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ABSTRACT 

Database systems serve a wide range of use cases efficiently, but 
require data to be loaded and adapted to the system's execution 
engine. This pre-processing step is a bottleneck to the analysis of 
the increasingly large and heterogeneous datasets. Therefore, 

numerous research efforts advocate for querying each dataset in 
situ,i.e., without pre-loading it in a DBMS. On the other hand, 
performing analysis over raw data entails numerous overheads 
because of the potentially inefficient data representations. 
In this paper, we investigate the effect of vector processing on raw 
data querying. We enhance the operators of a query engine to use 
SIMD operations. Specifically, we examine the effect of SIMD on 
two different cases: the scan operators that perform the CPU-

intensive task of input parsing, and the part of the query pipeline 
that performs a selection and computes an aggregate. We show 
that a vectorized approach has a lot of potential to improve 
performance, which nevertheless comes with trade-offs.  

1. INTRODUCTION 
As the size of data and its variety continue to grow at rapid rates, 
loading entire datasets in a DBMS prior to querying them 
constitutes a bottleneck, incurred before any queries can be 
launched over the datasets. In addition, many practitioners avoid 
the use of DBMS altogether due to vendor lock-in concerns. They 
avoid storing their data in proprietary, DBMS-specific file formats 
because they still want to launch external scripts or other 
programs over their data. Consequently, numerous systems 
advocate querying data in their raw representation, without 

loading them in a DBMS a priori [1,2,3,4,5]. 
On the other hand, DBMS load data in a compact, well-
engineered representation to minimize access costs. Querying raw 
data introduces various overheads. For verbose, textual file 
formats, every query has to re-parse the input data, identify tokens 
per “tuple “, convert raw data fields, etc. To minimize the costs, 
systems querying raw data use various techniques, such as 
specialized index structures [1,2,4] and parallelism [3,5]. The 

former techniques target scenarios where data accesses are meant 
to be judicious, whereas the latter attempt to load the raw data 
with a negligible loading cost. 
This work focuses on how judicious data accesses can be further 
sped up through the use of vectorization [5]. We therefore use a 
pipelined query engine as the starting point, and extend it to be 
able to access raw CSV data with the use of positional maps[1]. 
Positional maps are auxiliary structures that capture the position 

of raw data fields in a CSV file. For example, for every row in a 
CSV file, the positional map for it captures the positions of the 1st, 

6th, 11th, … fields. The system can thus use the known positions to 
navigate in the raw file with reduced cost, avoiding parsing from 
scratch. Then, we extend the query engine with SIMD processing 
primitives to further reduce processing costs, which allow 
performing the same operation for a vector of data at a time, thus 
taking advantage of data level parallelism.  
Contributions. In this paper, we examine SIMD optimizations on 
a query engine for raw data. We develop a SIMD-powered scan 

operator for CSV data, and an aggregation operator that also 
performs data filtering. Our results show that SIMD-aware 
operators outperform their scalar counterparts in the majority of 
cases. There are cases, however, where combining scalar and 
vectorized code is more beneficial. 

2. OPTIMIZED OPERATORS 
Scan.The query engine we use converts judiciously only the data 
fields necessary to answer the current query. Therefore, a typical 
invocation of a scan operator for CSV files involves a 
combination of field skips and conversions of target fields per 
CSV record. A skip searches for a delimiter, either forwards or 
backwards in the file, using a character-to-character comparison; 
the delimiter denotes the end of a field. The single-character 

comparisons can be vectorized by loading N bytes at a time in 
SIMD registers and comparing them in vector-sized chunks [5]. 
The result of the SIMD comparison is a mask vector that can be 
converted to a single integer bitmask, with set bit positions 
corresponding to delimiter offsets. The number of trailing zeroes 
in this bitmask equals the offset of the delimiter. The search for 
the next field continues from the last delimiter found. 
For relatively short fields, consecutive loads of the SIMD registers 
and comparisons overlap. The result is performance degradation, 

because we have to fill the SIMD registers repeatedly for short 
fields. As bitmasks hold the position of all delimiters in a chunk, 
this inefficiency can be avoided by reusing the bitmask’s data 
rather than discarding it. A persistent bitmask can be used as 
previously, shifted appropriately for each skip to reflect the 
current position until it is depleted. Then, the next bitmask is 
computed. For instance, a “0001001001000000” bitmask 
produced by a 16 byte scan can be exploited for 3 skips, each 

consuming up to the rightmost set bit by shifting 7, 3 and 3 bits to 
the right respectively, before scanning forward again. This method 
implies a one-way traversal compared to the scalar version. 
SIMD-aware scans are mostly useful when fully converting the 
data input. When, however, they are combined with a positional 
map for judicious data accesses, the persistent bitmask is always 
relative to the current position in the file and is made irrelevant by 
jumps. For this approach to operate correctly, the bitmask info has 

to be reset after using the index. By accessing data only to retrieve 
specific values, the code path becomes more complex. Thus, the 
benefit from vectorization is smaller. 
Aggregations. Analytical queries typically include a series of 
filtering predicates and the calculation of some aggregate 
expressions. We therefore examine an operator that combines a 
selection and an aggregation step. For each record, the necessary 
columns are loaded, the condition is computed and, if true, the 

code branches to the aggregation. We have added a SIMD-aware 
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Figure 3: Misprediction sensitivity 

version of the aggregation operator, which works with a vector of 
data at a time. 

SIMD, however, is incompatible with aggregation by branching. 
The vectorized alternative is predication. The selection predicate 
results in a mask vector, applied to the entire input. In the end, the 
elements of the partial results are aggregated together to produce 
the result. As the overall operator supports multiple aggregations 
at once, this process takes place for each one of them. 

3. EXPERIMENTAL EVALUATION 
Experimental Setup.We evaluate the impact of our optimizations 
to the raw data querying engine using a server with 2 Intel Xeon 
E5-2650L v3 processors running at 1.8 GHz. These processors 
support 256-bit wide AVX2 SIMD instructions .The system has 
384GB of DRAM and 2TB SATA3 HDD. We use the LineItem 
table from the TPC-H benchmark as the schema for the input 

datasets. 
Scan.In this experiment, we evaluate the vectorized version of the 
scan operator. The input file uses the CSV file format and 
contains 60 million rows that require 7.2GB on disk. The 
workload consists of 5 queries and we clear the caches before 
running the first query. The first 3 queries in the sequence project 
2 columns, while Q4 and Q5 project 3 and 4 columns 
respectively. We repeat the experiment with a positional map that 

contains one entry per 3 columns, and a coarser-grained version 
that uses one entry per 5 columns. 
Figure 1 plots the execution time per query using either of the 
fine-and coarse-grained settings. In both cases, the positional map 
is populated during the execution of the first query and reused 
subsequently. The first query benefits greatly from the use of 
SIMD instructions, which decrease the execution time by 1.8-2x 
depending on the type of the positional map. However, the next 

two queries that project the same columns are 60% slower when 
using SIMD. These queries represent the ideal case for the 
original version of the scan operator as they can fully reuse the 
positional map for direct access to the raw data. On the other 
hand, the SIMD version encounters short sequences that create 
delays in the pipeline. When projecting additional columns, the 
benefits of SIMD depend on the position of the attributes relative 
to the state of the positional map. This trade-off can be observed 
in the query that projects 4 columns. Overall, utilizing SIMD 

efficiently requires tuning all parameters of the scan operator. 
Aggregations.In this experiment, we evaluate the vectorized 
version of the aggregation pipeline. The input files use a binary 
columnar representation of the table with 600 million rows. The 
workload consists of 5 queries and we clear the caches before 
running the first query. All queries apply a filtering predicate with 
30% selectivity on the orderkey attribute, and also vary the type of 
the aggregation operator and the columns it accesses. Q1 uses a 

simple “COUNT(*)” aggregation while Q2 uses 
“MAX(quantity)”. Q3 combines the two aggregation operators, 
while Q4 and Q5 each add additional MAX operator on a 
different column to the preceding query in the sequence. 

Figure 2 plots the execution time of the original and vectorized 
version of the system for the sequence of queries. In all cases, the 
SIMD version reduces execution time by a factor of 1.2-6x. The 
biggest improvement is observable in the Q1 COUNT query. This 
effect is due to the very high branch misprediction rate of 0.447 

for the original version, whereas the SIMD version does not 
perform branches. High branch misprediction causes the 
execution time of Q1 to be higher than Q3, even though Q3 is 
essentially an extended version of Q1 that calculates more 
aggregates. We further examine Q1 in Figure 3, where we vary 
selectivity: For selectivities closer to 50%,we observe even higher 
performance improvement, which corroborates the finding of a 
related study [7]. When the pipelines include multiple operators, 

this effect is masked by other instructions required to compute the 
additional aggregations. Overall, the use of SIMD improves 
robustness by removing sensitivity to selectivity. 

4. CONCLUSIONS 
In this paper, we quantify the opportunities for applying 

vectorization techniques to raw data querying. We study two 
components of the system, the scan operator and the aggregation 
pipeline, and examine the trade-offs involved in using SIMD-
powered vectorized execution. We show that the performance of 
the vectorized scan operator depends on both the positional map 
settings and the attribute layout, while the vectorized aggregations 
are more robust. In the future, we will apply vectorization 
techniques to other operators and fine-tune them to amortize the 
trade-offs. 
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