 < ϵ ≤ σ), and a data stream with N trans-
actions, the LC algorithm outputs every itemset whose sup-

206



port is greater than or equal to (σ − ϵ)N . Thus, the LC
algorithm is no false negative. In this algorithm, the en-
try for an itemset α is represented by the tuple form of
〈α, f(α), ∆(t)〉, where f(α) is the number of occurrences of
α after the time t when α was lastly stored and ∆(t) is the
error count at time t. We often denote by ∆α the error count
∆(t) of α. The LC algorithm gives the frequency count c(α)
as f(α)+∆α. For each time t, the LC algorithm deletes ev-
ery infrequent itemset α such that c(α) ≤ ϵ× t (ϵ-deletion).
The next error count ∆(t+1) is updated with ϵ×t. Thus, the
error count is greater than or equal to the frequency count
of any itemset that has been previously deleted. Using the
notion of the error count, the LC algorithm approximates
sup(α) such that f(α) ≤ sup(α) ≤ f(α) + ϵN .

The challenging problem in itemset mining lies in the com-
binatorial explosion of memory consumption. In principle,
L type of items can generate 2L itemsets to be stored or up-
dated in the entry table. The LC algorithm controls mem-
ory consumption by ϵ-deletion. However, the LC algorithm
must generate (and check) every transaction subset at least
once. This may cause memory overflow, especially in data
streams with extensive bursty transactions that contain a lot
of newly appearing items. In this study, we consider approx-
imation algorithms that can handle combinatorial explosion
of memory consumption.

2.2 Space-Saving algorithm
A key idea shown in this paper lies in the SS algorithm,

which was proposed for item stream mining [14]. In this
algorithm, the maximal table size of entries is fixed as some
constant. Given a constant k and an entry table D, the SS
algorithm registers a newly arriving item whenever |D| < k.
However, if the entry table is full (i.e., |D| = k), the SS
algorithm replaces the minimal entry with the new entry.
Note that an entry is represented by the form of 〈α, c(α)〉,
where c(α) is the frequency count of an item α. Given S =
〈e1, e2, . . . , eN 〉 where ei is an item, the SS algorithm works
as follows, for each ei, do

1. if 〈ei, c(ei)〉 ∈ D, increment c(ei) by one,

2. else if |D| < k, store the new entry 〈ei, 1〉 in D,

3. else, replace the minimal entry 〈m, c(m)〉 with the new
entry 〈ei, 1 + c(m)〉.

Now, let ϵ be an error parameter, similar to the LC algo-
rithm. If k ≥ 1/ϵ holds, then the SS algorithm can output
every item e for which sup(e) ≥ ϵN . Therefore, given a min-
imal support σ (0 < ϵ < σ), every frequent item e for which
sup(e) ≥ σN can also be the output (no false-negative) and
sup(e) ≤ c(e) ≤ sup(e)+ϵN holds. Hence, the SS algorithm
requires at least O(1/ϵ) space to be ϵ-accurate.

Example 1. Let the stream S be 〈a, b, a, c, b, b〉, the mini-
mal support σ be 0.5, and the error parameter ϵ be 0.5. We
fix constant k as 2 (i.e., 1/ϵ). Figure 1 shows that two items
a and b are stored at the end of time i = 3. At time i = 4,
a new item c arrives; however, the entry table is full. Next,
the minimal entry 〈b, 1〉, whose frequency count is minimal,
is replaced with 〈c, 2〉. Finally, c is replaced with b once
again at time i = 5. Thus, we obtain the frequent item b.

There are several differences between the LC and SS al-
gorithms. The LC (resp. SS) algorithm uses the ϵ-deletion
(resp. replacement) operation to maintain the entry table.
Unlike ϵ-deletion scanning the whole table, the replacement

e c(e)
a 1

i = 1
e c(e)
a 1
b 1

i = 2
e c(e)
a 2
b 1

i = 3
e c(e)
a 2
c 2

i = 4
e c(e)
a 2
b 4

i = 6

replacement replacement

e c(e)
a 2
b 3

i = 5

Figure 1: Updating the table during the stream

operation is performed only once for a minimal entry. These
two algorithms approximate the support of a mining object
α with the frequency count in their own ways. Unlike the
SS algorithm, the LC algorithm distinguishes the error part
(∆α) from the exact part (fα). Note that monitoring ∆α

enables to check the accuracy of the frequency count on de-
mand, which will be used for ensuring the approximation
error in our proposed algorithms.

2.3 Related works
There has been previous work on top-k itemset mining us-

ing parameter-oriented algorithms [15]; however, they can-
not fix memory consumption. Modern parameter-oriented
methods [8, 10, 12] efficiently manage the entry table us-
ing their own data structures with prefix or suffix trees in
the apriori manner. It is absolutely imperative for practi-
cal applications to use these efficient techniques. However,
we cannot break the limitation of parameter-oriented ap-
proaches only with these techniques, as shown in Theorem 1
later. We may consider that this is caused only in the worst
case and can fix relevant ϵ and k using prior knowledge on
data streams to be processed, such as the occurrence dis-
tribution of items, the maximal length of transactions or
frequent itemsets. However, real data streams often meet
bursty transactions whose length is significantly larger than
what the system assumes, such as meteorological data. In
Japan, earthquake data has attracted significant attention.
Figure 2 shows the time series transaction data for 1981-

Figure 2: Earthquake occurrences in Japan

2013 earthquakes that have occurred in Japan (16768 trans-
actions). In Fig. 2, the x and y axes represent the ID of each
transaction and the number of items contained in the trans-
action, respectively. Fig. 2 shows that there are bursty trans-
actions that correspond to the 2011 East Japan earthquake.
We should emphasize that in real data streams, such “black
swan” transactions whose scale is beyond the assumption,
such as those evidences from the East Japan earthquake,
may arrive at next time. Once it occurs, it may probably
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cause parameter-oriented methods serious damage due to
intensive memory consumption.

Another study has proposed a method for treating bursty
transactions [11], in which the memory comsumption and
the processing speed are maintained by dynamically regu-
lating the error parameter ϵ. Their work however focuses
on another type of problem in bursty data stream, i.e., the
ratio explosion problem of arriving transactions per a unit
time. In contrast, this study addresses the combinatorial
explosion problem caused by the length of each transaction.

3. PARAMETER-ORIENTED V.S. RESOURCE-
ORIENTED

We refer to methods that approximate the output with
error as parameter-oriented approaches. Such approaches
guarantee a user-specified parameter constraint. One draw-
back of this approach is the difficulty in setting proper pa-
rameters because users cannot predetermine what values
are relevant for their problems. In this paper, we propose
resource-oriented approaches which are approximation meth-
ods that guarantee a resource-specified constraint, such as
memory consumption or data processing time. These ap-
proaches are similar to top-k mining, which aims to find the
most frequent k elements. In top-k mining, the constraint k
controls only the number of solutions, not a memory bound-
ary to be consumed. Thus, it should be distinguished from
the resource-oriented approach.

In item mining, the SS algorithm has proved that both
parameter and resource-oriented approaches are compatible
using the relationship between the table size k and the error
parameter ϵ. However, this property cannot necessarily hold
for itemset mining. Let ϵ be an error parameter and k be
the number of entries. Now, we show a lower bound of k
required for any ϵ-accurate and ϵ-honest algorithms.

Lemma 1. Let D be an entry table with size k, S be a
stream with N transactions, and α be a frequent mining ob-
ject from S. There exist S and α such that sup(α) = N×ave

k+1
and α is not registered in D.

Proof. Let S be a transactional data stream, where nmo

is k + 1 and each mo(Ti) has the same number of objects:
ave. There are N×ave occurrences of k+1 mining objects in
total. Suppose that every object Oi (1 ≤ i ≤ k+1) uniformly
occurs through N transactions. Then, the support of each
Oi is N×ave

k+1
. For any minimal support σ, we can set the

value of ave so as to satisfy that σ ≤ ave
k+1

< 1. Then, every
Oi is frequent wrt σ. Hence, there is a frequent object α from
S such that sup(α) = N×ave

k+1
and α is not registered.

Theorem 1. k is at least min(nmo,
ave

ϵ
− 1) for every

ϵ-accurate and ϵ-honest algorithm.

Proof. Since nmo entries are enough to maintain the ex-
act frequency count of every mining object, it must be a
lower bound of k. By Lemma 1, there are S and α such
that sup(α) = N×ave

k+1
and α is not registered in D. Every

ϵ-honest algorithm must give the frequency count c(α) of α
such that c(α) ≤ ϵN . If it is also ϵ-accurate, it must hold
that sup(α) ≤ c(α). Then, we have N×ave

k+1
≤ ϵN . Thus, we

obtain ave
ϵ

− 1 ≤ k. Hence, a lower bound of k is described
as min(nmo,

ave
ϵ

− 1).

Theorem 1 is achieved using the notion of ϵ-honesty implic-
itly described in [1], which characterizes the prior FIM-DS

algorithms. Metwally [14] shows that a lower bound of k is
min(nmo,

1
2ϵ

) in item stream mining. In contrast, Theorem 1

derives a new lower bound that is min(nmo,
1
ϵ
−1), since the

case ave = 1 corresponds to the item stream mining, for the
ϵ-accurate and ϵ-honest algorithms.

Theorem 1 also shows a crucial limitation of the parameter-
oriented approaches in itemset mining. Given an error pa-
rameter ϵ, we require at least min(nio,

ave
ϵ

−1) entries; how-

ever, ave = Σ(2|Ti|−1)
N

increases exponentially in accordance
with each transaction length Ti. This indicates that any
parameter-oriented method may fail due to lack of resources
especially for itemset mining with bursty transactions.

4. INTEGRATING LC AND SS ALGORITHMS
Now, we propose a resource-oriented algorithm to solve

this problem, which is obtained by integrating the LC and
SS algorithms. Unlike the previously proposed parameter-
oriented methods, the proposed algorithm, called LC-SS,
only requires O(k) space for some constant k. The original
SS algorithm uses only one newly arriving item for replace-
ment when the entry table is full. In contrast, itemset min-
ing must handle the possibility that 2|Ti|−1 subsets may be
replaced for each transaction Ti. For this task, we should
consider how those itemsets are maintained with the SS al-
gorithm. The 2|Ti| − 1 subsets can be classified into two
groups: one is for sets that have been already registered in
the table and the other is for sets that have not been regis-
tered. For the former group, it is sufficient to increment their
frequency counters by one. Conversely, the latter group, re-
ferred to as the candidate sets, should be newly registered
in some relevant manner.

Based on the SS algorithm, we can insert candidate sets
unless the entry table is full. Otherwise, we can replace min-
imal entries with candidate sets. However, such SS-based al-
gorithms require at least min(nio,

ave
ϵ

− 1) space according
to Theorem 1. Thus, it is not straightforward to ensure the
approximation error in the context of itemset mining only
with the original SS framework. In addition, we use the
notion of the error count ∆(i) in the LC algorithm, and dy-
namically monitors the approximation error in the currently
stored entries. Algorithm 1 describes the LC-SS algorithm
with the above concepts of replacement and error count.

We represent each entry as a tuple 〈α, f(α), ∆(i)〉, similar
to the LC algorithm, where f(α) is the number of occur-
rences of α from the time i when α was lastly registered and
∆(i) is the error count at time i. Then, the LC-SS algo-
rithm gives the frequency count c(α) of α as f(α) + ∆(i).
Hence, a minimal entry in the LC-SS algorithm means the
one such that f(α)+∆(i) is minimal in the table. Note that
∆(i) means an upper bound of frequency counts of itemsets
that are deleted at time i. Analogously, the LC-SS algorithm
updates ∆(i) with the maximal frequency count of itemsets
that are replaced at time i by way of Line 21 in Algorithm 1.

Example 2. Here, the stream S consists of four transac-
tions {a}, {a, b}, {b, c}, and {a, b, c, d, e}. Let the minimal
support σ be 0.6 and the maximal table size k be 4. Fig-
ure 3 illustrates how the entry table is updated by processing
each transaction using Algorithm 1. At time i = 3, the table
becomes full, and a minimal entry is replaced with one can-
didate set from T3. ∆(4) is updated to the frequency count
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Algorithm 1 Baseline (LC-SS) algorithm

Input: maximal table size k, minimal support σ, data
stream S = 〈T1, T2, . . . , TN 〉.

Output: an approximated set of frequent itemsets from S.
1: set i as 1 (i := 1) ◃ i is the current time
2: initialize D, ∆(1) and θ (D := ∅, ∆(1) := 0, θ := 0)
3: while i ≤ N do
4: read Ti

5: for each α ⊆ Ti s.t. α has been registered in D do
6: f(α)++
7: end for
8: for each α ⊆ Ti s.t. α is not registered in D do
9: if |D| < k then

10: insert the new entry 〈α, 1, ∆(i)〉
11: else
12: select a minimal entry ME = 〈β, f(β), ∆β〉
13: replace ME with 〈α, 1, ∆(i)〉
14: if θ < f(β) + ∆β then
15: θ := f(β) + ∆β

16: ◃ θ will be used for updating ∆(i) later
17: end if
18: end if
19: end for
20: if ∆(i) < θ then
21: ∆(i + 1) := θ and θ := 0 ◃ updating ∆ and θ
22: else
23: ∆(i + 1) := ∆(i)
24: end if
25: i++ ◃ updating the time i
26: end while
27: for α ∈ D s.t. f(α) + ∆α ≥ σN do
28: output α ◃ α can be a frequent itemset wrt σ and N
29: end for

of the replaced entry at time i = 3 (i.e., ∆(4) = 1). At time
i = 4, every registered entry is a subset of T4; thus, every
f is incremented by one. Next, the two minimal entries are
replaced with candidate sets. As there are 27 candidate sets
(25−4−1) from T4, the replacement operation is performed
27 times. Finally, the error count ∆ is updated to 2, which
is the maximal frequency count in those 27 replaced entries.
The baseline algorithm outputs every entry whose frequency
count (i.e., f + ∆) is greater than or equal to σN = 0.6× 4.
Thus, we obtain the two frequent itemsets {a} and {b}.

i = 1 i = 2 i = 3

!(1) = 0 

!(2) = 0 

!(3) = 0,  ! = 1 
replacement

i = 4

!(4) = 1,  ! = 2 
replacement

! f "
{a} 1 0

! f "
{a} 2 0
{b} 1 0
{a,b} 1 0

! f "
{a} 2 0
{b} 2 0
{b,c} 1 0
{c} 1 0

! f "
{a} 3 0
{b} 3 0
{d} 1 1
{e} 1 1

Figure 3: Updating the table from T1 through T4

From Example 2, it can be seen that the baseline algo-
rithm processes any transaction using the fixed size of the
entry table. Thus, it requires only O(k) space for the table

size k. In the following, we discuss about the validity in the
baseline algorithm.

Lemma 2. Let ∆(t) be the value in Algorithm 1 at time t.
∆(t) is an upper bound of the supports of itemsets in the
period [1, t), each of which has been replaced before t.

Proof. We prove Lemma 2 by mathematical induction.
Step 1: When t = 1, ∆(1) = 0 holds. Since there is no
itemset that is replaced before time t = 1, Lemma 2 holds.
Step 2: Assume that when t ≤ i, Lemma 2 also holds.
When t ≤ i+1, we divide every itemset β replaced in period
[1, t) into two cases:
Case (1) β is replaced when t < i. By the assumption in
Step 2, the support of β in period [1, t) is less than or equal
to ∆(t).
Case (2) β is replaced when t = i. f(β) + ∆β is an upper
bound of the support of β in period [1, i+1). From Line 21 of
Algorithm 1, ∆(i+1) is updated to f(β)+∆β if f(β)+∆β ≥
∆(i). Thus, ∆(i+1) is an upper bound of sup(β). Therefore,
when t ≤ i + 1, Lemma 2 also holds.

Lemma 3. Let S be a stream consisting of N transac-
tions. For every itemset α, if sup(α) > ∆(N + 1), then α
remains in the table.

Proof. Suppose there is an itemset α such that sup(α) >
∆(N + 1) and α does not remain in the table. Since α has
been replaced in period [1, N ], the true support of α is less
than or equal to ∆(N + 1) according to Lemma 2. However
this contradicts the condition of α.

Using Lemma 3, we have the following theorem that guar-
antees the validity (i.e., completeness and accuracy) of the
outputs by Algorithm 1.

Theorem 2. Let S be a stream consisting of N transac-
tions and σ be a minimal support. If ∆(N + 1) < σN , then
every frequent itemset wrt S and σ is output by Algorithm 1.
Besides, every output α satisfies σN − ∆(N + 1) ≤ sup(α).

Proof. Since ∆(N + 1) < σN , the support of every fre-
quent itemset wrt S and σ is greater than ∆(N + 1). By
Lemma 3, every itemset whose true support is greater than
∆(N + 1) remains in the table. Thus, from Line 28 of Al-
gorithm 1, every frequent itemset is output. Every output
α satisfies σN ≤ f(α) + ∆α. Since f(α) ≤ sup(α) and
∆α ≤ ∆(N +1), it holds that σN ≤ sup(α)+∆(N +1).

The error count ∆(t) changes according to the maximal table
size k. In general, as k becomes smaller, the time series
gain of ∆(t) increases. By Theorem 2, the LC-SS algorithm
returns no false-negative and also ensures the accuracy of
output supports provided that ∆(N + 1) < σN . Sometimes
∆(N+1) can exceed the threshold σN if k is too small. Even
for such a case, the baseline algorithm can still guarantee the
quality of outputs, as is described below.

Theorem 3. Let S be a stream consisting of N transac-

tions and support σ∆ be ∆(N+1)+1
N

. Every frequent itemset
wrt S and σ∆ can be output by Algorithm 1.

Proof. Every itemset α such that sup(α) ≥ ∆(N +1)+1
remains in the table according to Lemma 3. Then, α can be
output by Algorithm 1. In addition, sup(α) ≥ σ∆N holds.
Hence, α is a frequent itemset wrt S and σ∆.

According to Theorem 3, users can dynamically monitor a
realistic minimal support (i.e., σ∆) associated with a fixed
table size k. If the current σ∆ is insufficient for users, they
can manage it by dynamically reallocating memory resource.
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5. SKIP LC-SS ALGORITHM
The baseline algorithm requires 2|Ti| − 1 updating or re-

placing operations for any transaction Ti. If a bursty trans-
action arrives, such as T4 in Example 2, the access time to
the entry table will increase exponentially. Thus, although
the baseline algorithm can prevent memory overflow, it may
cause a fatal delay in response time when bursty transactions
arrive. Therefore, we propose another algorithm to address
this problem. The key idea is to skip over the transactions
by terminating replacement operations.

First, we recall Example 2. At time i = 4, the bursty
transaction yields 27 candidate sets. Since the table is full,
each candidate set is replaced by some registered entry with
the minimal estimated support. Every candidate set is reg-
istered with the same support as ∆(4)+1. Accordingly, once
every minimal entry has been replaced, only some candidate
sets are replaced with the other candidate sets. Note that the
order by which each candidate set is registered is arbitrary.
Thus, any candidate set can remain in the table at the end
of the replacement. In Fig. 3, although the two candidate
sets {d} and {e} remain in the table, we can freely select
any two candidate sets for replacing minimal entries (For
example, selecting {a, c} and {b, e} is possible). Thus, it is
sufficient to replace only the two minimal entries (i.e., {b, c}
and {c}). Hence, we do not need to operate all 27 candidate
sets in this example.

Definition 1. We call the entry for the empty set by the
empty entry. In the following, we suppose that the initial
entry table consists of k empty entries for the maximal table
size k. Then, if the table contains empty entries, they are re-
garded as the minimal entries whose frequency count is zero.
We denote by cs(i), me(i) and cmin(i) the number of candi-
date sets, the number of minimal entries and the frequency
count of minimal entries when Ti arrives, respectively.

Using Definition 1, the replacement operation of the LC-
SS algorithm can be summarized into the following cases.

Case A: me(i) > cs(i). After replacing cs(i) minimal en-
tries with the candidate sets, prior minimal entries remain
in the table. Note that every newly registered entry has
the same frequency count ∆(i) + 1. Thus, we can describe
cmin(i+1) and ∆(i+1) at the next process i+1 as follows:

cmin(i + 1) = min(cmin(i), ∆(i) + 1),

∆(i + 1) = cmin(i).

entry table	

minimal  
entries 
me(i)	

Δ( i ) + 1	

Δ( i ) 	

newly 
registered 

entries cs(i)	

cmin( i )	

Δ( i + 1 ) = cmin( i ) 	

cmin( i )	

entry table	

Figure 4: Case A: me(i) > cs(i)

Case B: me(i) = cs(i). Consequently, all minimal entries
are replaced with candidate sets whose frequency count is
∆(i)+ 1. In addition, the next cmin(i +1) is either ∆(i)+ 1

or the second lowest frequency count (i.e., cmin(i) + r for
some r (r ≥ 1)) at time i. Thus, we obtain the following:

cmin(i + 1) = min(∆(i) + 1, cmin(i) + r),

∆(i + 1) = cmin(i).

entry table	

minimal  
entries 
me(i)	

Δ( i ) + 1	

Δ( i ) 	

newly 
registered 

entries cs(i)	

Δ( i + 1 ) = cmin(i ) 	

cmin( i )	

entry table	
second 

minimal  
entries cmin( i ) + r	

Figure 5: Case B: me(i) = cs(i)

Case C: me(i) < cs(i). Initially, each minimal entry is re-
placed with some candidate set. Then, previously registered
candidate sets are replaced with the other candidate sets,
whereas their frequency count is given as ∆(i) + 1. Note

entry table	

minimal  
entries 
me(i)	

Δ( i ) + 1	

Δ( i ) 	

previously 
registered 

candidate sets 
Δ( i + 1 ) = Δ( i ) + 1 	

cmin( i )	

entry table	the other 
candidate sets	

replacement	

second 
minimal  
entries 

Figure 6: Case C: me(i) < cs(i)

that ∆(i + 1) is updated to θ (See Line 21, Algorithm 1)
that is the maximal frequency count in the replaced entries.
When me(i) < cs(i), θ must be ∆(i) + 1. We thus obtain

cmin(i + 1) = min(cmin(i) + r, ∆(i) + 1),

∆(i + 1) = ∆(i) + 1.

From the above cases, we obtain the following relationship
between ∆(t) and cmin(t). This proof is simply achieved by
the mathematical induction for time t in each case.

Theorem 4. ∆(t) ≤ cmin(t) ≤ ∆(t) + 1 for each time t.

By Theorem 4, we can obtain the following recurrence for-
mula for cmin(t) and ∆(t) (See Figures 4, 5, and 6):
8

>

>

>

>

>

<

>

>

>

>

>

:

Case A : me(i) > cs(i) cmin(i + 1) = cmin(i),
∆(i + 1) = cmin(i).

Case B : me(i) = cs(i) cmin(i + 1) = ∆(i) + 1,
∆(i + 1) = cmin(i).

Case C : me(i) < cs(i) cmin(i + 1) = ∆(i) + 1,
∆(i + 1) = ∆(i) + 1.

(1)

Equation (1) allows us to compute the next cmin and ∆
without performing all replacement operations (cs(i) total
times). Especially for Case C, we do not need to register
more candidate sets, once every minimal entry at time t
has been replaced. In other words, we skip the irredundant
replacements with such residue candidate sets. Algorithm 2
describes the proposal method, i.e., Skip LC-SS algorithm,
which embeds the skip operation into the baseline algorithm.
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Algorithm 2 Skip LC-SS based algorithm

Input: the maximal table size k, the minimal support σ,
the data stream S = 〈T1, T2, . . . , TN 〉.

Output: an approximate set of frequent itemsets in S wrt
σ at the current time N .

1: set i as 1 (i := 1) ◃ i is the current time
2: D consists of k empty sets, ∆(1) := 0
3: r(1) := 0 ◃ r(i): the num. of entries included in Ti

4: cmin(1) := 0, mn(1) := k, cs(1) := 0 ◃ 4 new variables
5: while i ≤ N do
6: read Ti

7: for each α ⊆ Ti s.t. α has been registered in D do
8: f(α)++ and r(i)++
9: end for

10: update cmin(i) and me(i) by checking D

11: update cs(i) by r(i) (i.e., cs(i) := 2|Ti| − r(i) − 1)
12: if cs(i) < me(i) then
13: select all (cs(i)) candidate sets from Ti

14: else
15: randomly select me(i) candidate sets from Ti

16: end if
17: replace minimal entries with the selected sets in D
18: whose frequency counts are set as ∆(i) + 1
19: update cmin(i + 1) and ∆(i + 1) by Equation (1)
20: i++ ◃ updating the time i
21: r(i) := 0 ◃ resetting r(i)
22: end while
23: for α ∈ D s.t. f(α) + ∆α ≥ σN do
24: output α ◃ α can be a frequent itemset wrt σ and N
25: end for

In Algorithm 2, r(i) denotes the number of entries of
which itemsets are included in the transaction Ti. First, we
compute r(i) by way of Lines 7-8, which is the same process

in the baseline algorithm. It holds that cs(i) = 2|Ti|−r(i)−1;
thus, cs(i) is obtained directly from r(i). In Lines 12-16, we
select candidate sets to be replaced with the minimal en-
tries. Note that the number of replacements is now at most
me(i) rather than cs(i). Finally, we update cmin(i + 1) and
∆(i + 1) by Equation (1) according to the condition of cs(i)
and me(i) for Cases A, B, or C.

Example 3. Recall Example 2. Let a stream S consisting of
five transactions 〈{a}, {a, b}, {b, c}, {a, b, c, d, e}, and {a, c}〉,
the minimal support σ be 0.6 and the maximal table size k
be 4. Figure 7 illustrates how table S and the set var of 5
variables r(t), cs(t), cmin(t), me(t) and ∆(t) are updated in
the period from i = 1 to 5 by Algorithm 2. In Fig. 7, each
entry in the table S consists of an itemset α and its frequent
count c(α) (i.e., f(α) + ∆α). Note also that each variable
in Fig. 7 corresponds to the value at the end of the process
at each time. At i = 4, every registered entry is a subset
of T4; thus we have r(4) = 4. In turn, cmin(4) and mn(4)
are also updated to 2 in Line 10 of Algorithm 2. Then, the
number of candidate sets at i = 4 is calculated in Line 11
(i.e., c(4) = 25 − 1 − r(4) = 27). Since cs(4) > mn(4), we
update cmin(5) and ∆(5) as cmin(5) = ∆(4) + 1 = 2 and
∆(5) = ∆(4) + 1 = 2 according to Equation (1).

At i = 5, only the entry for {a} is a subset of T5; thus
r(5) = 1 holds. Next, we get c(5) = 2 (i.e., 22 − 1 − 1) and
min(5) = mn(5) = 2. Since c(5) = mn(5), Equation (1)
gives min(6) = ∆(5) + 1 = 3 and ∆(6) = min(5) = 2. The

algorithm outputs all the entries because their frequency
counts are greater than or equal to σN = 0.6×5 = 3, which
contain the three frequent itemsets {a}, {b} and {c}.

{a} 1
i = 1 i = 2 i = 3 i = 4

{a} 2
{b} 1
{a, b} 1

{a} 2
{b} 2
{b, c} 1
{c} 1

{a} 3
{b} 3
{d} 2
{e} 2

{a} 4
{b} 3
{c} 3
{a,c} 3

i = 5

r 0
cs 1
cmin 0
mn 4
! 0

r 1
cs 2
cmin 0
mn 3
! 0

r 1
cs 2
cmin 0
mn 1
! 0

r 4
cs 27
cmin 2
mn 2
! 1

r 1
cs 2
cmin 2
mn 2
! 2

S

var

Figure 7: Updating the table from T1 through T5

The Skip LC-SS algorithm ensures the validity of the out-
puts, which are owned by the baseline algorithm.

Theorem 5. If ∆(N + 1) < σN , then every frequent
itemset wrt S and σ is outputted by Algorithm 2. Besides,
every output α satisfies σN − ∆(N + 1) ≤ sup(α).

The error counts in both Algorithms 1 and 2 have the same
value by way of Line 19 in Algorithm 2 and Equation (1).
Theorem 5 then holds using the same proof of Theorem 2.

In addition to validity, Algorithm 2 can refer to computa-
tional cost as follows:

Theorem 6. Let T be a transaction with length L and k
be the table size. Algorithm 2 processes T in O(kL) steps.

Proof. In Algorithm 2, there are two expensive pro-
cesses: updating the table at Lines 7-9 and selecting at most
me(i) candidate sets from Ti at Lines 12-16. For the updat-
ing process, we require at most k×O(L) steps for a transac-
tion with length L because this requires at most O(L) steps
to check if the itemset of each entry is included in T . For
selecting the candidate sets, we require at most 2k × O(L)
steps. Note that every subset of T is either a candidate
set or a registered one. The number of registered sets is k;
thus, if we create at most 2k subsets of T , those 2k sub-
sets contain at least k candidate sets. Since me(i) ≤ k, k
candidate sets are sufficient for completing the replacement
operation. Thus, both updating and selecting processes can
be performed in O(kL) steps for T .

Consequently, the Skip LC-SS algorithm can derive the out-
puts within O(kLN) steps, whereas it ensures the same
validness of the baseline algorithm by Theorems 5 and 6.

5.1 Performance of Skip LC-SS algorithm
Here, we investigate the performance of the Skip LC-SS

algorithm using real transactional stream data. We use the
online data for earthquake occurrences from 1981 to 2013 in
Japan (Figure 2). Each earthquake data, which is provided
from the Japan Meteorological Agency, is identified with one
item in accordance with its focus location and magnitude
and so on. Each transaction consists of such earthquake
items that occur in every half a day. Consequently, the
stream consists of 16769 transactions with 1229 items.

Figure 8 shows the logarithmic number of replacement
operations in the baseline and Skip LC-SS algorithms, for
each transaction ID. Note that the maximal table size k is
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Figure 8: Number of replacement operations

set to 10000. The baseline algorithm, an integration of LC
and SS algorithms, must register all subsets in each transac-
tion at least once. Then, it requires an intractable number
of replacement operations when bursty transactions arrive
(see △ plots). In contrast, it is sufficient for Skip LC-SS to
replace at most k entries in any transaction (see ¤ plots).

Next, we confirm the performance of the Skip LC-SS algo-
rithm for a table size k. Note that we have implemented the
algorithms using C and ran it on our machine (Mac Pro, Mac
OS 10.6, 3.33GHz, 16GB). All experiments were performed
using the same environment.

k ∆ Ave. of Num. of Recall Prec. Time
me outputs (%) (%) (sec.)

10K 168 4824 10000 100 N/A 1.3
30K 125 17300 95 100 77 3.4
50K 105 31322 84 100 88 4.7
70K 99 50518 84 100 88 6.7
90K 92 61363 80 100 92 8.5
100K 91 62814 80 100 92 9.5

Table 1: Performance of Skip LC-SS

For each k (from 10K to 100K), Table 1 shows the error
count ∆, the average number of minimal entries me, the
number of outputs, the recall and precision of outputs with
respect to the minimal support σ = 0.01 and CPU time.

Note that there is a trade-off between k and ∆. As the
maximal table size k decreases, more the maximal error
count ∆ also increases. This can also be interpreted with
the number of minimal entries me: increasing me can sup-
press the gain of ∆. According to Equation (1), if me
is less than the number of candidate sets, the error count
must increment (i.e., Case C). For every k, recall is main-
tained at 100%. This is consistent with Theorem 5 because
∆(N + 1) < ϵN holds (i.e., ϵN = 167.7). Conversely, the
outputs can contain non-frequent itemsets because their fre-
quency counts contain some error counts. The precision
value shows the ratio of the frequent itemsets in the out-
puts. For k = 10000, we notice that the precision value is
almost zero (N/A means the value is less than 1%). Indeed,
most outputs (9926 itemsets) are not frequent, except for
74 itemsets. That is because ∆ is almost same as σN (i.e.,
∆ = 168 and σN = 167.7). According to Theorem 5, the

Skip LC-SS algorithm ensures that sup(α) ≥ σN−∆(N +1)
for every output α. However, in case that ∆(N + 1) is sim-
ilar to σN , the Skip LC-SS algorithm cannot ensure a suf-
ficient accuracy to the output. In fact, the number of out-
puts decreases only to 95 outputs (Prec.: 77%) for the case
k = 20000 (∆ = 125). In terms of CPU time, it increases
linearly for the size k, which is consistent with Theorem 6.

Figures 9 and 10 show the time series change of me and
∆, respectively. When the number of minimal entries me
corresponds to Case A in Equation (1), me monotonically
decreases in Figure 9. In turn, Case B and C cause the rapid
increase and decrease of me. Indeed, we may notice the chat-

Figure 9: Time series minimal entries num. me(t)

tering phenomenon around the transaction IDs 8000 and
15000. This indicates that some bursty transactions arrive
around them. At those two points, the error count rapidly
increases too in Figure 10. Note that we put the line indicat-
ing the minimal support σt for each time t. If the error count
exceeds this minimal support (see about the transaction ID
15000) at some time, the entry table can temporary contain
false-negatives according to Theorem 5. However, as the
system processes transactions, the minimal support gradu-
ally increases and then the accuracy (recall and precision)
of outputs can also recover. This feature shows robustness
of the Skip LC-SS algorithm. Note also that we have em-

Figure 10: Time series error count ∆(t)

pirically evaluated how many entries are registered in this
dataset using the Stream Mining [8], which is one of the
state-of-art parameter-oriented mining algorithms. Our ex-
perimental result1 shows that the table size rapidly increases
around the transaction ID 15000, and then at least one mil-
lion entries have been temporally registered. Whereas the

1We implemented the skeleton of the algorithm in [8] and ran
it by setting the two parameters as σ = 0.01 and ϵ = 0.2×σ
and also by assuming that the maximal length of frequent
itemsets is less than or equal to five.
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Stream Mining can face the intensive memory consumption
and response delay, the Skip LC-SS algorithm derives all the
frequent itemsets only using 10000 entries. This is achieved
by skipping the serious process involved in bursty transac-
tions. On the other hand, the skip operation must increase
the error count ∆. Indeed, we can observe that ∆ inten-
sively increases when bursty transactions arrive around the
transaction ID 15000 in Fig. 10.

5.2 Improvement of Skip LC-SS algorithm
Now, we consider two variations of the skip operation

to improve the performance of the Skip LC-SS algorithm.
There are two bottleneck operations in the algorithm: up-
dating entries and replacing them. The update operation
corresponds to Lines 7-9 in Algorithm 2, where each entry is
checked if it is contained in the current transaction. Then,
it requires O(k) steps for the table size k. On the other
hand, the replacement operation corresponds to Lines 17-18
in Algorithm 2, where at most me(i) candidate sets are gen-
erated and then replaced with minimal entries. As shown in
the proof of Theorem 6, it requires O(2k) steps. Figure 11
plots the CPU times for update (x-axes) and replacement
(y-axes) operations for each transaction in the earthquake
stream. Fig. 11 shows that both executing times increase as

Figure 11: Replacing v.s. Updating times

the size k becomes large, whereas the replacement operation
tends to be more expensive than the update one. Thus, we
first consider improving the replacement operation.

In Case C of Equation (1), the error count ∆(i) must incre-
ment by one whether the replacement operations have been
done or not. In other words, we can skip all replacements in
Case C. This is easily realized by checking if me(i) > cs(i)
before Line 17 in Algorithm 2. We call by r-skip the above
skip operation to distinguish it with the original one. When
we apply the r-skip operation, the minimal entries, which
must be originally replaced, remain in the table. Hence, the
result can be different from the original one.

k 10K 30K 50K 70K 90K 100K

∆ skip 168 125 105 99 92 91
r-skip 168 125 105 99 92 91

Time skip 1.3 3.4 4.7 6.7 8.5 9.5
(sec.) r-skip 0.6 1.1 1.7 2.4 2.9 3.3

Table 2: skip v.s. r-skip

Table 2 shows the error count ∆ and CPU time obtained
by applying the Skip LC-SS algorithm with r-skip to the

earthquake stream. In this experiment, r-skip could speed
up the original process about 3 times, whereas ∆ and the
precision did not change.

Next, we extend r-skip based on the following lemma:

Lemma 4. Let Ti be a transaction at time i and k be the
table size. If 2|Ti|−1 > k, then me(i) < cs(i) holds.

Proof. By the definition, we have cs(i) = 2|Ti|−r(i)−1.

Since k ≥ r(i), cs(i) ≥ 2|Ti| − k − 1 holds. Now, we suppose

2|Ti|−1 > k. Then, 2|Ti| ≥ 2k + 2 holds. Accordingly, we
have cs(i) ≥ k+1. Since k ≥ me(i), cs(i) > me(i) holds.

If we meet such transaction Ti that satisfies the condition
2|Ti|−1 > k, we can realize in advance that the error count
∆(i) must increment by one before updating the entries, be-
cause Ti causes the Case C by Lemma 4 and Equation (1).
Based on this notion, we modify the original skip operation
so as to skip processing each transaction if its length is more
than log(k) + 1. In other words, we skip both the replace-
ment and update operations for such transactions. We call
the above skip operation by t-skip.

In t-skip, the frequency count of an entry can be lower
than its true support because some update operations can
be skipped in the previous time. In other words. t-skip can
produce false-negatives even if ∆(N + 1) < σN . For this
problem, we consider the following two approaches.

Approach 1: Relaxing the condition of outputs. We pre-
pare a new counter X for registering the number of t-
skip operations. Then, we check if f(α)+∆α+X > σN
for every entry α to be the output at the end of process.
We call this approach by t1-skip.

Approach 2: Incrementing the frequency count of each
entry whenever t-skip is performed. Unlike t1-skip, we
do not change the condition of outputs. We call this
approach by t2-skip.

Each approach has its own drawback. In terms of the ex-
ecuting time, Approach 2 needs to scan all entries when
t2-skip is performed. On the other hand, Approach 1 tends
to decrease the approximation accuracy and thus increase
the number of non-frequent itemsets in the outputs. That is
because Approach 1 must add error X to every entry α even
if α should not be affected by previous t-skip operations.

k ∆ / num. of t-skips Prec. (%) Time (sec.)
t1 t2 t1 t2 t1 t2

10K 168/111 168/111 N/A N/A 0.6 0.6
30K 126/88 126/88 N/A 40 1.4 1.6
50K 105/72 106/72 N/A 53 1.7 2.5
70K 99/64 99/64 8 60 2.4 3.7
90K 92/64 92/64 20 61 2.8 4.1
100K 91/64 92/64 22 61 3.0 4.5

Table 3: t1-skip v.s. t2-skip

Table 3 shows the error count ∆, the number of t-skip
operations, the precision of outputs and the CPU times,
obtained by applying the Skip LC-SS algorithm with t1-
skip and t2-skip to data stream for earthquake occurrences.
Note that the minimal support σ is set to 0.01 (same as
the previous experiments). Note also that recall is main-
tained at 100%, since ∆ is less than σN (167.7) in every
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case. The right value of ∆ corresponds to the number of
the t-skip operations. This value may be regarded as the
number of bursty transactions in the stream. Table 3 shows
that whereas t1-skip is slightly faster than t2-skip, t1-skip
makes the precision of outputs much lower than t2-skip, as
mentioned in the above.

We can perform both t-skip and r-skip operations. For
every transaction Ti satisfying 2|Ti|−1 > k, we apply t-skip
for skipping the update and replacement operations to Ti.
Otherwise, we first update the support of each entry and
then apply r-skip if me(i) < cs(i) (i.e., Case C). We call by
t1&r-skip (resp. t2&r-skip) the combination of r-skip and
t1-skip (resp. t2-skip). Compared with Table 1 and Table 2,

k ∆ / num. of t-skips Prec. (%) Time (sec.)
t1&r t2&r t1&r t2&r t1&r t2&r

10K 168/111 168/111 N/A N/A 0.5 0.6
30K 126/88 126/88 N/A 40 0.8 1.2
50K 105/72 106/72 N/A 53 1.3 2.1
70K 99/64 99/64 8 60 1.8 3.0
90K 92/64 92/64 20 61 2.1 3.3
100K 91/64 92/64 22 61 2.3 3.7

Table 4: t1&r-skip v.s. t2&r-skip

both t1&r-skip and t2&r-skip cannot significantly improve
the execution time of r-skip, whereas they must decrease
their precision values (We recall that every precision value
of r-skip is same as the one of its original skip operation).
This fact may indicate that the operations scoped by r-skip
and t-skip are similar with each other. Indeed, the speed-up
gain by the combination of r-skip and t-skip does not reach
the product of their synergetic gains. Table 5 summarizes
the average performance of 6 variations of skip operation in
the experiment, where r-skip gives the best performance.

variations original r t1 t2 t1&r t2&r

Recall (%) 100 100 100 100 100 100
Prec. (%) 77.0 77.0 6.2 48.2 6.2 48.2
Time (sec.) 5.4 1.9 1.9 2.8 1.4 2.3

Table 5: Performances of various skip operations

6. FURTHERMORE IMPROVEMENTS
Here, we furthermore improve the performance of Skip

LC-SS algorithm using the stream reduction to dynamically
repress each transaction. The length L of a transaction is
a key factor for determining the performance of the Skip
LC-SS algorithm, according to Theorem 6 and Lemma 4.
The idea of stream reduction lies in the fact that most items
in bursty transactions are non-frequent. By the principle
of non-monotonicity, every itemset with any non-frequent
item is no longer frequent. Thus, we can eliminate such
non-frequent items from each transaction.

6.1 Item mining from transactional streams
The concept of stream reduction has been already intro-

duced in modern FIM-DS methods [8, 12]. In this paper, we
consider the resource-oriented approximation approach for
stream reduction. This is achieved with frequent item min-
ing from (bursty) transactional streams. There are several

approximation methods for this task. One simple way is to
use our LC-SS algorithm by restricting the length of each
candidate set as one. However, this simple variation can-
not estimate the error count in advance. Indeed, the error
count should change in accordance with the fixed size of the
entry table kim, whereas the error count can negatively af-
fect the accuracy of the reduced itemset. Thus, we consider
another type of approximation item mining methods which
can guarantee the maximal error count in terms of kim. In

Stream	  	  
reduc+on	 Skip	  LC-‐SS	

Ti	 T’i	
solutions	A stream	

Error count Δ(i )	

ε < σ	

Figure 12: Embedding stream reduction

this paper, we use a recently proposed algorithm, called the
SS-ST algorithm, which is obtained by simply extending the
SS algorithm into item mining from a transactional stream
[5]. Using the SS-ST algorithm, we compute the frequent
count c(e) for each item e in the transaction Ti at time i.
Let ∆(i) be the error count at that time in the Skip LC-SS
algorithm. Then, if c(e) ≤ ∆(i) holds, e should be removed
from Ti, because for every subset αe of Ti that contains e,
c(αe) ≤ ∆(i) must hold. We should not store those subsets
with lower frequency counts than ∆(i). Consequently, we
perform the stream reduction as described in Algorithm 3.

Algorithm 3 Stream reduction with the SS-ST algorithm

Input: initial table size kim, error parameter ϵ, data stream
S = 〈T1, . . . , TN 〉, error counts ∆(1), . . . , ∆(N).

Output: reduced transactions T ′
1, T

′
2, . . . , T

′
N .

1: i := 1, D := ∅, C := 0, Lave := 0
2: while i ≤ N do
3: read Ti and ∆(i)
4: C := C + |Ti|
5: Lave := C

i
◃ Lave is the average length over Tis

6: if kim < Lave
ϵ

then

7: kim := ⌈Lave
ϵ

⌉
8: end if
9: for each item e ∈ Ti do

10: if 〈e, c(e)〉 ∈ D then
11: c(e) + +
12: else if |D| < kim then
13: insert the new entry 〈e, 1〉 in D
14: else
15: replace the minimal entry with 〈e, 1 + c(m)〉
16: end if
17: end for
18: remove from Ti every item e such that c(e) ≤ ∆(i)
19: output the reduced transaction T ′

i

20: i + +
21: end while

The completeness of the SS-ST algorithm has been shown
in [5], which is briefly described as follows:

Theorem 7. [5] If kim ≥ Lave
ϵ

, every frequent item e
such that sup(e) ≥ ϵN is stored in the table D.

Theorem 7 was proved in the similar way as Theorem 1 in
the literature [14]. Let the minimal support be σ. Then,
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it is sufficient for stream reduction to extract every item e
such that sup(e) ≥ σN at the end. Algorithm 3 ensures
it by monitoring if kim ≥ Lave

ϵ
in Lines 6-8. Hence, it is

sufficient to give an error parameter ϵ such that ϵ < σ. In
the following, the initial table size kim is set to the same
value as the entry table size of the Skip LC-SS algorithm.

6.2 Experimental results
We first show the result obtained using the earthquake

data. By the stream reduction, the maximal (resp. average)
length decreases to 57 (resp. 2.17) from 74 (resp. 2.48). In

k ∆/num. of t-skips Prec. (%) Time (sec.)
t2&r +red t2&r +red t2&r +red

10K 168 (111) 88 (48) N/A 75 0.6 2.4
30K 126 (88) 70 (45) 40 77 1.2 2.7
50K 106 (72) 64 (44) 53 78 2.1 2.8
70K 99 (64) 61 (41) 61 81 3.0 3.2

Table 6: Improvement in earthquake transactions

Table 6, two rows named “t2&r and “+red” correspond to
the performances of t2&r skip only and it with the stream
reduction, respectively. The CPU time contains the exe-
cuting times of both the stream reduction and Skip LC-SS.
In this experiment, the stream reduction succeeds in about
50% decreases of the error counter (See Figure 13).

Figure 13: Comparison of ∆(t) in earthquake data

We have evaluated the performance by using two transac-
tional streams: web-log data and retail data2. The web-log
data stream consists of 19466 transactions with 9961 items.
Using stream reduction, the maximal (resp. average) length
decreases by 29 (resp. 9.81) from 106 (resp. 18.31).

Figures 14 shows the original (left) and reduced (right)
lengths of transactions. Tables 7 shows improvements by
embedding the stream reduction. We set the table size k
from 500000 to 700000 and the minimal support σ to 0.05. In
Table 8, we compare the stream reduction with the original
Skip LC-SS. Note that the columns named“skip”correspond
to the performance of the Skip LC-SS. This result shows that
stream reduction succeeds in about 75% decreases of ∆ (See
Figure 15 for k = 500000), compared with the original one.
It also succeeds in speeding up about 10 times.

Finally, we use the retail data consists of 88162 transac-
tions with 16470 items. Using the stream reduction, the
maximal (resp. average) length decreases by 58 (resp. 4.84)
from 76 (resp. 10.31). Figures 16 shows the original (left)
and reduced (right) lengths of transactions. In Table 9, we
compare the performance (especially on ∆ and CPU time)

2Available from http://fimi.ua.ac.be/

Figure 14: Reduction of the web-log transactions

k ∆/num. of t-skips Prec. (%) Time (sec.)
t2&r +red t2&r +red t2&r +red

500K 9003 2351 6 100 600 501
/8343 /1391

600K 8602 2284 6 100 891 762
/7828 /1025

700K 8526 2237 6 100 1017 856
/7828 /1136

Table 7: Improvement in web-log data (1)

by the reduction stream with the original Skip LC-SS for
each table size k. This result shows that the stream reduc-
tion succeeds in about 90% decreases of error counter ∆ (see
the time series ∆ for k = 500000 in Figure 17), and it also
succeeds in speeding up about 30 times.

Figure 15: Comparison of ∆(t) in web-log data

7. CONCLUSION AND FUTURE WORK
This paper has proposed novel FIM-DS methods based

on resource-oriented approximation. The difficulty of FIM-
DS lies in how to handle the combinatorial explosion of
candidate sets to be stored. Although there are several
well-known methods based on parameter-oriented approx-
imation, every method has its own drawback that causes
the memory overflow especially in real data streams with
bursty events. In this paper, we first show an exponen-
tial lower bound of space requirement of prior parameter-
oriented methods, and then propose a resource-oriented al-
gorithm in O(k) space, which is achieved by integrating the
Lossy Counting and Space-Saving algorithms in the context
of itemset mining. We next improve the proposed method
LC-SS algorithm so as to compute the solutions in O(kLN)
time where L and N are the maximal length and number
of transactions. We call this algorithm by the Skip LC-SS
algorithm. We emphasize that the Skip LC-SS algorithm
can derive the outputs without memory overflow or fatal
delay of response time provided that it ensures the same
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Parameters k = 500K k = 600K 700K

skip 9000 8598 8523
∆ t2&r skip 9003 8602 8526

+ reduction 2351 2284 2237
skip 5850 6912 8029

Time t2&r skip 600 891 1017
(sec) + reduction 501 762 856

Table 8: Improvement in web-log data (2)

Parameters k = 500K k = 600K 700K

skip 12699 11888 11571
∆ t2&r skip 12699 11889 11571

+ reduction 960 960 960
skip 7853 9294 10041

Time t2&r skip 1400 2195 2408
(sec) + reduction 249 353 393

Table 9: Improvement in retail data

validity as the baseline algorithm. We also propose sev-
eral variations of the skip operation and the novel technique
dynamically reducing the transaction in a resource-oriented
manner. Consequently, we have shown that the Skip LC-SS
algorithm can partially break the space limitation of previ-
ously proposed FIM-DS methods through several real data
streams with bursty transactions.

It is an important future work to introduce efficient data
structures for the Skip LC-SS algorithm. Especially, the
selection and replacement of candidate sets still require ex-
pensive computational costs. We also intend to investigate
the adaptive approach using the Skip LC-SS algorithm that
can fit the relevant resource in the context of FIM-DS.
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