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ABSTRACT
Joins have traditionally been the most expensive database operator,
but they are required to query normalized schemas. In turn, nor-
malized schemas are necessary to minimize update costs and space
usage. Joins can be avoided altogether by using a denormalized
schema instead of a normalized schema; this improves analytical
query processing times at the tradeoff of increased update over-
head, loading cost, and storage requirements.

In our work, we show that we can achieve the best of both worlds
by leveraging partial, incremental, and dynamic denormalized ta-
bles to avoid join operators, resulting in fast query performance
while retaining the minimized loading, update, and storage costs of
a normalized schema.

We introduce adaptive denormalization for modern main mem-
ory systems. We replace the traditional join operations with effi-
cient scans over the relevant partial universal tables without incur-
ring the prohibitive costs of full denormalization.

1. INTRODUCTION
Normalized schemas are standard in database systems [3][4].

Normalization leads to many desirable characteristics such as en-
abling efficient and accurate updates, minimizing data redundancy,
reducing storage requirements and loading costs [4][6]. However,
normalization requires join operations with expensive data access
patterns and computational costs to operate over the normalized
schema. Despite advances in modern hardware capabilities and join
algorithms, the join operator continues to dominate query process-
ing time even in systems that are well-tuned for high performance
[1][2][5].

For example, Figure 1 compares a state-of-the-art hardware op-
timized hash join implementation [1] over a normalized schema
against a fast scan (multi-core, numa-aware, SIMD) over a denor-
malized one. Within the time needed to join just 100 million tuples
over the normalized schema we can scan and perform a logical join
across more than 100 times the data in the denormalized schema.

Contributions. In this paper we introduce the idea of adap-
tive denormalization, in which the base data lies in a normalized
state while hot data is adaptively and partially denormalized on-
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Figure 1: In the time it takes to join inputs of 100 million rows
in a normalized schema, we can perform a (logical) join by scan-
ning over 10 billion rows in denormalized schema. The disparity is
larger when a higher percentage of rows are selected.

demand. This allows our system to operate within a given mem-
ory budget and mitigate the negative side-effects of denormaliza-
tion while still producing the performance gains of denormalized
systems. We show that adaptive denormalization achieves perfor-
mance gains of orders of magnitudes over systems that use strict
normalized schemas.

2. ADAPTIVE DENORMALIZATION
Adaptive denormalization achieves the best characteristics of both

normalization and denormalization by exploiting embarrassingly
parallel scans over a denormalized schema to process join queries
while still achieving the efficient space utilization, updates, and
loading time characteristics found in normalized schemas.

Adaptive denormalization maintains data in a normalized state
and denormalizes only regions of the data as they are queried and
to only data that has not yet been denormalized by previous queries.
As a result, future queries on any previously queried range can be
answered with scans, thereby avoiding expensive join operations.
These denormalized regions form partial universal tables – auxil-
iary data structures that are maintained alongside the underlying
normalized data.

By denormalizing only the data that is touched, we limit the
extra storage requirements to only attributes of interest. Further-
more, adaptive denormalization operates within the given mem-
ory budget by dropping regions of the partial universal table in
response to memory pressures. Moreover, denormalizing during
query processing amortizes the overhead and cost of denormaliza-
tion across many queries. Loading costs are the same as in nor-
malized schemas. Since the denormalized data is logically sepa-
rated into partial universal tables, updates can be applied lazily to
only the partial universal tables that are required by the query, fur-
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Figure 2: Adaptive denormalization (AD) improves significantly
over repeated join patterns without penalizing the first join queries.

ther mitigating update costs that might otherwise be prohibitive in
a fully denormalized system. These properties allow us to lever-
age the benefits of both denormalization and normalization without
suffering the negative characteristics.

3. ANALYSIS
In this section we present a brief experimental analysis to show

the performance advantages of adaptive denormalization over tra-
ditional join operations over normalized schemas.

Experimental Setup. We run our experiments on an in-memory
column store prototype with modern multi-core scan and hash joins
implementations. We evaluate our system on a 4-way Intel Xeon
E7-4820 configuration with 64 hardware threads and 1 TB of main
memory. We evaluate our system on synthetic workloads to meet
certain selectivity, input size, and join output size criteria. We use
8-byte ints generated from random uniform distributions, which we
tune to control the sizes of input columns and join outputs.

Performance Gains of Adaptive Denormalization. A query
benefits from adaptive denormalization if its results are partially
contained in the universal tables, since the query can be evaluated
with fast sequential scans and only require joins for the parts where
the data is being queried for the first time. Joins can be avoided
altogether if the universal table contains all the data necessary to
answer the query. Figure 3 reveals that this strategy results in or-
ders of magnitudes in speed-up, especially when the join operation
is large and the data is already contained in the universal table. For
example, the joins over a normalized schema between 100M tu-
ples with 100M tuples for a join output of 100M (output:input ratio
of 1:1), requires 38.6 seconds, whereas a scan over the equivalent
denormalized 100M output tuples requires only 0.45 seconds.

This speed-up is further magnified as the size of the join output
increases. In Figure 3 we see that at a join output size of 1B (out-
put:input ratio of 10:1), the traditional operator takes 6 minutes,
whereas adaptive denormalization takes only 5.1 seconds. Figure 3
also shows that there are benefits even when only part of the query
is contained in the current denormalized tables.

Small Overhead of Adaptive Denormalization. The overhead
of adaptive denormalization can be separated into performance and
storage overhead. The performance overhead results from the ad-
ditional book-keeping required to track which parts of the queries
can be answered using the partial universal table and which parts
still need to be joined. Figure 2 compares the performance of a
join over a normalized schema with that of our modified adaptive
denormalization join when the universal table is empty and a join
cannot be avoided (Normalized vs AD-First). In these cases, the
overhead still represents only 5-10% of total query time.
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Figure 3: Adaptive denormalization (AD) achieves significant ben-
efits even when the required data is only partially denormalized.

Storage overhead results from the additional storage required for
the partial universal tables. However, adaptive denormalization op-
erates within the given memory budget by dropping regions of the
partial universal table if they are no longer needed by the work-
load. This is an inexpensive solution since future reconstruction is
relatively cheap as shown in the aforementioned performance over-
head. Our lazy update technique also makes update overhead small;
further details are left for a full future paper.

4. CONCLUSION & FUTURE WORK
Joins have been one of the primary performance bottlenecks in

relational database systems for the past five decades. In this pa-
per, we show how to effectively eliminate join costs for the hot part
of the workload. We present adaptive denormalization to provide
a way to achieve the best of both schemas: faster query process-
ing via scans instead of joins as in a denormalized schema and at
the same time minimum loading, storage and update overheads as
in a normalized schema. Arbitrary joins, not just equi-joins, can
benefit from this technique as long as subsequent queries share the
same join condition. We show how adaptive denormalization in a
modern column-store achieves gains of orders of magnitude over
traditional strict systems that rely on normalized data or on a priori
full denormalization.

Our ongoing plans include work on handling updates with lim-
ited impact on read and write performance and evaluating our sys-
tem on real workloads. We also work on handling some limitations
of adaptive denormalization, such as cases when performing a scan
on the Universal Table is slower than its equivalent join.
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