
Vectorizing an In Situ Query Engine

Panagiotis Sioulas
University of Athens

panossioulas@gmail.com

Anastasia Ailamaki
École Polytechnique Fédérale de Lausanne

anastasia.ailamaki@epfl.ch

ABSTRACT

Database systems serve a wide range of use cases efficiently, but
require data to be loaded and adapted to the system's execution
engine. This pre-processing step is a bottleneck to the analysis of
the increasingly large and heterogeneous datasets. Therefore,

numerous research efforts advocate for querying each dataset in
situ,i.e., without pre-loading it in a DBMS. On the other hand,
performing analysis over raw data entails numerous overheads
because of the potentially inefficient data representations.
In this paper, we investigate the effect of vector processing on raw
data querying. We enhance the operators of a query engine to use
SIMD operations. Specifically, we examine the effect of SIMD on
two different cases: the scan operators that perform the CPU-

intensive task of input parsing, and the part of the query pipeline
that performs a selection and computes an aggregate. We show
that a vectorized approach has a lot of potential to improve
performance, which nevertheless comes with trade-offs.

1. INTRODUCTION
As the size of data and its variety continue to grow at rapid rates,
loading entire datasets in a DBMS prior to querying them
constitutes a bottleneck, incurred before any queries can be
launched over the datasets. In addition, many practitioners avoid
the use of DBMS altogether due to vendor lock-in concerns. They
avoid storing their data in proprietary, DBMS-specific file formats
because they still want to launch external scripts or other
programs over their data. Consequently, numerous systems
advocate querying data in their raw representation, without

loading them in a DBMS a priori [1,2,3,4,5].
On the other hand, DBMS load data in a compact, well-
engineered representation to minimize access costs. Querying raw
data introduces various overheads. For verbose, textual file
formats, every query has to re-parse the input data, identify tokens
per “tuple “, convert raw data fields, etc. To minimize the costs,
systems querying raw data use various techniques, such as
specialized index structures [1,2,4] and parallelism [3,5]. The

former techniques target scenarios where data accesses are meant
to be judicious, whereas the latter attempt to load the raw data
with a negligible loading cost.
This work focuses on how judicious data accesses can be further
sped up through the use of vectorization [5]. We therefore use a
pipelined query engine as the starting point, and extend it to be
able to access raw CSV data with the use of positional maps[1].
Positional maps are auxiliary structures that capture the position

of raw data fields in a CSV file. For example, for every row in a
CSV file, the positional map for it captures the positions of the 1st,

6th, 11th, … fields. The system can thus use the known positions to
navigate in the raw file with reduced cost, avoiding parsing from
scratch. Then, we extend the query engine with SIMD processing
primitives to further reduce processing costs, which allow
performing the same operation for a vector of data at a time, thus
taking advantage of data level parallelism.
Contributions. In this paper, we examine SIMD optimizations on
a query engine for raw data. We develop a SIMD-powered scan

operator for CSV data, and an aggregation operator that also
performs data filtering. Our results show that SIMD-aware
operators outperform their scalar counterparts in the majority of
cases. There are cases, however, where combining scalar and
vectorized code is more beneficial.

2. OPTIMIZED OPERATORS
Scan.The query engine we use converts judiciously only the data
fields necessary to answer the current query. Therefore, a typical
invocation of a scan operator for CSV files involves a
combination of field skips and conversions of target fields per
CSV record. A skip searches for a delimiter, either forwards or
backwards in the file, using a character-to-character comparison;
the delimiter denotes the end of a field. The single-character

comparisons can be vectorized by loading N bytes at a time in
SIMD registers and comparing them in vector-sized chunks [5].
The result of the SIMD comparison is a mask vector that can be
converted to a single integer bitmask, with set bit positions
corresponding to delimiter offsets. The number of trailing zeroes
in this bitmask equals the offset of the delimiter. The search for
the next field continues from the last delimiter found.
For relatively short fields, consecutive loads of the SIMD registers
and comparisons overlap. The result is performance degradation,

because we have to fill the SIMD registers repeatedly for short
fields. As bitmasks hold the position of all delimiters in a chunk,
this inefficiency can be avoided by reusing the bitmask’s data
rather than discarding it. A persistent bitmask can be used as
previously, shifted appropriately for each skip to reflect the
current position until it is depleted. Then, the next bitmask is
computed. For instance, a “0001001001000000” bitmask
produced by a 16 byte scan can be exploited for 3 skips, each

consuming up to the rightmost set bit by shifting 7, 3 and 3 bits to
the right respectively, before scanning forward again. This method
implies a one-way traversal compared to the scalar version.
SIMD-aware scans are mostly useful when fully converting the
data input. When, however, they are combined with a positional
map for judicious data accesses, the persistent bitmask is always
relative to the current position in the file and is made irrelevant by
jumps. For this approach to operate correctly, the bitmask info has

to be reset after using the index. By accessing data only to retrieve
specific values, the code path becomes more complex. Thus, the
benefit from vectorization is smaller.
Aggregations. Analytical queries typically include a series of
filtering predicates and the calculation of some aggregate
expressions. We therefore examine an operator that combines a
selection and an aggregation step. For each record, the necessary
columns are loaded, the condition is computed and, if true, the

code branches to the aggregation. We have added a SIMD-aware

Permission to make digital or hard copies of part or all of this work for

personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that

copies bear this notice and the full citation on the first page. Copyrights

for third-party components of this work must be honored. For all other

uses, contact the Owner/Author.

Copyright is held by the owner/author(s).

SIGMOD'16, June 26 - July 01, 2016, San Francisco, CA, USA

ACM 978-1-4503-3531-7/16/06.
http://dx.doi.org/10.1145/2882903.2914829

2261

http://dx.doi.org/10.1145/2882903.2914829

Figure 3: Misprediction sensitivity

version of the aggregation operator, which works with a vector of
data at a time.

SIMD, however, is incompatible with aggregation by branching.
The vectorized alternative is predication. The selection predicate
results in a mask vector, applied to the entire input. In the end, the
elements of the partial results are aggregated together to produce
the result. As the overall operator supports multiple aggregations
at once, this process takes place for each one of them.

3. EXPERIMENTAL EVALUATION
Experimental Setup.We evaluate the impact of our optimizations
to the raw data querying engine using a server with 2 Intel Xeon
E5-2650L v3 processors running at 1.8 GHz. These processors
support 256-bit wide AVX2 SIMD instructions .The system has
384GB of DRAM and 2TB SATA3 HDD. We use the LineItem
table from the TPC-H benchmark as the schema for the input

datasets.
Scan.In this experiment, we evaluate the vectorized version of the
scan operator. The input file uses the CSV file format and
contains 60 million rows that require 7.2GB on disk. The
workload consists of 5 queries and we clear the caches before
running the first query. The first 3 queries in the sequence project
2 columns, while Q4 and Q5 project 3 and 4 columns
respectively. We repeat the experiment with a positional map that

contains one entry per 3 columns, and a coarser-grained version
that uses one entry per 5 columns.
Figure 1 plots the execution time per query using either of the
fine-and coarse-grained settings. In both cases, the positional map
is populated during the execution of the first query and reused
subsequently. The first query benefits greatly from the use of
SIMD instructions, which decrease the execution time by 1.8-2x
depending on the type of the positional map. However, the next

two queries that project the same columns are 60% slower when
using SIMD. These queries represent the ideal case for the
original version of the scan operator as they can fully reuse the
positional map for direct access to the raw data. On the other
hand, the SIMD version encounters short sequences that create
delays in the pipeline. When projecting additional columns, the
benefits of SIMD depend on the position of the attributes relative
to the state of the positional map. This trade-off can be observed
in the query that projects 4 columns. Overall, utilizing SIMD

efficiently requires tuning all parameters of the scan operator.
Aggregations.In this experiment, we evaluate the vectorized
version of the aggregation pipeline. The input files use a binary
columnar representation of the table with 600 million rows. The
workload consists of 5 queries and we clear the caches before
running the first query. All queries apply a filtering predicate with
30% selectivity on the orderkey attribute, and also vary the type of
the aggregation operator and the columns it accesses. Q1 uses a

simple “COUNT(*)” aggregation while Q2 uses
“MAX(quantity)”. Q3 combines the two aggregation operators,
while Q4 and Q5 each add additional MAX operator on a
different column to the preceding query in the sequence.

Figure 2 plots the execution time of the original and vectorized
version of the system for the sequence of queries. In all cases, the
SIMD version reduces execution time by a factor of 1.2-6x. The
biggest improvement is observable in the Q1 COUNT query. This
effect is due to the very high branch misprediction rate of 0.447

for the original version, whereas the SIMD version does not
perform branches. High branch misprediction causes the
execution time of Q1 to be higher than Q3, even though Q3 is
essentially an extended version of Q1 that calculates more
aggregates. We further examine Q1 in Figure 3, where we vary
selectivity: For selectivities closer to 50%,we observe even higher
performance improvement, which corroborates the finding of a
related study [7]. When the pipelines include multiple operators,

this effect is masked by other instructions required to compute the
additional aggregations. Overall, the use of SIMD improves
robustness by removing sensitivity to selectivity.

4. CONCLUSIONS
In this paper, we quantify the opportunities for applying

vectorization techniques to raw data querying. We study two
components of the system, the scan operator and the aggregation
pipeline, and examine the trade-offs involved in using SIMD-
powered vectorized execution. We show that the performance of
the vectorized scan operator depends on both the positional map
settings and the attribute layout, while the vectorized aggregations
are more robust. In the future, we will apply vectorization
techniques to other operators and fine-tune them to amortize the
trade-offs.

5. REFERENCES
[1] I. Alagiannis, R. Borovica, M. Branco, S. Idreos and A.

Ailamaki. NoDB:Efficient Query Execution on Raw Data
Files. In SIGMOD, 2012.

[2] S. Blanas, K. Wu, S. Byna, B. Dong and A. Shoshani.
Parallel data analysis directly on scientific file formats. In
SIGMOD, 2014.

[3] Y. Cheng and F. Rusu. Parallel in-situ data processing with
speculative loading. In SIGMOD, 2014.

[4] M. Karpathiotakis, M. Branco, I. Alagiannis and A.
Ailamaki. Adaptive Query Processing on RAW Data. In
PVLDB, 7(12): 1119-1130, 2014.

[5] T. Mühlbauer, W. Rödiger, R. Seilbeck, A. Reiser, A.
Kemper and T. Neumann. Instant loading for main memory
databases. In PVLDB, 6(14): 1702-1713, 2013.

[6] O. Polychroniou, A. Raghavan and K.A. Ross. Rethinking
SIMD Vectorization for In-Memory Databases. In SIGMOD,
2015.

[7] J. Sompolski, M. Zukowski and P. A. Boncz. Vectorization
vs compilation in query execution. In DaMoN, 2011.

Figure 1: Scan w/ coarse/fine grained PM Figure 2: Aggregation pipelines

2262

