
TrendQuery: A System for
Interactive Exploration of Trends

Niranjan Kamat
Computer Science &

Engineering
The Ohio State University
kamatn@cse.osu.edu

Eugene Wu
Computer Science

Columbia University
ewu@cs.columbia.edu

Arnab Nandi
Computer Science &

Engineering
The Ohio State University
arnab@cse.osu.edu

ABSTRACT
The surfacing of trends from data collections such as user-
generated content streams and news articles is a popular and
important data analysis activity, used in applications such
as business intelligence, quantitative stock trading and, so-
cial media exploration. Unlike traditional content analysis,
trend analysis includes an additional vital time dimension:
a trend can be defined as a temporal pattern over a group of
semantically related items. The unsupervised discovery of
trends is often not sufficient, either due to inadequacies in
the trend analysis algorithm, or because the data collection
itself does not possess all of the information to identify the
trend. Thus, it is necessary for an expert human-in-the-loop
to be involved in the process of trend analysis.

To this end, we introduce TrendQuery, a system designed
towards iterative and interactive surfacing of trends. Our
system provides a set of trends to the expert, and enu-
merates iterative operations to curate the result. This pro-
cess continues until the expert is satisfied with the surfaced
trends. Since the space of possible tweaks to the result can
be extremely large, the system continually provides feedback
and guidance to the expert to prioritize possible operations.
Our system allows interactive curation of trends providing
better insights than a purely unsupervised approach.

1. INTRODUCTION
Due to the inherent historical nature of many data sources,

computing measures such as item frequency over time is
useful in a large number of domains – stock prices, sales
amount, tweets, etc. Beyond inspecting temporal patterns
for a single item, it is also interesting and useful to consider
groups of items, such as semantically related words “xquery”
and “xml”. We consider this generation of groups of terms
that share similar temporal and semantic patterns as trend
analysis. Analyzing trends over data is tremendously useful
both from a business perspective and for knowledge gather-
ing purposes.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

HILDA’16, June 26 2016, San Francisco, CA, USA
c© 2016 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ISBN 978-1-4503-4207-0/16/06. . . $15.00

DOI: http://dx.doi.org/10.1145/2939502.2939514

Why is Interactivity Important in Trend Analysis?:
Trend analysis consists of a series of steps, with each step
having the potential to introduce errors or inaccuracies: Fre-
quency data is inherently noisy and highly fluctuating. Fea-
ture construction and the algorithms built on top of them,
although necessary, have the potential to model insight in-
correctly and further induce errors. The limitations of the
image display (screen resolution, color) further results in
information loss. Presence of outliers is a recurring phe-
nomenon in any type of data analysis, with smaller datasets
worsening the signal to noise ratio as well. These different er-
ror sources have a compounding effect on the overall error. It
is often too difficult or impossible to automatically fix these
errors, e.g., constructing features and algorithms often re-
quire manual fine-tuning. Application of various time-series
analysis techniques on erroneous data results in erroneous
results as well. Thus, intervention by the user at each step
has the potential to improve the quality of analysis results.

Secondly, the successful completion of any analysis task
is marked by the user being satisfied with the analysis out-
put. In the case of unsupervised algorithms, in the absence
of ground-truth data, it is apparent that different users can
have different preferences for output. In the trend detection
paper by Twitter [10], the authors have noted the absence
of a single best trend-detection algorithm with different ap-
proaches having different trade-offs. As in most of the min-
ing tasks, tuning a number of parameters to obtain optimal
values is an extremely difficult and time consuming task.

In these circumstances, we can improve the overall ana-
lytical process by giving the user the ability to inspect the
results of the initial analysis and change them on the fly –
enabling rapid integration of human input. Empowering the
user in this fashion can thus be vital in interactive analyt-
ics. However, exposing all the tuning knobs of the trend
analysis pipeline could overwhelm the user. Thus, provid-
ing exposing the right set of operations to the end user is
critical for effective, interactive curation of trends. In this
endeavor, TrendQuery provides a set of operations that the
user can improve the result with and helps the user choose
amongst them using a mixed-initiative user interface. This
assists the users in fixing the errors, and cleaning the data,
while improving the trend extraction output.

Trends occur at varying granularities in the data – from
the minutiae of individual words to multiple words grouped
together hierarchically under varying weights. Thus, trend
analysis consists of interacting with the data at different
resolutions. Therefore, the overall interactive trend analy-
sis process will consist of the following two phases – offline

Figure 1: TrendQuery UI: Users can employ a direct manipulation approach to point / click / drag individual
trend lines, performing actions such as deleting trends, moving trends from one subplot to another, grouping,
splitting them, etc. Further actions & their illustrations are provided in Section 2.2. Recommendations are
provided on the top right, and a query log is shown on the bottom right for debug / undo purposes.

analysis, followed by online iterative curation.

Offline: The temporal and semantic distances (Section 2)
are first used to cluster the input. Most representative words
in each cluster are presented, with each initial cluster occu-
pying a different subplot. While we would like to investigate
techniques such as topic modeling, biclustering, etc., cluster-
ing was found to give interesting results for our datasets.

Online: The user is now capable of manipulating the trends.
As part of the online interactive phase, the initial trend data
can be curated using actions presented in Section 2.2. The
user can choose an action from the ranked list of action sug-
gestions, or enter it in the interactive text editor manually,
or use direct manipulation operations on the trends them-
selves. He continues operating in this interactive fashion till
he is satisfied with the overall output.

Task Example: Consider John, a university grant super-
visor, who wants to understand the trends in NSF research
grants. He is presented with an initial clustered output us-
ing TrendQuery . He proceeds to delete glaring outliers from
different subplots (Q0, Q1, Q2, Q3, Q4). Now ”climate” and
”impact”strike at him, which he groups pQ5q. He detects an-
other trend consisting of ”network”, ”mobil” and ”sens” (Q6,
Q7). Next, he glances at numerous similar terms – ”learn”,
”predict”, ”detect”, ”innov”, ”explor”(Q8, Q9, Q10, Q11). At
this stage, he is not quite sure what would be an appropriate
course of action – maybe the first and the third trends need
to be grouped together signifying increasing governmental
focus on innovating and exploring climate change solutions
or maybe the third trend is a general disparate trend. He
changes his focus to other subplots, which in turn might help
him better understand these trends as well. Interestingly,

governmental efforts towards ”bigdata” and ”cybersecurity”
also seem to be gathering steam over the last decade – pro-
viding another avenue for investigation. Figure 1 represents
the TrendQuery UI at this exploration stage. Thus, using
a sequence of actions, the user is not only able to clean the
output and improve the result but also understand the result
better in the process.

1.1 Contributions
Our contributions can be enumerated as follows:

1. We provide a principled database-inspired approach to
operators for interactive curation of trends.
2. We provide a mixed-initiative interface, co-designed with
and exposing our operators. An ordered list of query sugges-
tions is provided to the user, which takes into consideration
the query session, using well-defined metrics.

2. THE TRENDQUERY SYSTEM
The atomic unit of a trend consists of a timeseries repre-

senting its temporal and semantic information. The tempo-
ral component can be defined by the following SQL query:
SELECT term, year, COUNT(*) FROM trend_table GROUP BY

term, year.
A trend can be defined as a set of timeseries, grouped

together in a hierarchical fashion with varying weights as-
signed to individual groups. We define the distance between
two trends using linear combination of their temporal and
semantic distance due to their orthogonality as follows:

distpt1, t2q “ αˆ temppt1, t2q ` β ˆ sempt1, t2q (1)

Metric learning [13], based on user actions, can then be
used to learn these parameters. TrendQuery supports differ-

ent quickly computable temporal metrics such as euclidean [12],
shape-based [20], and cDTW [23]. We currently use the
largest synset path similarity to estimate the semantic simi-
larity [2,25]. We would like to investigate different semantic
metrics more thoroughly in the future, in conjunction with
their combination with temporal metrics.

2.1 System Architecture
Our system consists of a trend generation backend, and an

interactive frontend to curate them. The frontend consists of
subplots for displaying different trends, ranked list of action
suggestions, an editor to input the next query manually, and
the query log. Some components are briefly explained below.

Clustering
Backend

Query Log

Action Processor Suggestion Backend

Query Text
Input

User Interface

Suggestion
Frontend

Figure 2: System Architecture

Trend Clustering Backend: The input distance matrix,
consisting of pairwise distances (Equation 1), is provided to
a clustering algorithm. During the query session, the user
can also trigger a new clustering to be performed which takes
into consideration the user preferences thus far.
Action Suggestion Frontend: A ranked list of sugges-
tions is presented in a parameterized form via a drop down
menu. A novel ranked parametrization technique is used to
increase number of possible suggestions (Section 2.3.3).
Action Processor: This module performs the action, up-
dates the subplots, and calls the Action Suggestion Backend
to update the list of suggestions.
Action Suggestion Backend: This module enumerates
the different possible actions and ranks them (Section 2.3).

2.2 Manipulation Operations
In this section, we list the available actions – how to per-

form them using the point and click approach or an actual
query. TrendQuery uses a one-to-one mapping between user
input and actions. Although this reduces the flexibility of
user actions, it increases robustness and helps provide the
user with a better intuitive idea of their effect. In our prelim-
inary user studies, we found that users were able to quickly
mentally map user actions with the corresponding opera-
tions. We believe our operations constitute building blocks
of any interactive trend manipulation system. Further, they
were found to be expressive enough to detect trends and
clean the resultset in our preliminary user studies.

Delete: This action can be performed on an outlying time-
series, by right clicking the trend.
Query: DELETE [FROM SUBPLOT subplot] TREND[S] [X |

WHERE {OUTLIER_SCORE ą threshold |

OUTLIER_RANK ă rank}].

Move: If a user believes that a timeseries is better suited to
being in another subplot, he can drag it to the other subplot.
Query: MOVE FROM SUBPLOT subplot_a TREND x TO subplot_b.
A timeseries having a high outlier score indicates that it
might be a good candidate for either the Delete or Move

actions. While more complex approaches such as ROF [8],
LOCI [19], etc. can be used for this purpose, we use the Ma-
halanobis distance and the corresponding Chi-Square test
due to its speed of computation.

Group: If the user considers different timeseries within a
subplot to be similar, he can group them together by click-
ing one, followed by the other.
Query: GROUP [FROM SUBPLOT subplot] TREND[S] [X[,...]]

[WHERE {SIMILARITY_SCORE ą threshold} |

{SIMILARITY_RANK ă rank}].

Split: The user can split a group by middle clicking it.
Query: SPLIT [FROM SUBPLOT subplot] TREND[S] [X[,...]]

[WHERE {SIMILARITY_SCORE ă threshold} |

{SIMILARITY_RANK ą rank}].
Importantly, each of these actions are can be undone.

Thus, the overall session results in being undoable as well
without needing to save the entire program state. For exam-
ple, a Group action has a corresponding Split action. This
is extremely helpful as undoing actions is vital in analytics.
In the future, we would like to improve our action set by
enabling user defined functions.

2.3 Action Suggestion
The manipulation operations have two orthogonal effects

– they improve the quality of trends and change the sys-
tem state. These effects are taken into consideration by the
Action Suggestion Backend module in order to improve sug-
gestions, using the query session. This module consists of
the submodules, Action Enumeration and Action Ranking.

2.3.1 Action Enumeration
For each action type, all possible query instantiations are

first enumerated. For example, the Delete action can be ap-
plied to every trend and is, thus, linear in the number of
trends. However, for some action types, Group and Move,
number of possible applications can be exponentially large.
Hence, we use a novel query ranking based parameterization
technique in order to successively expose possible queries
based on the currently entered incomplete user query (Sec-
tion 2.3.3). Note that more complex instantiations of these
actions can be constructed iteratively, in line with our un-
derlying principle of iterative processing. We provide below
the list of possible applications for different action types.

Action Enumerated List

Delete All timeseries
Move All (timeseries, subplot) pairs
Group All timeseries pairs
Split Each grouped trend

Table 1: Enumerated Actions

2.3.2 Action Ranking
Query Session and Effect Localization: Given our op-
eration set, we can notice that specifying the subplot helps
reduce the action scope, whereas, using a WHERE predicate
and not providing specific trends can result in increased
scope. As the session progresses, a user’s understanding of
the data and the underlying trends keeps improving. There-
fore, we prefer for the user to employ actions with smaller,
localized effects initially, and followed later by more complex
ones. Hence, we initially lower the score of global actions,
and progressively reduce this dampening effect.

User Cues: Understanding the user intent is crucial in im-
proving the query suggestions. However, quantifying this
abstract notion is inherently difficult. We use the two fol-
lowing orthogonal cues to do so:
1. Subplot: A user focusing on a subplot indicates his dis-
satisfaction with its current state and, hence, the associated
operations are given a higher priority.
2. Action Type: Greater importance is also given to the ac-
tion types recently used by the user. For example, if he em-
ploys the Group action, it indicates that the plots currently
possess a higher granularity. Similarly, if the user removes
a trend, it indicates a preponderance of outliers prompting
higher priority for Delete actions.
Using cues about the user preference for plots, and action
types, and localization effects, different enumerated actions
are ranked, in a similar fashion as Wrangler [11] and Data-
Play [1]. An interesting opportunity exists here to explore
better integration between interaction gestures and the un-
derlying algebra beyond our form-based interface.

2.3.3 Query Parameterization
Numerous queries exist which differ by a single parameter.

For example, the DELETE queries can be parameterized as
DELETE FROM SUBPLOT {subplot_0 ... | subplot_n} TREND

{trend_0, ...trend_m}, where the trend instances are var-
ied based on the subplot selected in the earlier part of the
query specification. This simple technique of updating the
successive parameter helps us provide the user with a larger
number of ranked queries while expending fewer pixels.

3. RELATED WORK
Analysis of trend data is a popular analytical task. Twit-

ter has published their work on trend detection [10], at-
tempting to discern rise in new trends over differing time-
scales. TwitterMonitor [17] allows users to interact with the
system by using different criteria to order trends. In con-
trast with these systems, we present the idea of iterative,
exploratory, and interactive analysis with a human-in-the-
loop, which can reside on top of any of these systems.

The efficacy of iterative data cleaning and preparation has
been well illustrated by Potter’s Wheel [21], Wrangler [11],
and DataXFormer [18]. While some other tools like Bell-
man [6] help users understand the quality and structure of
the database, others such as Toped++ [24] transform the
data as well. Unlike these tools, our system uses the cluster-
ing output, which is highly unstructured, as its input data.

There has been extensive review of visual query systems
by Catarci et. al. [4] and El-Mahgary, et. al. [7]. Dat-
aPlay [1] has enabled interactive tweaking of SQL queries
using a graph view of databases. From a text processing per-
spective, VINERy [15] introduces the concept of interactive
tweaking using rule generation for information extraction.
Vegemite [16] uses direct manipulation and programming-
by-demonstration to populate tables with information from
disparate sources. Chiticariu et al. [5] present easy-to-use
capabilities for refining schemas. This line of work has in-
fluenced our direct trend series manipulation actions.

There have also been efforts to incorporate user interac-
tion into clustering [3,22], especially in domains such as gene
analysis in bioinformatics (BiCluster Viewer [9]) and docu-
ment exploration (Lighthouse [14]). However, unlike this
work we not only provide user actions but also query rank-
ing in an easy to use interface. Recent work by Paparrizos
et al. [20] has improved temporal clustering.

4. CONCLUSION & FUTURE WORK
We have presented the TrendQuery user interface and

backend. It allows users to analyze trends in time-series data
using a mixed-initiative user interface. The user actions and
the grammar for the corresponding queries provide a pow-
erful tool for interactive curation of trends. In the future,
we would like to perform a comprehensive user study to an-
alyze not only the helpfulness of our frontend, but also the
effectiveness of our query suggestion backend. We plan on
evaluating our system by comparing output a data scientist
provides (ground truth) with those from numerous Trend-
Query users. We plan on incorporating incremental mining
algorithms during online curation. We would also like to ex-
pand our grammar to the underlying clustering algorithms.

5. REFERENCES
[1] A. Abouzied, J. Hellerstein, and A. Silberschatz. DataPlay:

Interactive Tweaking and Example-Driven Correction of
Graphical Database Queries. UIST, 2012.

[2] S. Bird. NLTK: The Natural Language Toolkit.
COLING/ACL, 2006.

[3] J. R. Brandt, J. Chong, and S. Rosenbaum. Interactive
Clustering for Data Exploration.

[4] T. Catarci et al. Visual Query Systems for Databases: A
Survey. JVLC, 1997.

[5] L. Chiticariu, P. G. Kolaitis, and L. Popa. Interactive
Generation of Integrated Schemas. SIGMOD, 2008.

[6] T. Dasu et al. Mining Database Structure; or, How to Build
a Data Quality Browser. SIGMOD, 2002.

[7] S. El-Mahgary et al. A Form-Based Query Interface for
Complex Queries. JVLC, 2015.

[8] H. Fan, O. R. Zäıane, A. Foss, and J. Wu. A Nonparametric
Outlier Detection for Effectively Discovering Top-N
Outliers from Engineering Data. KDD, 2006.

[9] J. Heinrich et al. BiCluster Viewer: A Visualization Tool
for Analyzing Gene Expression Data. ISVC, 2011.

[10] S. Hendrickson, J. Montague, J. Kolb, and B. Lehman.
Trend Detection in Social Data. Twitter Blog, 2015.

[11] S. Kandel et al. Wrangler: Interactive Visual Specification
of Data Transformation Scripts. SIGCHI, 2011.

[12] E. Keogh et al. Clustering of Time-Series Subsequences is
Meaningless: Implications for Previous and Future
Research. Knowledge and Information Systems, 2005.

[13] B. Kulis. Metric Learning: A Survey. Foundations and
Trends in Machine Learning, 2012.

[14] A. Leuski and J. Allan. Lighthouse: Showing the Way to
Relevant Information. InfoVis, 2000.

[15] Y. Li, E. Kim, M. A. Touchette, et al. VINERy: A Visual
IDE for Information Extraction. PVLDB, 2015.

[16] J. Lin, J. Wong, J. Nichols, et al. End-User Programming
of Mashups with Vegemite. IUI, 2009.

[17] M. Mathioudakis and N. Koudas. TwitterMonitor: Trend
Detection over the Twitter Stream. SIGMOD, 2010.

[18] J. Morcos, Z. Abedjan, I. F. Ilyas, et al. DataXFormer: An
Interactive Data Transformation Tool. SIGMOD, 2015.

[19] S. Papadimitriou et al. Loci: Fast Outlier Detection Using
the Local Correlation Integral. ICDE, 2003.

[20] J. Paparrizos and L. Gravano. k-Shape: Efficient and
Accurate Clustering of Time Series. SIGMOD, 2015.

[21] V. Raman and J. M. Hellerstein. Potter’s Wheel: An
Interactive Data Cleaning System. VLDB, 2001.

[22] M. Rasmussen et al. gCLUTO: An Interactive Clustering,
Visualization, and Analysis System. UMN-CS TR-04, 2004.

[23] H. Sakoe et al. Dynamic programming algorithm
optimization for spoken word recognition. ICASSP, 1978.

[24] C. Scaffidi et al. Intelligently Creating and Recommending
Reusable Reformatting Rules. UIST, 2009.

[25] T. Slimani. Description and Evaluation of Semantic
Similarity Measures Approaches. arXiv, 2013.

