
SOCRAT Platform Design: A Web Architecture for Interactive
Visual Analytics Applications

Alexandr A. Kalinin
University of Michigan
akalinin@umich.edu

Selvam Palanimalai
University of Michigan

selvam.palanimalai@gmail.com

Ivo D. Dinov
University of Michigan

dinov@umich.edu

ABSTRACT
�e modern web is a successful platform for large scale interac-
tive web applications, including visualizations. However, there
are no established design principles for building complex visual
analytics (VA) web applications that could e�ciently integrate vi-
sualizations with data management, computational transformation,
hypothesis testing, and knowledge discovery. �is imposes a time-
consuming design and development process on many researchers
and developers. To address these challenges, we consider the design
requirements for the development of a module-based VA system ar-
chitecture, adopting existing practices of large scale web application
development. We present the preliminary design and implementa-
tion of an open-source platform for Statistics Online Computational
Resource Analytical Toolbox (SOCRAT). �is platform de�nes: (1)
a speci�cation for an architecture for building VA applications
with multi-level modularity, and (2) methods for optimizing mod-
ule interaction, re-usage, and extension. To demonstrate how this
platform can be used to integrate a number of data management,
interactive visualization, and analysis tools, we implement an ex-
ample application for simple VA tasks including raw data input and
representation, interactive visualization and analysis.

CCS CONCEPTS
•Human-centered computing → Interactive systems and tools;
•Information systems → Web applications; •So�ware and its
engineering→ So�ware architectures;

KEYWORDS
Visual Analytics, System Design, Web Platform Architecture
ACM Reference format:
Alexandr A. Kalinin, Selvam Palanimalai, and Ivo D. Dinov. 2017. SOCRAT
Platform Design: A Web Architecture for Interactive Visual Analytics Appli-
cations. In Proceedings of HILDA’17, Chicago, IL, USA, May 14, 2017, 6 pages.
DOI: h�p://dx.doi.org/10.1145/3077257.3077262

1 INTRODUCTION
Over the two last decades, the web has proven itself to be a success-
ful platform for the development of information visualizations [26].

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for pro�t or commercial advantage and that copies bear this notice and the full citation
on the �rst page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permi�ed. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior speci�c permission
and/or a fee. Request permissions from permissions@acm.org.
HILDA’17, Chicago, IL, USA
© 2017 Copyright held by the owner/author(s). Publication rights licensed to ACM.
978-1-4503-5029-7/17/05. . .$15.00
DOI: h�p://dx.doi.org/10.1145/3077257.3077262

Web-based visualization solutions dramatically reduce deployment
issues by running directly in the desktop or mobile web browser,
yielding a high degree of accessibility, and by avoiding complex
installation, version update, incompatibility, and other problems
characteristic of standalone so�ware [32]. A number of recent web
visualization frameworks, such as the ubiquitously used D3 [14],
incorporate proven and e�cient practices for improved compati-
bility, accessibility, and performance. Recent rapid development of
technologies, frameworks, and best design practices for complex
interactive front-end applications, together with increased graph-
ical and interactive capabilities native to modern web browsers
(HTML5/JavaScript), enable enhancement of visualizations by user-
focused interactions. However, VA web applications development
practices vary more for multiple reasons [12], such as greater di-
versity of domains, dataset properties, required analysis and visual-
ization, and desired results. Even under speci�c assumptions about
these properties, designing web visual analytics systems is more
challenging than visualizations, since VA requires the integration
of data management, analysis, and highly interactive visualization
solutions into a complex web application [24].

�ese challenges are related to the design principles of large
scale general purpose interactive applications, which are described
as non-trivial applications with in-browser data manipulation and
display [27]. However, there is a lack of adoption of these tech-
niques, which not only notably limits the capabilities of existing
web VA applications, but also imposes greater costs and longer de-
velopment times on their developers. Currently, developers spend
the majority of their time re-implementing VA system architectures
rather than focusing on interaction, innovation and creation of
sophisticated web VA applications. �is is even more important
for complex analytics solutions, where re-implementation of data
processing, modeling, and analysis methods are very expensive
and error-prone [22]. Improved computational capabilities of mod-
ern web browsers [25] enable implementations of mathematical,
statistical, and computing JavaScript libraries such as Math.js [4],
jStat [3], Science.js [8], and ConvNetJS [2]. While some of these
libraries provide out-of-the-box interface for visualizations, others
are relatively easy to integrate into web visual analytics work�ow.

�ese developments provide an exciting opportunity for creating
more �exible, scalable, reusable, and sustainable web-based VA sys-
tems that could bene�t from bringing together modern web browser
capabilities and best practices for building complex interactive web
applications. Development of systems that integrate in-browser
solutions for data analysis and data management with a diverse
set of web visualization tools would involve design decisions that
balance their expressive, interactive and processing capabilities,
e�ciency, compatibility, and accessibility.

HILDA’17, May 14, 2017, Chicago, IL, USA A. Kalinin et al.

In this paper, we �rst consider design requirements for the devel-
opment of module-based VA systems from developer’s perspective.
We discuss how existing practices of large scale web application de-
velopment, together with modern visualization tools can be adopted
to build integrative VA applications. We contribute the preliminary
design and implementation of a platform for Statistics Online Com-
putational Resource Analytical Toolbox (SOCRAT). �is extensible,
integrative platform de�nes: (1) a speci�cation for an architecture
for building VA applications with multi-level modularity, and (2)
methods for optimizing modular interaction, re-usage, and exten-
sion. �rough a simple use case, we demonstrate how this platform
can be used to integrate a number of data management, interactive
visualization and analysis tools into an exemplar web application
with multi-source data input, raw data display, interactive charting
and clustering analysis. Lastly, we brie�y discuss ongoing work
and prospective developments.

2 BACKGROUND AND RELATEDWORK
2.1 Modular web architectures for interactive

visualization
Clairvoyant work by Bender et al. [11] was one of the �rst to suggest
framework architectures that implement web visualization pipeline
as containing 3 separate steps: data preparation, representation and
rendering. �ey de�ned a number of requirements for such frame-
works, including an ease of extensibility, a standardized way to
interact with system in real time, and a modular structure with dy-
namically loaded components. Central piece of such framework is a
Kernel module, that is responsible for internal communication and
initialization of all other components, including user interface (UI),
renderer, data manager, and computational modules. �is design,
based on module independence, allowed �exible con�gurations
with more or less operations executed on client vs. server.

�e Statistics Online Computational Resource (SOCR) suite of
tools [16] implemented an educational web-based framework that
included interactive visualization components based on JFreeChart,
a Java charting library [19]. SOCR Charts [16] and Motion Charts
[10] allow interactive representation of data summary statistics, raw
data, and data mapping. Over 20 various provided charts include
3D, spatial, and cartographic visualizations.

Prefuse [19] is the one of the �rst toolkits designed with modu-
larity at the level of visualization designs. Based on experience of
building prefuse and reviewing other visualization solutions, Heer
and Agrawala in [18] noted the di�culty in identifying common de-
sign pa�erns within existing visualization tools, and, consequently,
the high cost for users to learn and evaluate unfamiliar systems.
Later, Protovis [13] was introduced as a toolkit based on declarative
language for web visualization design that decoupled visualization
speci�cation from execution and improved expressiveness. Gen-
eralizing this approach, D3 [14] provided a declarative framework
for mapping data to visual elements in the document object model
(DOM) and dynamically transforming them. However, D3 existed
as a single library until the recent version 4.0, when it was split
into a collection of modular “microlibraries”, �a�ening the hierar-
chical relationship between them, and allowing to create custom
bundles with only a subset of modules compatible with current and
prospective web module standards, such as ES6 modules [29].

A higher level modular approach for building visualization tools
is represented by a recent mixed-initiative Voyager system [36, 37]
that relies on a number of separately released Node.js packages
in CommonJS format [29] used as building blocks, including D3,
declarative visualization grammars Vega [31] and Vega-Lite [30],
visualization recommendation engine Compass [35], and custom
data utility and UI libraries.

Finally, and likely closest to our work, is Plastic.js [20], a data
display framework designed with modular architecture for exten-
sibility, asynchronous data loading and display, default inner data
format, and schema. It de�nes �ery Modules, Data Modules, and
Display Modules that are developed using so�ware design pa�erns
for large-scale JavaScript applications [27], including factory and
facade pa�erns for module decoupling and global observer pa�ern
to handle the asynchronous events for inter-module interactions
[28]. As an integrative framework, it supports the use of multiple vi-
sualizations solutions, including D3, and also provides dependency
management and lazy loading.

Clearly, modular architectures are not uncommon among vari-
ous web visualization solutions. However, modularity is introduced
on very di�erent levels of these frameworks and toolkits, from
high-level components to single visualization speci�cation to small
implementation details, since such tools address a wide range of
challenges in information visualization. �ese di�erent levels of ab-
straction are not necessarily contradictory, and various approaches
can be used in combination. Further, we argue that this kind of
multi-level modularity is bene�cial for building interactive visu-
alization components that can be integrated into an extensible,
�exible web-based VA system.

2.2 Modular web visual analytics with SOCR
In our earlier work [16], the SOCR suite of tools implemented a
web-based collection of tools for interactive modeling and visual
data analysis. �e SOCR Modeler provided interactive visual model
��ing [16]. �e SOCR Analyses component provided hypothesis
testing, statistical modeling, and computation of power and sample
size [15]. Together with the SOCR Charts, these components were
implemented using an MVC pa�ern, allowing to decouple interac-
tive visual representation from modeling techniques, such that the
la�er could be easily extended and used as external computational
library. Although mainly designed for educational purposes, the
suite of SOCR tools enabled visual analytics work�ow for interroga-
tion of the dataset interactively by visualizations and data analysis.
Examples include California ozone pollution case study using SOCR
Charts and Analysis [17] and visual analysis of big medicare, labor,
census and econometric data with SOCR Data Dashboard [21].

However, architecturally original SOCR applets lack interoper-
ability. �eir modular structure provides extensibility and sustain-
ability, but there is no integrative platform that provides resource
sharing and runtime interaction. It is important, for example, for
optimization of many repetitive user actions in data management,
including input, storage, preprocessing, transforming, and query-
ing. Moreover, most of SOCR applets eventually became practically
unavailable to end users a�er new versions of browsers disabled
Java by default as a response to numerous vulnerability reports
[34]. Our approach in this study is based on our experience with

SOCRAT Platform Design: A Web Architecture for Interactive Visual Analytics Applications HILDA’17, May 14, 2017, Chicago, IL, USA

developing and maintaining SOCR tools, with a long-term goal of
re-developing them as modules of a common integrative platform
that would allow their integration into a uni�ed system to address
these limitations. From these experiences, we also conclude that
implementation is as important as design, so we focus on both
aspects in this work.

3 VISUAL ANALYTICS SYSTEM DESIGN
As discussed in the previous section, modular web con�gurations of
visualizations, data analytics, and interactive techniques are quite
di�erent and it’s di�cult to combine them in any standardized way,
since important considerations cover component design (Prefuse vs.
D3), system structure (Voyager vs. Plastic.js), and implementation
(e.g. Java applets vs. ES6 modules). Component design itself entails
various approaches to structuring visualizations, interactions, and
analytics. Here, we consider some of the requirements, and pos-
sible solutions, for an integrative web VA architecture that would
combine these approaches in a bene�cial and diverse way. �e
following list of requirements was inspired by an analysis of [11],
and is updated accordingly to include advancements in the �eld
and those related to the studies mentioned above.

3.1 Requirements
Integrative web VA systems should should satisfy following require-
ments:

• Architecture should be �exible for easy addition, modi-
�cation, and replacement of the modules. Use case: the
developer should be able to easily change default data stor-
age from in-browser to server-hosted database.

• System has to provide the means for module interoperabil-
ity, such that they have a �exible way to interact with each
other without introducing hard dependencies. Use case:
the developer should be able to easily request data in an
analysis module from a database by communicating with
Database Module and without querying data directly.

• �e system architecture has to allow easy extension of
system components, for example, by adding support for
various third-party visualization or computational libraries.
Use case: the developer should be able to easily include
and use a third-party dependency inside of VA application,
for instance, vega-lite visualization grammar [30].

• Architecture has to be robust in runtime, meaning that a
failure of one module should not a�ect the state of others.
Use case: the developer should be sure that the application
in production will not crash in case if one of the third-party
modules fails.

• Components should be reusable across various activities.
Use case: the developer should be able to easily use the
speci�c calculations from various components that rely on
them without re-implementation. Similarly, visualization
speci�cations should be reusable across modules.

• System architecture should emphasize expressiveness of
applications built on it, by providing access to �ne-grained
control over visualization and analytics methods. Use case:
the developer should be able to directly control visual com-
ponents on the level of DOM if there is need for it.

• Finally, accessibility includes simple protocols for creating
new modules from scratch as well as from existing code
together with detailed documentation. Use case: the devel-
oper, unfamiliar with the details of platform architecture,
should be able to quickly prototype a VA application, from
data input to visualization and interaction.

3.2 General architecture
�e proposed system is represented by a loosely coupled architec-
ture [27] with functionality broken down into independent mod-
ules with, ideally, no inter-module dependencies. Modules are
single-purpose parts of a system with limited permissions. �ey
are interchangeable in the sense that the system is capable of sup-
porting, adding, removing or replacing modules without the rest
of the modules in the system failing, which facilitates �exibility
and robustness. In this decoupled se�ing, modules do not directly
communicate with each other. Instead, they provide a means to
communicate with the Core module. �e Core module is a central
control piece responsible for the initialization and internal commu-
nications of other modules, and for satisfying the interoperability
requirement, similar to the Kernel module in [11]. If necessary, it
performs module runtime validation and monitoring. Extensibility
is implemented in the form of plug-in support, which enables wrap-
ping third-party components as modules, providing them with a
standard for other modules API.

3.3 Module structure
�e starting point for designing modular architecture is actually
to break it down into independent functional pieces and then de-
�ne their responsibilities. For web systems, it’s common to design
modules following MVC-like pa�erns (MV*), separating the data
from the display, and organizing their interaction with the medium
component. For VA application architecture, it’s natural to ini-
tially separate visualization from data analytics and data storage,
although, di�erent views, on the contrary, should be made possible
to combine. �us, interactivity is more di�cult to decouple into
separate modules. Two simple options to approach this limitation
are either to: (1) provide basic interactivity speci�cations within
general intermediate display layer, that would be accessible by dif-
ferent modules, or (2) de�ne more speci�c interactions individually
in the scope of each module. �e second option allows for more
�exibility in terms of implementation, including easier third-party
component integration.

In suggested architecture, we do not impose strict module classi-
�cation. Instead, we suggest that there are a few loosely de�ned
types of modules: for example, modules that perform speci�c ac-
tions on data, such as calculations without implementing the UI
(background modules) or modules that use data to populate in-
teractive visualization speci�cations (visual modules). Modules
with new visualization capabilities should be able to implement
high-level prede�ned speci�cations as well as low-level control
de�nitions, depending on the task. To combine such variety of
approaches, the module’s components should be modular as well.
Intra-module component structure should allow for simple ways
to circulate information within a module. For inter-module com-
munication, module inner components can be exposed by opening

HILDA’17, May 14, 2017, Chicago, IL, USA A. Kalinin et al.

Figure 1: General modular platform architecture. Human-
computer and inter-modular interactions (via Sandbox-
Mediator pattern) are shown by arrows. From le� to right:
(1) user uploads CSV �le using module A, which broadcasts
“Save data” message; Core module redirects the message to
module B that saves the data into database; (2) then user
requests visualization of data in module C, which requests
data frommodule B, receives the data, and displays it in the
view component.

access to them for other modules via Core, for example, providing
calculations-as-a-service or visualization-as-a-service. In practice,
however, it is reasonable to expect that a typical module of a web
VA system will be a hybrid of these types.

3.4 Core module for inter-module
communications

Upon module initialization by the Core module, all modules are
provided with Sandbox, an instance representing Facade so�ware
design pa�ern [28], that hides inner Core structure from the module
behind high-level messaging interface. �is interface, in turn, is
represented by a Mediator pa�ern [28] that prevents modules from
directly referring to each other and instead acts as an intermediary.
Core can use Mediator to start, stop, and restart individual modules
selectively in the runtime, without breaking the application. It is
also responsible for answering module’s request. For example, if
a visual module requested speci�c data transformation that was
outsourced to another module, which is currently not available,
Core will use Mediator to provide visual module with negative
result, such that it can display an appropriate error message or
placeholder and/or try again later.

4 SOCRAT CORE IMPLEMENTATION
We present a prototype of SOCRAT, a multilevel modular platform
for building VA applications. Current implementation relies on
AngularJS 1.5 [1], a widely used web framework with detailed doc-
umentation and a large, established community. Most importantly,
it provides many useful features out-of-the box that �t well in
the context of proposed architecture. Implementation of the Core
module was also inspired by scaleApp framework that realizes sim-
ilar basic architectural principles [7]. Modularity with declarative
component de�nitions is present at the system level (third-party

dependencies), platform level (SOCRAT modules), and module level
(AngularJs components and routing). Below, we further discuss
each level in greater detail.

4.1 Module level
From a high-level perspective, each SOCRAT module is imple-
mented as an instance of a wrapper class for AngularJS module [1],
which automatically pre-de�nes required structures. �e AngularJS
module declaratively speci�es its structural parts, such as Services,
Components or Directives, and Controllers, which �t organically
into the suggested architecture of the platform. Conveniently, these
sub-modular parts can be loaded in any order, lazily initialized and
easy to test, and they support dependency injection. Familiar to
many developers, the MV* structure of the framework �ts very well
into VA application requirements. Services, that exist in AngularJS
application as singletons, are used to implement logic, transfer
and process data, along with various types of calculations. At the
same time, Components provide a means of constructing reusable
visualization speci�cations, with a possibility for low-level control
using Directives. Two-way data binding enables easy automation
of many interactive tasks in a declarative fashion, such that user
actions can be re�ected in visualizations or data. Each sub-modular
component is implemented following a Module design pa�ern [27]
in CommonJS format, which allows to de�ne them in declarative
way and load them synchronously or asynchronously during the
runtime. We de�ned a number of base wrapper classes, such that
new sub-module components can be created using OOP-like native
prototypal inheritance in JavaScript. With the same purpose, these
classes provide a number of convenience methods, including, for
example, intra-module communication via broadcasting or request-
ing data from Database module. �is wrapping hides the service
code developers would otherwise have to write, and instead allows
working on higher levels of abstraction with interactions between
users, visualizations, and data. However, this does not limit module-
level �exibility, since these classes can be easily extended and their
methods overloaded.

Besides providing standard AngularJS components of a module,
SOCRAT allows custom inclusion of a third-party dependency by
composition. �is is needed when a large third-party component
is a dependency for a single module and there is no need to wrap
it as a separate SOCRAT module. For example, ngHandsontable
is an AngularJS component that implements an Excel-like inter-
active data grid editor [5]. If the VA application�s design simply
displays raw data on input, ngHandsontable does not have to be a
SOCRAT module itself. In this case, we allow for tight coupling via
direct dependency injection, but we gain extensibility and save the
time that would have been spent on wrapping the ngHandsontable
interface into the SOCRAT module.

4.2 Platform level
In order to satisfy the rest of design requirements, we impose addi-
tional structures onto the AngularJS modular application.

First, we automate module and component de�nitions, such that
the module can be described in a fully declarative way. �is ab-
stracts the inner details of the chosen framework on the platform
level, and makes the creation of new modules much easier for the

SOCRAT Platform Design: A Web Architecture for Interactive Visual Analytics Applications HILDA’17, May 14, 2017, Chicago, IL, USA

Figure 2: Module-level implementation. An example of a
declarative list of modules. �e Core module parses the list
and initializes modules D and E by reference. �en, simi-
larly, module D’s declarative con�guration is parsed and its
components are initialized. ModuleD also includes vega-lite
[30] by composition as third-party dependency available to
module’s visual component.

developer, who will not have to deal with AngularJS structures, so
instead can focus on important functionality. It is also speci�cally
convenient for VA application development, because it easily indi-
cates which modules to include into a speci�c application, using
them as building blocks. For example, if the prospective application
has to be suited for working with time-series data, the developer
just has to include references to speci�c CommonJS modules con-
taining necessary visualizations and analytical methods. At the
application runtime those modules will be automatically initialized
and included into platform infrastructure.

Second, we do not allow a SOCRAT module to be injected as a
dependency into another module, except for inclusion of depen-
dencies by composition as described above. Instead, we use the
proposed Sandbox-Mediator pa�ern combination to implement
inter-module communications via Core module. In fact, modules
are not started until Core parses the module list and automatically
creates their components. When a module is ready to start, Core
�rst performs a validation to ensure that the module’s interface is
compatible with the platform. �en, Core gives the module access
to an instance of Sandbox, and subscribes to messages from a mod-
ule through Mediator. What is le� for the developer is to link the
various module messages into pairs or chains, such that Core can
invoke an interface method of one module in response to request
from another, see Fig. 1. Exposing the interface of a module into
messaging systems makes it reusable by other modules.

Similarly to Plastic.js [20], SOCRAT implements a simple, stan-
dard data format that is used for messaging information exchange
between modules, without limiting it to a speci�c scheme. On data
input, SOCRAT will try to �a�en or map data onto a 2D grid, and
will store it as a JSON object if that fails. In the future, we plan to
include be�er standardized inner data representation.

4.3 User interface
Similar to the UI designs of Tableau (formerly Polaris) [33], Voyager
and PoleStar [36, 37], SOCRAT implements a top bar menu, sidebar
and main central area, see Fig. 3.

�e main menu is used to provide access to SOCRAT modules
that implement UI. It is indicated in declarative fashion in every
module de�nition, along with its components. On the application�s
start, SOCRAT Core recursively parses the module list and automat-
ically adds links to all UI modules into main menu, while registering
their URL in the routing scheme. �is takes the menu-building bur-
den from the developer, and allows to organize the main menu in
many con�gurations, including nested dropdown sub-menus.

Sidebar is a common UI pa�ern that is typically used for auxiliary
control placement. Both the main area and hideable sidebar are
automatically initialized for every SOCRAT module, along with
the methods for their interaction. Sidebar typically implements
requests for current datasets and displays some of their properties,
while central area can be used as a view for particular visualization
speci�cations. �is is the only UI restriction that SOCRAT imposes
onto modules with UI; the developer can choose any visualization
library in combination with any analytical methods that will be
further used to build the application.

4.4 System level
We use npm [6] to include system dependencies de�ned in a declar-
ative way. Runtime dependencies may include various libraries,
frameworks, and custom Angular-enabled components that can be
directly injected into modules. Webpack [9] is used to build the
application and to separate resulting code into chunks that can be
loaded dynamically, which represent the highest modularity level
in the proposed architecture.

5 APPLICATION EXAMPLE USE CASE
In this short example we combined: a) ngHandsontable [5], a dy-
namic Excel-like data grid editor for raw data input and display,
b) datavore [23], a small and fast in-browser database for data
storage and querying, c) a low-level charting D3 library [14] for
visualization, and d) jStat [3] JavaScript statistical library. While ng-
Handsontable, D3, and jStat are injected directly into the Data Input
module, Charting module, and Clustering module correspondingly,
the datavore is wrapped into a separate Database SOCRAT module.
�is application provides an interface to use one of the prede�ned
SOCR Datasets, or to upload and parse custom CSV/TSV �le, build
few various prede�ned charts, and perform visualized clustering of
dataset using k-Means algorithm, see Fig. 3.

6 DISCUSSION AND ONGOINGWORK
In this paper, we discuss the design considerations for the develop-
ment of complex web-based VA applications and present a design of
a web platform that realizes multi-level modular architecture, adopt-
ing best design practices for building large scale interactive front-
end applications to VA-speci�c requirements. We then demonstrate
a preliminary implementation of SOCRAT, an example application
for simple VA tasks that uses proposed architecture to combine raw
data input and representation with interactive visualization and
analysis.

HILDA’17, May 14, 2017, Chicago, IL, USA A. Kalinin et al.

Figure 3: Screenshot of SOCRAT interface: (1) main menu
automatically generated from module list, (2) data input
module interface with various data sources in sidebar (2a)
and raw data display in central panel (2b), (3) interactive
clustering module with the results of k-means, (4) interac-
tive histogram with variable number of bins.

As a next step, we plan to extend SOCRAT to support more of
various existing and custom data management, visualization, and
analytical components. We also will update design consideration
from analyst point of view, with the focus on user experience. We
hope that this work will engage the VA community into a discussion
of best architecture design practices for creating more e�ective and
feature-rich VA solutions.

ACKNOWLEDGMENTS
�e work is partially supported by the National Science Founda-
tion under Grants No.: 1023115, 1022560, 1022636, 0089377, 9652870,
0442992, 0442630, 0333672, 0716055, the National Institutes of Health
under Grants No.: P20 NR015331, P50 NS091856, P30 DK089503, U54
EB020406, and the Elsie Andresen Fiske Research Fund.

REFERENCES
[1] AngularJS. Retrieved March 2, 2017 from h�ps://angularjs.org/
[2] ConvNetJS. Retrieved March 2, 2017 from h�p://convnetjs.com/
[3] jStat. Retrieved March 2, 2017 from h�ps://jstat.github.io/
[4] Math.js. Retrieved March 2, 2017 from h�p://mathjs.org/
[5] ngHandsontable. Retrieved March 2, 2017 from h�ps://handsontable.github.io/

ngHandsontable/
[6] NPM. Retrieved March 3, 2017 from h�ps://www.npmjs.com/
[7] scaleApp. Retrieved March 2, 2017 from h�p://scaleapp.org/
[8] Science.js. Retrieved March 2, 2017 from h�ps://github.com/jasondavies/science.

js/
[9] Webpack. Retrieved March 3, 2017 from h�ps://webpack.github.io/

[10] Jameel Al-Aziz, Nicolas Christou, and Ivo D Dinov. 2010. SOCR motion charts: An
e�cient, open-source, interactive and dynamic applet for visualizing longitudinal
multivariate data. Journal of statistics education: an international journal on the
teaching and learning of statistics 18, 3 (2010).

[11] Michael Bender, Ralf Klein, Andreas Disch, and Achim Ebert. 2000. A functional
framework for web-based information visualization systems. IEEE Transactions
on Visualization and Computer Graphics 6, 1 (2000), 8–23.

[12] Paul Booth, Wendy Hall, Nicholas Gibbins, and Spyros Galanis. 2014. Visualis-
ing data in web observatories: a proposal for visual analytics development &
evaluation. In Proceedings of the 23rd International Conference on World Wide
Web. ACM, 1055–1060.

[13] Michael Bostock and Je�rey Heer. 2009. Protovis: A graphical toolkit for visual-
ization. IEEE transactions on visualization and computer graphics 15, 6 (2009).

[14] Michael Bostock, Vadim Ogievetsky, and Je�rey Heer. 2011. D3 data-driven
documents. IEEE transactions on visualization and computer graphics 17, 12
(2011), 2301–2309.

[15] Annie Chu, Jenny Cui, and Ivo D Dinov. 2009. SOCR analyses–An instruc-
tional java web-based statistical analysis toolkit. Journal of online learning and
teaching/MERLOT 5, 1 (2009), 1.

[16] Ivo D Dinov. 2006. Socr: Statistics online computational resource. Journal of
Statistical So�ware 16, 11 (2006).

[17] Ivo D Dinov and Nicolas Christou. 2011. Web-based tools for modelling and
analysis of multivariate data: California ozone pollution activity. International
journal of mathematical education in science and technology 42, 6 (2011), 789–805.

[18] Je�rey Heer and Maneesh Agrawala. 2006. So�ware design pa�erns for infor-
mation visualization. IEEE transactions on visualization and computer graphics
12, 5 (2006).

[19] Je�rey Heer, Stuart K Card, and James A Landay. 2005. Prefuse: a toolkit for
interactive information visualization. In Proceedings of the SIGCHI conference on
Human factors in computing systems. ACM, 421–430.

[20] Simon Heimler. 2014. Development of a Modular JavaScript Data Display Frame-
work. In Applied Research Conference 2014: 5th July 2014, Ingolstadt. Shaker
Verlag GmbH, Aachen, Germany.

[21] Syed S Husain, Alexandr Kalinin, Anh Truong, and Ivo D Dinov. 2015. SOCR
Data dashboard: an integrated big data archive mashing medicare, labor, census
and econometric information. Journal of big data 2, 1 (2015), 13.

[22] Darrel C Ince, Leslie Ha�on, and John Graham-Cumming. 2012. �e case for
open computer programs. Nature 482, 7386 (2012), 485–488.

[23] Sean Kandel, Andreas Paepcke, Joseph Hellerstein, and Je�rey Heer. 2011. Wran-
gler: Interactive visual speci�cation of data transformation scripts. In Proceedings
of the SIGCHI Conference on Human Factors in Computing Systems. ACM, 3363–
3372.

[24] Daniel Keim, Gennady Andrienko, Jean-Daniel Fekete, Carsten Görg, Jörn
Kohlhammer, and Guy Melançon. 2008. Visual analytics: De�nition, process,
and challenges. In Information visualization. Springer, 154–175.

[25] Faiz Khan, Vincent Foley-Bourgon, Sujay Kathrotia, Erick Lavoie, and Laurie
Hendren. 2014. Using javascript and webcl for numerical computations: A
comparative study of native and web technologies. In ACM SIGPLAN Notices,
Vol. 50. ACM, 91–102.

[26] Shixia Liu, Weiwei Cui, Yingcai Wu, and Mengchen Liu. 2014. A survey on
information visualization: recent advances and challenges. �e Visual Computer
30, 12 (2014), 1373–1393.

[27] Addy Osmani. 2011. Pa�erns For Large-Scale JavaScript Application Architecture.
Retrieved March 2, 2017 from h�ps://addyosmani.com/largescalejavascript/

[28] Addy Osmani. 2012. Learning JavaScript Design Pa�erns: A JavaScript and j�ery
Developer’s Guide. O’Reilly Media, Inc.

[29] Axel Rauschmayer. 2015. Exploring ES6: Upgrade to the next version of
JavaScript. Retrieved March 2, 2017 from h�ps://leanpub.com/exploring-es6/

[30] Arvind Satyanarayan, Dominik Moritz, Kanit Wongsuphasawat, and Je�rey
Heer. 2017. Vega-lite: A grammar of interactive graphics. IEEE Transactions on
Visualization and Computer Graphics 23, 1 (2017), 341–350.

[31] Arvind Satyanarayan, Ryan Russell, Jane Ho�swell, and Je�rey Heer. 2016.
Reactive vega: A streaming data�ow architecture for declarative interactive
visualization. IEEE transactions on visualization and computer graphics 22, 1
(2016), 659–668.

[32] Chad A Steed, Katherine J Evans, John F Harney, Brian C Jewell, Galen Shipman,
Brian E Smith, Peter E �ornton, and Dean N Williams. 2014. Web-based visual
analytics for extreme scale climate science. In Big Data (Big Data), 2014 IEEE
International Conference on. IEEE, 383–392.

[33] Chris Stolte, Diane Tang, and Pat Hanrahan. 2002. Polaris: A system for query,
analysis, and visualization of multidimensional relational databases. IEEE Trans-
actions on Visualization and Computer Graphics 8, 1 (2002), 52–65.

[34] US-CERT. 2013. Oracle Java Contains Multiple Vulnerabilities. Alert (TA13-064A).
Retrieved March 2, 2017 from h�ps://www.us-cert.gov/ncas/alerts/TA13-064A

[35] Kanit Wongsuphasawat, Dominik Moritz, Anushka Anand, Jock Mackinlay, Bill
Howe, and Je�rey Heer. 2016. Towards a general-purpose query language for
visualization recommendation. In Proceedings of the Workshop on Human-In-the-
Loop Data Analytics. ACM, 4.

[36] Kanit Wongsuphasawat, Dominik Moritz, Anushka Anand, Jock Mackinlay,
Bill Howe, and Je�rey Heer. 2016. Voyager: Exploratory analysis via faceted
browsing of visualization recommendations. IEEE transactions on visualization
and computer graphics 22, 1 (2016), 649–658.

[37] Kanit Wongsuphasawat, Zening �, Dominik Moritz, Riley Chang, Felix Ouk,
Anushka Anand, Jock Mackinlay, Bill Howe, and Je�rey Heer. 2017. Voyager 2:
Augmenting Visual Analysis with Partial View Speci�cations. In Proceedings of
the SIGCHI conference on Human factors in computing systems. ACM.

https://angularjs.org/
http://convnetjs.com/
https://jstat.github.io/
http://mathjs.org/
https://handsontable.github.io/ngHandsontable/
https://handsontable.github.io/ngHandsontable/
https://www.npmjs.com/
http://scaleapp.org/
https://github.com/jasondavies/science.js/
https://github.com/jasondavies/science.js/
https://webpack.github.io/
https://addyosmani.com/largescalejavascript/
https://leanpub.com/exploring-es6/
https://www.us-cert.gov/ncas/alerts/TA13-064A

	Abstract
	1 Introduction
	2 BACKGROUND AND RELATED WORK
	2.1 Modular web architectures for interactive visualization
	2.2 Modular web visual analytics with SOCR

	3 VISUAL ANALYTICS SYSTEM DESIGN
	3.1 Requirements
	3.2 General architecture
	3.3 Module structure
	3.4 Core module for inter-module communications

	4 SOCRAT CORE IMPLEMENTATION
	4.1 Module level
	4.2 Platform level
	4.3 User interface
	4.4 System level

	5 Application EXAMPLE USE CASE
	6 DISCUSSION AND ONGOING WORK
	Acknowledgments
	References

