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ABSTRACT
Crowdsourcing database systems have been proposed to lever-
age crowd-powered operations to encapsulate the complex-
ities of interacting with the crowd. Existing systems suffer
from two major limitations. Firstly, in order to optimize
a query, they often adopt the traditional tree model to se-
lect an optimized table-level join order. However, the tree
model provides a coarse-grained optimization, which gener-
ates the same order for different joined tuples and limits the
optimization potential that different joined tuples can be op-
timized by different orders. Secondly, they mainly focus on
optimizing the monetary cost. In fact, there are three op-
timization goals (i.e., smaller monetary cost, lower latency,
and higher quality) in crowdsourcing, and it calls for a sys-
tem to enable multi-goal optimization.

To address the limitations, we develop a crowd-powered
database system CDB that supports crowd-based query opti-
mizations, with focus on join and selection. CDB has funda-
mental differences from existing systems. First, CDB employs
a graph-based query model that provides more fine-grained
query optimization. Second, CDB adopts a unified framework
to perform the multi-goal optimization based on the graph
model. We have implemented our system and deployed it
on AMT, CrowdFlower and ChinaCrowd. We have also cre-
ated a benchmark for evaluating crowd-powered databases.
We have conducted both simulated and real experiments,
and the experimental results demonstrate the performance
superiority of CDB on cost, latency and quality.

Keywords
Crowdsourcing; Crowdsourcing Optimization; Crowd-based
Selection; Crowd-based Join

1. INTRODUCTION
Crowdsourcing aims at soliciting human intelligence to

solve machine-hard problems, and has a variety of real appli-
cations such as entity resolution. Due to the wide adoption
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of crowdsourcing, the recent years have witnessed growing
research interests in devising crowd-powered operations in
the database community, such as join [56, 57, 55, 25, 13],
filter [51, 44], max [26, 54], selection [45, 51], top-k [16,
65], sort [42, 14], counting [41], enumeration [53], as well as
quality-control techniques [35, 37, 40, 66, 49, 70, 59].

Inspired by traditional DBMS, crowdsourcing database
systems, such as CrowdDB [24], Qurk [43], Deco [46], and
CrowdOP [23], have been recently developed. On one hand,
these systems provide declarative programming interfaces
and allow requesters to use an SQL-like language for posing
queries that involve crowdsourced operations. On the other
hand, the systems leverage the crowd-powered operations to
encapsulate the complexities of interacting with the crowd.
Under these design principles, given an SQL-like query from
a requester, the systems first parse the query into a query
plan with crowd-powered operations, then generate tasks to
be published in crowdsourcing markets, and finally collect
the crowd’s inputs for producing the result. However, exist-
ing systems suffer from two major limitations.
Coarse-Grained Query Model. Existing systems adopt
a tree model, which aims at selecting an optimized table-
level join order to optimize a query. However, the tree model
provides a coarse-grained optimization, which generates the
same order for different joined tuples and limits the opti-
mization potential that different joined tuples can be opti-
mized by different orders. For example, consider the tuples
in Figure 1. Each edge between two tuples is a task, which
asks the crowd whether they can be joined. A Blue solid
(Red dotted) edge denotes that the two tuples can (cannot)
be successfully joined. Before asking the crowd, we do not
know the result of each edge. We aim to ask the minimum
number of tasks to find the Blue solid chains as answers.
The tree model asks at least 9+5+1=15 tasks for any join
order. However, the optimal solution is to ask the 3 Red dot-
ted edges, and the tasks on other 24 edges can be saved. We
can observe that the tree model provides a coarse-grained
table-level optimization, possibly because the optimization
goal of traditional databases is to reduce random accesses.
While in crowdsourcing, one optimization goal is to reduce
the number of tasks that reflects the monetary cost, and a
fine-grained tuple-level optimization is preferred.
Single-Goal Optimization. In crowdsourcing, there are
three optimization goals, i.e., smaller monetary cost, lower
latency, and higher quality. There exists trade-off among
these optimization goals. For example, a smaller cost leads
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Figure 1: An example of tuple-level optimization.

to a lower quality and higher latency, and a higher quality
leads to a larger cost and higher latency. Therefore, the
multi-goal optimization that effectively balances these goals
is highly desirable. However, most of the existing systems
(i.e., CrowdDB [24], Qurk [43], and Deco [46]) only focus
on optimizing monetary cost, and they adopt the majority
voting strategy for quality control, and do not consider to
model the latency control. Thus it calls for a new crowd-
powered system to enable the multi-goal optimization.

To address these limitations, we have developed a crowd-
powered database system CDB, which provides a declarative
query language CQL (an extended SQL) that supports crowd-
based data definition and manipulation. CDB has the follow-
ing fundamental differences compared with existing systems.
(1) Fine-Grained Query Model. We propose a graph-
based query model that supports crowd-based query opti-
mizations. Given a CQL query, we build a graph based on
the query and the data (e.g., Figure 1). This graph model
has the advantage of making the tuple-level optimization
applicable and providing the potential of the multi-goal op-
timization at the same time.
(2) Multi-Goal Optimization in One Framework. We
devise a unified framework to perform the multi-goal opti-
mization based on the graph model, with a focus on crowd-
based join and selection. (i) For cost control, our goal is to
minimize the number of tasks to find all the answers. For
example, our method targets at selecting the three dotted
Red edges to ask the crowd. We prove that this problem
is NP-hard and propose an expectation-based method to
select tasks. (ii) For latency control, we adopt the round-
based model which aims to reduce the number of rounds for
interacting with crowdsourcing platforms. We identify the
most “beneficial” tasks which can be used to prune other
tasks, and ask such tasks in parallel to reduce the latency.
For example, the three dotted Red edges can be asked in
parallel. (iii) We optimize the quality by devising quality-
control strategies (i.e., truth inference and task assignment)
for different types of tasks, i.e., single-choice, multi-choice,
fill-in-blank and collection tasks.

To summarize, we make the following contributions.
(1) We develop a crowd-powered database CDB (Section 2)
and define a declarative query language CQL (Section 3).
(2) We propose a graph-based query model that supports
tuple-level optimization, which can save a large amount of
cost than the traditional tree model (Section 4).
(3) We introduce a unified multi-goal optimization frame-
work for balancing cost, latency and quality (Section 5).
(4) We have implemented and deployed our system on Ama-
zon Mechanical Turk (AMT), CrowdFlower and ChinaCrowd.
We created a benchmark for evaluating crowd-powered databases.
We have conducted both simulated and real experiments,
and the experimental results demonstrate the performance
superiority of CDB on cost, latency and quality (Section 6).

2. OVERVIEW OF CDB
We introduce our CDB framework in Section 2.1, and dis-

cuss the differences from existing systems in Section 2.2.

2.1 CDB Framework
Declarative Query Language. We extend SQL by adding
crowd-powered operations and propose crowd SQL (CQL).
CQL contains both data definition language (DDL) and data
manipulation language (DML). A requester can use CQL DDL
to define her data by asking the crowd to collect or fill the
data, or use CQL DML to manipulate the data based on
crowdsourced operations, e.g., crowdsourced selection and
join (see Section 3 for more details of CQL).

Graph Query Model. A requester can submit her tasks
and collect the answers using relational tables. To provide a
fine-grained optimization on the relational data, we define a
graph-based query model. Given a CQL query, we construct a
graph, where each vertex is a tuple of a table in the CQL and
each edge connects two tuples based on the join/selection
predicates in the CQL. We utilize the graph model to provide
the tuple-level optimization (see Section 4 for details).

Query Optimization. Query optimization includes cost
control, latency control and quality control. (i) Cost control
aims to optimize the monetary cost by reducing the numbers
of tasks to ask the crowd. We formulate the task selection
problem using the graph model, prove that this problem
is NP-hard, and propose effective algorithms to reduce the
cost. (ii) Latency control focuses on reducing the latency.
We utilize the number of rounds to model the latency and
aim to reduce the number of rounds. Note to reduce the cost,
we need to utilize the answers of some tasks to infer those of
the others, and the inference will lead to more rounds. Thus
there is a tradeoff between cost and latency. Our goal is
to simultaneously ask the tasked that cannot be inferred by
others in the same round. (iii) Quality control is to improve
the quality, which includes two main components: truth in-
ference and task assignment. Task assignment assigns each
task to multiple workers and truth inference infers task an-
swers based on the results from multiple assigned workers.
We propose a holistic framework for task assignment and
truth inference for different types of tasks. The details on
query optimization will be presented in Section 5.

Crowd UI Designer. Our system supports four types
of UIs. (1) Fill-in-the-blank task: it asks the crowd to fill
missing information, e.g., the affiliation of a professor. (2)
Collection task: it asks the crowd to collect new informa-
tion, e.g., the top-100 universities. (3) Single-choice task:
it asks the crowd to select a single answer from multiple
choices, e.g, selecting the country of a university from 100
given countries. (4) Multiple-choice task: it asks the crowd
to select multiple answers from multiple choices, e.g., select-
ing the research topics of a professor from 20 given topics.
Another goal is to automatically publish the tasks to crowd-
sourcing platforms. We have deployed our system on top of
AMT and CrowdFlower. There is a main difference between
AMT and CrowdFlower. In CrowdFlower, it does not allow
a requester to control the task assignment while AMT has
a development model in which the requester can control the
task assignment. Thus in AMT, we utilize the development
model and enable the online tasks assignment.

MetaData & Statistics. We maintain three types of
metadata. (1) Task. We utilize relational tables to maintain
tasks, where there may exist empty columns which need to

1464



MetaData

Task

Worker

Crowdsourcing

Platforms
Relational

Database

Graph-Based Query Model

Assignment

CQL Parser Result Collection

Query Optimization

Cost Control

Latency Control

Quality Control

!"#$ %##&'()*(+ !,-+. /(0*,*(1*

Crowd UI Designer Statistics

Figure 2: CDB Framework

be crowdsourced. (2) Worker. We maintain worker’s qual-
ity in the history and the current task. (3) Assignment. We
maintain the assignment of a task to a worker as well as the
corresponding result. We also maintain statistics, such as
selectivity, graph edge weights, etc., to facilitate our graph-
based query optimization techniques.

Workflow. A requester defines her data and submits her
query using CQL, which will be parsed by CQL Parser. Then
Graph-based Query Model builds a graph model based on
the parsed result. Next Query Optimization generates an
optimized query plan, where cost control selects a set of
tasks with the minimal cost, latency control identifies the
tasks that can be asked in parallel, and quality control de-
cides how to assign each task to appropriate workers and
infers the final answer. Crowd UI Designer designs various
interfaces and interacts with underlying crowdsourcing plat-
forms. It periodically pulls the answers from the crowdsourc-
ing platforms in order to evaluate worker’s quality. Finally,
Result Collection reports the results to the requester.

2.2 Differences from Existing Systems
This section compares our CDB with recent crowdsourcing

database systems, CrowdDB [24], Qurk [43], Deco [46], and
CrowdOP [23], as illustrated in Figure 3.
(1) Optimization models. Query optimization in the exist-
ing systems can be classified into rule-based and cost-based.
CrowdDB [24] used rule-based optimization, e.g., pushing
down selection predicates and determining join order, which
may not be able to find the query plan with low cost. The
other systems [46, 43, 23] designed cost model that aims
to find query plan with the minimum cost. However, these
systems still adopted a tree model that selects an optimized
table-level join order to optimize the query. As analyzed
above, the tree model gives the same order for different
joined tuples and limits the optimization potential that dif-
ferent joined tuples can be optimized for different orders.
While CDB devises graph-based query optimization to per-
form a fine-grained tuple-level optimization, which has the
potential to save a huge amount of cost.

(2) Optimization objectives. Crowdsourcing query optimiza-
tion should consider trade-offs among cost, latency and qual-
ity, because any single-objective optimization, such as smaller
cost with lower quality, higher quality with larger latency,
etc., is not desirable. As shown in Figure 3, most of existing
systems optimized monetary cost, utilized majority voting

CrowdDB Qurk Deco CrowdOP CDB

Optimized

Crowd

Operators

COLLECT √ × √ × √

FILL √ × √ √ √

SELECT √ √ √ √ √

JOIN √ √ √ √ √

Optimization

Objectives

Cost √ √ √ √ √

Latency × × × √ √

Quality MV MV MV MV √

Optimization

Strategies

Cost-Model × √ √ √ √

Tuple-Level × × × × √

Budget-

Supported
× × × × √

Task

Deployment
Cross-Market × × × × √

Figure 3: Comparison of crowdsourcing systems.

(MV) for quality control, and did not optimize the latency.
CrowdOP [23] optimized latency by simply considering data
dependencies. In contrast, our CDB system develops tech-
niques based on data inference to reduce latency in a more ef-
fective way. Considering the quality concern, existing stud-
ies leverage existing majority voting or its variants, which
is only applicable in single-choice tasks. However, CDB also
takes quality into consideration and devises more sophisti-
cated quality-control strategies (i.e., truth inference and task
assignment) for either single-choice, multiple-choice, fill-in-
blank and collection tasks.
(3) Optimized crowd operators. We consider the commonly
used crowd-powered operators, and examine whether they
are optimized in the existing systems, as shown in Fig-
ure 3. CrowdDB [24] optimized SELECT, JOIN, COLLECT and
FILL. Qurk [43] focused on crowd-powered SELECT and JOIN.
Deco [46] considered more on FILL and COLLECT (i.e., the
fetch operator in Deco) while also supporting SELECT and
JOIN. CrowdOP [23] only supported SELECT, JOIN and FILL

operators. Compared with these systems, CDB optimizes all
of the operators by introducing query language CQL, which
can fulfill more crowdsourcing requirements.
(4) Task deployment. Existing systems published human-
intelligence tasks (HITs) on one individual crowdsourcing
market, such as AMT [1], and the results may be affected by
the bias of the market. In contrast, CDB has the flexibility of
cross-market HITs deployment by simultaneously publishing
HITs to AMT [1], ChinaCrowd [2], CrowdFlower [3], etc.

3. CROWD SQL IN CDB: CQL
This section presents CQL, a declarative programming in-

terface for requesters to define the crowdsourced data and
invoke crowd-powered manipulations. CQL follows standard
SQL syntax and semantics, and extends SQL by adding new
features to support crowd-powered operators, i.e., CROWDEQUAL,
CROWDJOIN, FILL and COLLECT, which are analogical to SE-

LECTION, JOIN, UPDATE and INSERT in SQL. One advantage
of this design is that SQL programmers can easily learn CQL

and user-friendly SQL query formulation tool can be easily
applied for inexperienced users. This section highlights dif-
ferences between CQL and existing languages of CrowdDB [24],
Qurk [43], Deco [46], and CrowdOP [23]. The details of CQL
are introduced in Appendix A.

Crowd-Powered Collection: CQL works under the open-
world assumption and either columns or tables can be crowd-
sourced by introducing a keyword CROWD. CDB introduces
two built-in keywords for data collection: FILL and COLLECT.
FILL asks the crowd to fill the values of a column, e.g., filling
missing values of affiliation of a professor. COLLECT asks the
crowd to collect a table, e.g., collecting top-100 universities.
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One practical issue in FILL and COLLECT is the cleansing
of the crowd-collected data, in particular, the entity resolu-
tion problem. For example, two workers may contribute the
same university with different representations, e.g., “Mas-
sachusetts Institute of Technology” and “MIT”, or the at-
tribute values like “United States” and “USA”. In CDB, this
issue is solved by the following methods. First, CDB provides
an autocompletion interface to the crowd workers to choose
an existing value of an attribute, e.g., first typing a charac-
ter “m” and then choosing “MIT” from a suggested list. If
no existing value fits a worker’s tuple, the worker can also
input a new value, which will be added to the existing value
set. This type of interface can reduce the variety of col-
lected tuples or attributes, since workers could choose from
a same set of values or learn how to represent new values.
Second, there may still exist the cleansing issue, even if the
aforementioned autocompletion interface is used. CDB then
solves this problem in a crowdsourcing manner, such as the
crowdsourced entity resolution techniques [19], by leveraging
the query semantics of CQL, which is discussed below.

Crowd-Powered Query: CQL defines crowdsourced oper-
ations, CROWDEQUAL and CROWDJOIN to solicit the crowd to
perform selection and join on crowdsourced or ordinary at-
tributes. Moreover, CQL has a highlight feature of intro-
ducing a budget mechanism to allow requesters to configure
the cost constraint of crowdsourcing. On the one hand, with
respect to the collection semantics, it is often unclear how
many tuples or values can be collected due to the open-world
assumption. Thus, a budget should be naturally introduced
to bound the number of COLLECT or FILL tasks. On the other
hand, with respect to the query semantics, as the amount of
data may be huge, the requester often wants to set a budget
to avoid running out of money when evaluating a CQL query.

To achieve this goal, CQL introduces a keyword BUDGET,
which can be attached in either collection or query semantics
to set the number of tasks. The requester only needs to pro-
vide the budget, and our query optimization and plan gener-
ation components will design algorithms to fully utilize the
budget for producing better results. BUDGET is different from
LIMIT in CrowdDB [24] and MinTuples in Deco [46], which
introduce a constraint on the number of the results. First,
the result number may not reflect the budget, as prices of
each crowdsourcing task and number of tasks may vary due
to our query plan generation strategies (see Section 5.1.3).
Second, the requester may not know how to configure the
result number: a higher number results in overrun, while a
lower number may not fully utilize the budget.

4. GRAPH QUERY MODEL
We first consider that a CQL query only contains join pred-

icates (Section 4.1). Then we discuss how to extend our
method to support selection in Section 4.2.

4.1 Graph Model for Join Predicates
Given a CQL query with only CROWDJOIN predicates, we

construct a graph, where each vertex is a tuple of a table
in the CQL query. For each join predicate T .Ci CROWDJOIN

T ′.Cj between two tables T and T ′ in the query, we add an
edge between two tuples tx ∈ T and ty ∈ T ′, and the weight
of this edge is the matching probability that the two values
tx[Ci] and ty[Cj ] can be matched, where tx[Ci]/ty[Cj ] is the
value of tx/ty on attribute Ci/Cj .

Next, we discuss how to estimate the matching probabil-
ity. The estimation is trivial for traditional join without

crowdsourcing. For example, considering equi-join, we sim-
ply set ω(e) to 1 if tx[Ci] = ty[Cj ], and 0 otherwise. The prob-
ability is difficult to estimate for CROWDJOIN, as it is hard to
know whether the values can be matched before crowdsourc-
ing. We use the similarity-based estimation, following the
standard practice in prior studies [57, 56, 58, 60]. We can
adopt similarity functions, e.g., edit distance and Jaccard,
to compute the similarity between tx[Ci] and ty[Cj ]. Usually,
the larger similarity tx[Ci] and ty[Cj ] have, the larger proba-
bility they can be matched. Thus we can take the similarity
as the matching probability ω(e) [57]. There also exist other
sophisticated methods to transform similarities to probabil-
ities based on a training set [60]. Note that if two tuples
have very small similarity, i.e., the similarity is smaller than
a threshold ε (e.g., ε=0.3), they have very small likelihood
to be matched [56, 57, 58], and we do not keep such edges.
We also note that we do not enumerate every tuple pair to
compute similarities. Instead, we use existing techniques for
similarity join[10, 56, 33] to efficiently identify the pairs with
similarities not smaller than threshold ε.

We assume that the matching probabilities of the edges
are independent. Note that the independence assumption
may not always hold in practice, because probabilities of
the edges may have positive/negative correlations. How-
ever, such correlations seem to be very complex to compute.
Thus in this paper we adopt the independence assumption
for simplicity, and leave a more comprehensive study on con-
sidering probabilistic correlations as future work.

Next we formally formulate the graph model.

Definition 1 (Graph Query Model). Given a CQL

query and a database D, the graph model is a graph G(V, E)
such that: (1) For each table T in the CQL query, there is a
vertex for each tuple in this table; (2) For each crowd join
predicate T .Ci CROWDJOIN T ′.Cj in the CQL query, there is
an edge e between t ∈ T and t′ ∈ T ′ with weight ω(e) ≥ ε,
where ω(e) is the matching probability between cell values
t[Ci] and t′[Cj ] and ε is a threshold; (3) For each traditional
join predicate between T .Ci and T ′.Cj in the CQL query, there
is an edge between t ∈ T and t′ ∈ T ′ if the tuples satisfy the
join predicate and the weight is 1.

For example, consider the four tables in Table 1 and the
CQL query in Figure 4. The graph is illustrated in the figure.

Given a graph and a CQL query, we want to find the sub-
structure that satisfies every query predicate. Thus a candi-
date structure is substructure that contains a corresponding
edge for every predicate, which is formally defined as below.

Definition 2 (CQL Query Candidate). Given a CQL

query with N join predicates, suppose G is the corresponding
graph. A connected substructure of the graph G with N edges
is called a candidate if it contains a corresponding edge for
every query predicate in the CQL query.

For example, substructure (u1, r1, p1, c1) is a candidate as
it contains an edge for every query predicate. (u1, r2, p1, r1, c1)
is not as it contains more than 3 edges. (u1, r2, p3, c5) is not
as it is not connected. (p1, r1, r2, r3) is not as it misses edges
for join predicate Paper.Title CROWDJOIN Citation.Title.

Definition 3 (Invalid Edges). An edge is an invalid
edge if it is not contained in any candidate.

To check whether an edge is invalid, we can use a depth-
first traversal algorithm to check whether there is a candi-
date from this edge. Obviously, all the invalid edges can be
removed from the graph first.
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Table 1: Four Relational Tables (The Attribute Pairs That Can Be Joined Are Highlighted).
(a) Paper (b) Researcher

Author Title Conference
p1 Michael J. Franklin APrivateClean: Data Cleaning and

Differential Privacy.
sigmod16

p2 Samuel Madden Querying continuous functions in a
database system.

sigmod08

p3 David J. DeWitt Query processing on smart SSDs: op-
portunities and challenges.

acm
sigmod

p4 W. Bruce Croft Optimization strategies for complex
queries

sigir

p5 H. V. Jagadish CrowdMatcher: crowd-assisted schema
matching

sigmod14

p6 Hector Garcia-
Molina

Exploiting Correlations for Expensive
Predicate Evaluation.

sigmod15

p7 Aditya G.
Parameswaran

DataSift: a crowd-powered search
toolkit

sigmod14

p8 Surajit Chaudhuri Dynamically generating portals for
entity-oriented web queries.

sigmod10

Affiliation Name
r1 University of California Michael I. Jordan
r2 University of California Berkery Michael Dahlin
r3 University of Chicago Michael Franklin
r4 Duke Uni. David J. Madden
r5 University of Minnesota David D. Thomas
r6 University of Wisconsin David DeWitt
r7 Department of Nutrition David J. Hunter
r8 University of Massachusetts Bruce W Croft
r9 University of Michigan H. Jagadish
r10 University of Stanford Molina Hector
r11 University of Cambridge Nandan Parameswaran
r12 Microsoft Cambridge S. Chaudhuri

(c) Citation (d) University

Title Number
c1 Towards a Unified Framework for Data Cleaning and Data Privacy. 0
c2 Query continuous functions in database system 56
c3 ConQuer: A System for Efficient Querying Over Inconsistent Database. 13
c4 Webfind: An Architecture and System for Querying Web Database. 17
c5 Adaptive Query Processing and the Grid: Opportunities and Challenges. 27
c6 Optimal strategy for complex queries 94
c7 CrowdMatcher: crowd-assisted schema match 9
c8 Exploit Correlations for Expensive Predicate Evaluation 0
c9 DataSift: An Expressive and Accurate Crowd-Powered Search Toolkit. 16
c10 A crowd powered search toolkit 4
c11 A Crowd Powered System for Similarity Search 0
c12 Query portals: dynamically generating portals for entity-oriented web queries. 1

Name Country
u1 Univ. of California USA
u2 Univ. of California Berkery USA
u3 Univ. of Chicago USA
u4 Duke Univ. USA
u5 Univ. of Minnesota US
u6 Univ. of Wisconsin US
u7 Depart of Nutrition US
u8 Univ. of Massachusetts US
u9 Univ. of Michigan US
u10 Univ. of Stanford USA
u11 Univ. of Cambridge UK
u12 Microsoft US

SELECT * FROM Paper, Researcher, Citation, University
WHERE Paper.Author CROWDJOIN Researcher.Name AND

Paper.Title CROWDJOIN Citation.Title AND

Researcher.Affiliation CROWDJOIN University.Name
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Figure 4: A Graph Model for the Above CQL.

In the graph, each crowd edge has a probability (i.e., the
weight) to be connected or disconnected before we ask the
crowd. Thus we want to ask the crowd to check each edge
w.r.t. a predicate such that whether the two cell values
satisfy the predicate. If yes, it is connected and we mark it
Blue (solid edge); otherwise it is disconnected and we mark
it Red (dotted edge). Note we directly mark the edges w.r.t.
traditional join predicate Blue without needing to ask the
crowd. Then the candidates withN Blue edges are answers.

Definition 4 (CQL Query Answer). Given a CQL query
with N join predicates, a candidate is an answer if each edge
in the candidate is Blue.

For example, candidate (u1, r1, p1, c1) is not an answer as
(p1, c1) is Red. There are three answers, i.e.,(u12, r12, p8, c12),
(u8, r8, p4, c6) and (u9, r9, p5, c7) in Figure 4.

To find all the answers, a straightforward method ran-
domly asks the edges until all the edges are colored as Blue
or Red. However some Red edges may make the Blue
edges disconnected, and we do not need to ask such Blue
edges. For example, if we first ask (p1, c1) and it is Red,
thus the edges (u1, r1), (u2, r1), (u1, r2), (u2, r2), (u3, r3),
(r1, p1), (r2, p1), (r3, p1) become invalid edges after remov-
ing (p1, c1), which do not need to be asked. Thus we can
avoid asking 8 edges here. In the following sections, we will
present how to select the minimum number of edges to ask.

4.2 Supporting Selection Predicates
For each crowd-powered selection T .Ci CROWDEQUAL value,

we add a new vertex into the graph. For each tuple t ∈
T , we take the similarity between t[Ci] and value as the
matching probability ω(t[Ci], value). If ω(t[Ci], value) ≥
ε, we add an edge between this vertex and t with weight
ω(t[Ci], value). For a traditional selection predicate, we add
the edge if they satisfy the predicate and the weight is 1. In
this way, we can use the graph model to support the selection
operation. For example, in the above query, if we want to
select the paper published in SIGMOD, we will add a selection
predicate (Paper.Conference CROWDEQUAL “SIGMOD”.) In the
above graph, we add a vertex “SIGMOD” and for each vertex
p1, p2, · · · , p8, we add an edge to this new vertex.

Remark. If a requester still wants to use crowd-powered
group or sort operations, CDB can adopt existing techniques [57,
13, 42, 14] to support them. For example, given a query with
crowd-powered group, we first execute the crowd-based se-
lection and join operations using our proposed techniques,
and then group the results by applying existing crowdsourced
entity resolution approaches [57, 13]. Similar strategy can
also be applied to crowd-powered sort [42, 14].

For ease of presentation, in the following section, we do
not distinguish traditional and crowd predicates. Instead,
we consider a graph, where each edge is associated with
a weight. If the weight is 1, we directly color it as Blue
without crowdsourcing. Otherwise we need to ask the crowd.
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5. QUERY OPTIMIZATION
We first present cost-control techniques, which select an

optimized list of tasks (Section 5.1). Then we discuss which
tasks can be asked simultaneously to reduce latency (Sec-
tion 5.2). Finally we assign tasks to appropriate workers
and infer results to improve quality (Section 5.3).

5.1 Cost Control
Given a graph, we aim to ask the minimum number of

edges to find all the answers. We first discuss the case that
if the colors of every edge is known, how to select the edges
(Section 5.1.1) and then extend it to support the case that
the colors are unknown (Section 5.1.2). Finally, we present
how to select tasks if a budget is given (Section 5.1.3).

5.1.1 Task Selection with Known Edge Color
We consider the case that the colors of edges are known.

Chain Join Structure. We first consider a simple case
that the tables are joined by a chain structure, i.e., each
table is joined with at most two other tables and there is
no cycle. We first use the depth-first algorithm to find all
Blue chains with N Blue edges. We can prove that these
edges must be asked because they are in the final answers
and their colors cannot be deduced based on other edges.
Next we find a set of Red edges using the min-cut algorithm
in the following flow graph G′, and we can prove that these
Red edges must be asked and others can be pruned, because
others are disconnected by these Red edges. We make a
minor change on graph G and generate a new graph G′ as
follows. (1) We remove the edges on Blue chains. (2) We
add a source vertex s and a sink vertex s∗. For each vertex
t on a Blue chain, we duplicate it by another vertex t∗. We
add Blue edges (s, t) and (t∗, s∗). (3) Suppose the tuples
in the chain are sorted based on their corresponding tables
from left to right. t keeps its left edges and its right edges
are moved to t∗. We assign the weight of Blue edges as ∞
and the weight of Red edges as 1. Then we find the min-
cut of this graph. We can prove that the Red edges in the
min-cut must be asked and other edges can be deduced.

Lemma 1. It is enough to ask the Red edges in the min-
cut and edges on Blue chains, and other edges can be pruned.
This method is optimal (asks the minimum number of edges).

Proof. See Appendix C for the proofs of all lemmas.

For example, in Figure 5, since path (u12, r12, p8, c12) is a
Blue path, each edge in the path must be asked. So we du-
plicate each node in the path and construct Figure 5(b). We
compute the min-cut of Figure 5(b) and get edges (p7, r11),
(r12, u11). We can see that these two edges must be asked
and others can be pruned.

Star Join Structure. In this case, there is a center table
and all other tables are joined with this table. For each tuple
in the center table, if it has Blue edges to tuples in every
other table, then all the edges must be asked. If it has no
Blue edge (it has only Red edges) to tuples in some tables,
we select the table with the least number of Red edges to
ask. For example, in Figure 4, consider a CQL query
SELECT Researcher.Name,Paper.Title,Citation.Number

FROM Paper, Citation, Researcher

WHERE Paper.Title CROWDJOIN Citation.Title AND

Paper.Author CROWDJOIN Researcher.Name AND

Paper.Conference CROWDEQUAL “SIGMOD”
which aims to calculate the number of citation of papers
published at SIGMOD. Figure 6 shows its join structure, i.e.,

a star join. We can see that (p1, c1) is Red and we ask it,
and then (p1, r1), (p1, r2), (p1, r3) and edges on the selection
operation can be pruned.

Tree Join Structure. The tables are joined by a tree
structure and there is no cycle. We can transform it into a
chain structure as follows. We first find the longest chain
in the tree. Suppose the chain is T1, T2, · · · , Tx. Then
for each vertex Ti on the chain, which (indirectly) connects
other vertices T ′1, T

′
2, · · · , T ′y that are not on the chain, we

insert these vertices into the chain using a recursive algo-
rithm. If these vertices are on a chain, i.e., Ti, T

′
1, T

′
2, · · · , T ′y,

then we insert them into the chain by replacing Ti with
Ti, T

′
1, T

′
2, · · · , T ′y−1, T

′
y, T

′
y−1, · · · , Ti. If these vertices are

not on a chain, we find the longest chain and insert other
vertices not on the chain into this chain using the above
method. In this way, we can transform a tree join structure
to a chain structure. Suppose that there are |E| edges on the
tree. It needs O(|E|) time complexity to transform it into
a chain structure. Note that the resulting chain has some
duplicated tables. Hence, joining those tables may result in
invalid join tuples (e.g., a join tuple that uses one tuple in
the first copy of Ti, and a different tuple in the second copy
of Ti). We need to remove those invalid join tuples.
Graph Join Structure. The tables are joined by a graph
structure, i.e., there exist cycles in the join structure. We
can transform it into a tree structure. For example, given
a cycle (T1, T2, · · · , Tx, T1), we can break the cycle by in-
serting a new vertex T ′1 and replacing it with T1. Thus we
can transform a cycle to a tree structure. We can first find
a spanning tree of the graph using breadth first search in
O(|E|) time where |E| is the number of edges, and break all
non-tree edges. Similar to the tree structure, it takes O(|E|)
to transfer the graph structure to a new chain structure.

5.1.2 Task Selection without Known Edge Color
We consider the case where the colors of edges are un-

known. In a high level, our goal is to ask fewer edges to find
all answers with high probability.

Given a graph with N edges, since the color of each edge
is Blue or Red, there are 2N possible graphs. One possible
formulation is to find the minimum of edges to satisfy all
possible graphs, i.e., the answers in each possible graph can
be computed based on these edges. However, this method
unfortunately would lead to a rather trivial and expensive
solution, since the possible graph with all Blue edges (as-
suming each Blue edge is in some Blue chain) requires us
to ask all edges. Hence, instead of satisfying all possible
graphs, we consider a relaxation where we want to satisfy
a random possible graph with high probability. Using the
sample average method in stochastic optimization (see e.g.,
[27]), we can sample some possible graphs, e.g., S samples,
as follows. To generate a sample, we check each edge e and
set the color of the edge as Blue with probability ω(e), and
Red with probability 1− ω(e).

We consider the following problem: given S sample graphs,
select the minimum number of edges to resolve all sample
graphs. Unfortunately, this problem is NP-hard, which can
be proven by a reduction from the set cover problem.

Lemma 2. The problem of selecting the minimum edges
that cover S sample graphs is NP-hard.

Greedy Algorithm. To address this problem, we propose
a greedy algorithm. For each sample graph, we select its
edges using the min-cut algorithms. Then we compute the
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union of these edges and sort the edges by the number of
occurrences in the samples. We ask the edges in this order.

For example, consider the graph in Figure 7(a), and sup-
pose we sample 5 graphs. Then we compute the min-cut
of each graph. Edges (u11, r12), (u12, r12) and (r11, p7) are
the min-cut of Figure 7(b). Edges (u11, r12), (c11, p7) and
(c9, p7) are the min-cut of Figure 7(c). Edges (u11, r11) and
(p8, r12) are the min-cut of Figure 7(d). Edges (u12, r12)
and (r11, p7) are the min-cut of Figure 7(e). Edges (r12, p8),
(c11, p7)and (c9, p7) are the min-cut of Figure 7(f). Then
we compute the union of these edges and sort edges by
the number of occurrences in these samples. We can see
that (c9, p7) and (u11, r12) occurs 2 times, and then we get
the order: (u11, r12), (c9, p7), (p7, r11), (p8, r12), (c11, p7),
(u12, r12), (c10, p7), (c12, p8) and (u11, r12). We ask the edges
in this order: (u11, r12), (c9, p7), (p7, r11), (p8, r12), (u12, r12)
and (c12, p8). This method asks an unnecessary edge (c9, p7).

The time complexity of finding a min-cut isO(|V|2 log |V|).
Sampling a graph isO(|E|) and sorting the edges isO(|E| log |E|).
Thus the time complexity is O(|V|2 log |V|+|E| log |E|). Note
that this method is expensive since it requires to generate
many samples and selects the edges in every sample. More-
over, it may select many unnecessary edges. To address this
issue, we propose an expectation-based method.

Expectation-Based Method. Consider an edge e = (t, t′)
where t and t′ are from tables T and T ′ respectively. If cut-
ting the edge can make some edges invalid, we can compute
its pruning expectation by the probability to cut the edge
(1− ω(e)) times the number of invalid edges introduced by
this cutting. However cutting an edge may not make the
any edge invalid. Thus this method will take the expecta-
tion as 0. To address this issue, we can consider the edges
(t, t′1), (t, t′2), · · · , (t, t′x) that from t to all tuples in T ′. If we
cut all such edges, this must make some edges invalid, i.e.,
edges from tuples in other tables to t. The probability to cut
all of these edges is

∏x
i=1(1− ω(t, t′i)) and thus the pruning

expectation is
∏x

i=1(1−ω(t, ti)) times the number of invalid
edges (e.g., α). As the graph is cut by these x edges, the ex-

pectation of each edge should be
∏x

i=1(1−ω(t,ti))

x
α. Similarly,

we consider edges (t1, t), (t2, t
′), · · · , (ty, t′) that from t′ to

all tuples in T . The pruning expectation is
∏y

i=1(1−ω(ti, t
′))
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Figure 7: Min-cut Greedy Algorithm.

times the number of invalid edges (e.g., β) dividing x. Al-
though the edge can cut the graph by combining with other
edges, it is expensive to enumerate all such edges. Thus we
only use the above two types of edges. Next we formally
define the pruning expectation:

E(t, t′) =

∏x
i=1(1− ω(t, ti))

x
α+

∏y
i=1(1− ω(ti, t

′))

y
β. (1)

Then we compute the pruning expectation for every edge,
sort them by the expectation in descending order, and select
the edge in order. Note we can efficiently compute α and β
by a depth-first algorithm starting from the cut edges. Since
for each edge, we need to compute the pruning expectation,
the time complexity is O(|E|). And then we have to sort
these edges, which results in O(|E| log |E|) time complexity.

For example, we discuss how to compute E(p1, r1). We
can see from Figure 4 that there is only one edge (r1, p1)
from r1 to all tuples in table Paper and there are three
edges (p1, r1), (p1, r2) and (p1, r3) from p1 to all tuples in
table Researcher. Therefore, E(p1, r1) = (1 − 0.42) ∗ 2 +
(1−0.42)(1−0.41)(1−0.83)∗6

3
= 1.27. Then we compute the ex-

pectation for every edge and sort them in descending or-
der: (p1, c1), (p3, c5), (p7, r11), (p2, r4), (r12, p8), (r10, u10),
· · · . Then we select the edge in order. After we ask (p1, c1)
and get a red color, edges (p1, r1), (p1, r2), (p1, r3), (u1, r1),
(u1, r2), (u2, r1), (u2, r2) and (u3, r3) are unnecessary to ask.
Finally, we ask 15 edges: (p1, c1), (p3, c5), (p7, r11), (p2, r4),
(r12, p8), (r10, u10), · · · . Note if we use traditional tree-based
method, which selects a table join order to ask, there are 3
join orders, which ask 24, 23 and 33 tasks respectively.

5.1.3 Budget-Aware Task Selection
In many applications, there is a hard budget constraint.

Hence, we consider the following problem: given a budget B,
how to select B tasks to maximize the number of found an-
swers. This problem is a variant of the previous problem and
thus is likely to be intractable as well. We propose a greedy
heuristic. Different from computing the pruning expectation
of each edge, we should ask the edge that has large probabil-
ity to be in an answer. To this end, we compute the answer
expectation of becoming an answer for each edge. We first
find all the candidate and compute the probability of each
candidate C that can become an answer, which is the prod-
uct of edge similarity in the candidate: Pr(C) =

∏
e∈C w(e).

1469



Next we discuss how to select B tasks based on the ex-
pectation. Firstly, we select the candidate with the largest
expectation and add each edge e in the candidate into the
selected set S. Then we ask the edges in S by their weights
in descending order, because for a small weight, we have
larger probability to prune unnecessary edges. For example
consider a chain. If we ask the edge with smaller similarity,
it has large probability to be Red and in this way we can
prune other edges in the chain. After asking the edges in
S, we update the graph with the answers of these edges, re-
compute the expectation, and repeat the above steps until
we ask B tasks. For example, suppose that B = 6, can-
didate (u9, r9, p5, c7) has the largest product of the edge
similarity:0.61 ∗ 0.83 ∗ 0.91 = 0.46. So we ask these three
edges in a descending order of their similarity and we obtain
a true answer. Then we ask (u9, r9), (r9, p5) and (p5, c7)
because the product of their similarities is the largest in the
remainder candidates. Now we have used the budget and
obtain two answers without wasting any task.

It is hard to fully utilize the budget to get as many an-
swers as possible in the tree model. For example suppose
it finds a join order, e.g., University, Researcher, Paper

and Conference. Then it selects the edge with the largest
weight based on this order. It first selects edge (u7, r7) and
then selects edges (r7, p3) that has the largest weight from
r7 to tuples in Paper. Next it asks (p3, c5). We can see
that it cannot find any answer. Thus our graph model has
significant superiority than the tree model.

5.2 Latency Control: Reducing #Rounds
Given two edges e and e′, we check whether they are in

the same candidate. If they are in the same candidate, we
call that they are conflict, because asking an edge may prune
the other edges; otherwise we call that they are non-conflict.
Obviously we can ask non-conflict edges simultaneously but
cannot ask conflict edges. For example, consider two conflict
edges. If an edge is colored Red, then the other edge does
not need to be asked. To check whether two edges are in a
some candidate, we can enumerate all the candidates of an
edge, e.g., e, and check whether they contain e′. If yes, they
are in a same candidate; no otherwise. However this method
is rather expensive. Next we propose several effective rules
to detect whether two edges can be asked simultaneously.

Connected Components. We first compute the connected
components in the graph. Obviously, the tasks in different
connect components can be asked simultaneously, because
they are non-conflict. For example, (p1, c1) and (p2, c2) are
in different connected components and they are non-conflict.

Edges Containing Tuples from the Same Table. The
edges that contain two different tuples from the same table
can be asked simultaneously, because they cannot be in the
same candidate. For example, (p1, r1) and (p1, r2) are non-
conflict as they contain tuples in the same table.

Overall Algorithm. We first compute the connected com-
ponents. For each component, we selected an ordered list of
tasks sorted by the expectation in descending order. Next
we select the longest “prefix” of this list such that every two
edges in the prefix are non-conflict. Then all of these non-
conflict edges in the prefixes of these components can be
asked simultaneously. Suppose S is the current prefix (ini-
tialized as empty). We access the next edge with the largest
expectation and check whether e has conflict edges in S as
follows. For each edge e′ ∈ S, if e and e′ contain different

tuples from the same table, e′ is not conflict with e; other-
wise, we check whether they are in the same candidate. If e′

is not conflict with any edge in S, we add e′ to S and check
the next edge with the largest expectation. If e has conflict
edges in S, we terminate and S is the longest prefix.

In Figure 4, (p1, c1) is a non-conflict edge of the first com-
ponent and (p2, r4) and (p3, c5) are the non-conflict edges
of the second component. Therefore, at the first round, we
select (p1, c1), (p2, r4), (p3, c5), (r8, u8), (r9, u9), (r10, u10),
(r11, p7) and (r12, p8) in parallel. Then, we select (p4, c6),
(p5, r9), (r12, u11) and (r12, u12) to ask at the second round.
At last, we ask (p4, r8), (p5, c7) and (p8, c12) in parallel.
Compared with the serial algorithm, we ask the same num-
ber of questions but only take 3 rounds.

5.3 Quality Control
In order to derive high-quality results based on workers’

answers, it is important to do quality control. CDB controls
quality at two timestamps: (1) when a worker answers task,
we estimate the worker’s quality and infer the truth of the
answered task, called “truth inference”; (2) when a worker
comes and requests for new tasks, we consider the worker’s
quality and assign tasks with the highest improvement in
quality to the worker, called “task assignment”. CDB sup-
ports four types of tasks: single-choice, multiple-choice, fill-
in-blank and collection tasks. Next we illustrate how CDB ad-
dresses truth inference (Section 5.3.1) and task assignment
(Section 5.3.2) on different types of tasks, respectively.

5.3.1 Truth Inference
Let us denote W = {w} as a set of workers, T = {t} as a

set of tasks, and Vt = {(w, a)} as a set of workers’ answers for
task t ∈ T where each tuple (w, a) ∈ Vt means that worker
w provides answer a for task t. Note that truth inference has
been proven to be an effective way to do quality control [66,
20, 32, 35, 70, 49, 9, 68, 67].

Single-Choice Task. Similar to [39, 17, 63, 34], we model
each worker w ∈ W as a quality qw ∈ [0, 1], which indi-
cates the probability that w answers a task correctly. Based
on workers’ answers for all tasks, we compute each worker’s
quality via the Expectation-Maximization (EM) algorithm [18],
which iteratively updates those parameters until convergence.
Assume task t ∈ T has ` choices, labeled as 1, 2, . . . , `, then
based on each worker w’s computed quality qw, we adopt
the Bayesian Voting to derive the truth of task t, which has
been proven to be optimal in [66] with known workers’ qual-
ities. That is, the probability of the i-th choice being the
truth for task t is computed as

pi =

∏
(w,a)∈Vt

(qw)1{i=a} · ( 1−qw
`−1

)1{i6=a}∑`
j=1

∏
(w,a)∈Vt

(qw)1{j=a} · ( 1−qw
`−1

)1{j 6=a}
, (2)

where 1{·} is an indicator function, which returns 1 if the
argument is true; 0, otherwise. For example, 1{5=3} = 0 and
1{5=5} = 1. Then the truth for t can be estimated as the
choice with the highest probability, i.e., argmax1≤i≤` pi.

Multiple-Choice Task. Since a task is possible to have
multiple choices as truth, we can apply the above method
that deals with single-choice task to multiple choice task,
by decomposing each multiple-choice task (with ` choices)
into a set of ` single-choice tasks, where each one addresses
whether a specific choice is true or not. Then we can esti-
mate the truth of a multiple-choice task as all the choices
that are estimated as the truth in each single-choice task.
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Fill-in-blank Task. It is hard to model a worker’s quality
in such kind of open task. Thus we do not model a worker’s
quality in this task. Alternatively, given workers’ answers
for a task, we estimate its truth by considering which an-
swer is the “pivot”, i.e., closest to all workers’ answers. To
implement this idea, we first define the similarity between
two answers, i.e., sim(a, a′), which we resort to string sim-
ilarity measures [62], e.g., Jaccard, Edit Distance, Cosine.
Then for each answer a, we compute its aggregated simi-
larity w.r.t. other answers, i.e., sa =

∑
(w,a′)∈Vt

sim(a, a′).
Finally we estimate the truth of t as the answer that attains
the highest aggregated similarity, i.e., argmax(∗,a)∈Vt

sa.

Collection Task. Collection tasks can be implemented
using fill-in-blank tasks, and we perform quality control with
two phases: (1) while workers type in the user interface, we
provide the auto-completion feature, which gives suggestions
as the workers may type. This may help workers know what
similar information has been recorded in CDB by other work-
ers. (2) After workers give inputs to CDB, we can either
leverage existing machine-based [12] or crowd-based [57, 56,
55] entity resolution methods to do disambiguation.

5.3.2 Task Assignment
When a worker comes and requests for new tasks, existing

platforms provide interfaces for programmers to dynamically
assign tasks to the coming worker. For example, AMT [1]
identifies each worker via a unique ID. When a worker comes,
AMT passes the worker ID to our sever, which dynamically
assigns a set of tasks to the coming worker. Following this
way, we can record the worker’s information in CDB, and
when the worker comes again, CDB leverages the worker’s
information and dynamically assigns a set of (say k) tasks
to the worker, such that the quality will be improved the
most. Existing works [69, 29, 20, 29, 48, 31, 11] mainly
focus on a limited number of task types, and we are more
general in handling multiple task types, as shown below.

Single-Choice Task. Recall that we model each worker
w as qw ∈ [0, 1], and we already store the worker’s esti-
mated quality if the worker answered tasks before (for a
new worker, we can set its quality as the default value, say
0.7). Then when a worker w comes with quality qw, our ob-
jective is to “assign a set of k tasks to worker w, such that
the quality can be improved the most after the worker w an-
swers the assigned tasks”. However, there are two problems:
(i) we do not know the ground truth of each task, thus the
quality is hard to know; (ii) we have no idea about how the
worker can answer each task. We first focus on assigning
k = 1 task, and then generalize it to k > 1 tasks.

For problem (i), despite the unknown ground truth, we
obtain a distribution of choices being true for each task t
based on workers’ answers, i.e., ~p = (p1, p2, . . . , p`). Intu-
itively, the more consistent the distribution is (e.g., pi ap-
proximates 1 while others pj approximates 0 for j 6= i),
the higher the quality will be achieved. In order to cap-
ture such consistency, we use the entropy function [52], i.e.,

H(~p) = −
∑`

i=1 pi · log pi, which quantifies the amount of
inconsistency, i.e., the lower H(~p) is, the more consistent ~p
is, the higher quality will be achieved. For problem (ii), we
can leverage the coming worker w’s quality and the task t’s
distribution ~p to estimate the probability that the i-th choice
will be answered by w, i.e., pi ·qw+(1−pi)· 1−qw

`−1
. Then after

worker w answers task t with the i-th choice, the distribution

~p becomes ~p′ = (
p1· 1−qw

`−1

∆
, . . . , pi·qw

∆
, . . . ,

p`·
1−qw
`−1

∆
), where ∆

is the normalization factor, i.e., ∆ = pi · qw + (1−pi) · 1−qw
`−1

.

Based on the above solutions to problems (i) and (ii), we
now can estimate the expected quality of improvement (or
the expected decrease of inconsistency) if worker w answers
task t, denoted as I(t), which is shown below:

I(t) = H(~p)−
∑`

i=1

[
pi · qw + (1− pi) ·

1− qw

`− 1

]
· H(~p′). (3)

Thus we can select the task with the highest improvement
in quality, i.e., argmaxt∈T I(t). In the above approach, we
focus on assigning k = 1 task. It can be generalized to assign
multiple (k > 1) tasks, where we select top-k tasks with the
highest improvement in quality I(t).

Multiple-Choice Task. Similar to the method in truth in-
ference, we can decompose each multiple choice task (with
` choices) into a set of ` single-choice tasks, where each one
asks whether the i-th choice is correct or not. In this way, we
can define the quality (or consistency) of the multiple-choice
task as the summation of all the consistencies (captured by
entropy) in each decomposed single-choice task. Then fol-
lowing the above approach for single-choice task, we can
generalize it to assigning top k tasks to the coming worker.

Fill-in-blank Task. As it is hard to model a worker’s qual-
ity in answering fill-in-blank task, we define the quality in
each task as the consistency of workers’ answers for the task.
To be specific, suppose task t obtains a set of answers Vt,
then we define the consistency of task t, i.e., C(t), as the
normalized similarities of all its obtained pairwise answers:

C(t) =
∑

{(w,a)∈Vt}∧{(w′,a′)∈Vt}∧{w 6=w′}

sim(a, a′)(|Vt|
2

) . (4)

Then we can select the task t with the least consistency, i.e.,
argmint∈T C(t). We can also generalize it to selecting k > 1
tasks, by assigning top-k tasks with the least consistencies.

Collection Task. To assign collection tasks, there are two
factors to consider: (1) although we have developed au-
tocomplete features, we have to disambiguate workers’ an-
swers, which we refer to the entity resolution technique [57];
(2) we also need to estimate the cardinality of results as
workers gradually give answers, which we refer to the tech-
niques that address crowd enumeration queries [53]. Sup-
pose the number of distinct tuples collected is denoted as
M [57], and the number of estimated cardinality is denoted
as N [53], then the completeness score is defined as N−M

N
,

where we assign the collection tasks with the least complete-
ness score, i.e., the tasks that are far from complete.

6. EXPERIMENTS
We have implemented CDB in Java on a Ubuntu server with

Intel 2.40GHz Processor and 32GB memory, and deployed
CDB with two popular crowdsourcing platforms, AMT [1],
CrowdFlower [3] and ChinaCrowd [2]. This section presents
the evaluation of CDB. We first introduce the experiment
settings (Section 6.1), and then report the results of both
simulated (Section 6.2) and real experiments (Section 6.3).

6.1 Experimental Settings
Datasets. We evaluate CDB using two datasets: (1) paper

is a publication dataset crawled from ACM and DBLP. The
dataset has four tables, Paper, Citation, Researcher and
University, and each table (e.g., Citation) contains several
attributes (e.g., ‘title’ and ‘number’). Note that attributes
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Table 2: Paper Datasets.
Table #Records Attributes
Paper 676 author,title,conference

Citation 1239 title, number
Researcher 911 affiliation, name, gender
University 830 name, city, country

Table 3: Award Datasets.
Table #Records Attributes

Celebrity 1498 name, birthplace, birthday
City 3220 birthplace, country

Winner 2669 name, award
Award 1192 name, place

with the same format represent that the tables can be joined
through these attributes. For example, tables Paper and
Researcher can be joined through attributes ‘author’ and
‘name’. (2) award contains award information, which is
crawled from Dbpedia [4] and Yago [5]. It also has four
tables, Celebrity, City, Winner and Award. Specification
and statistics of the datasets are shown in Tables 2 and 3.
More details can be found in Appendix D.

Queries. As our CQL supports both query and collection
semantics of crowdsourcing, we design the following queries
for evaluation. (1) For query semantics in CQL, we design 5
representative queries on paper and award datasets respec-
tively, as shown in Table 4 (Appendix D). These queries have
covered different kinds of operators, such as CROWDSELECT

and CROWDJOIN. For example, the query labeled with “2J1S”
(i.e., two Joins and one Selection) on the paper dataset joins
three tables, Paper, Citation, Researcher (“2J”) and filters
Paper tuples such that attribute ‘conference’ equals sigmod
(“1S”). (2) For collection semantics in CQL, we design a COL-

LECT query that collects 100 universities’ names with the
highest rankings in the world, and a FILL query that fills
the state of the collected universities.

Competitors. We compare CDB with existing methods.
Crowdsourced entity resolution methods: (1) Trans [57] uti-
lizes transitivity to prune dissimilar pairs; (2) ACD [58] lever-
ages the correlation clustering to identify matching pairs.
Crowdsourcing database systems: (3) CrowdDB [24] uses tra-
ditional rule-based techniques to estimate a query plan; (4)
Qurk [43] optimizes a single join and uses rule-based tech-
niques to estimate a query plan; (5) Deco [47] uses the cost-
based model to estimate a query plan; (6) OptTree reports
the optimal results of the tree model based method. We
assume the colors of edges are known, enumerate all pos-
sible join orders, select the order with the minimum cost,
and report the result of this optimal order. Our methods:
(7) MinCut optimizes a query using the chain-join structure
(Section 5.1.1) and uses greedy algorithm to select tasks to
the crowd; (8) CDB leverages the expectation-based method
to assign tasks to ask the crowd; (9) CDB+ improves CDB by
incorporating the quality control techniques in Section 5.3.
Trans and ACD use a cost-based method to select a query
plan based on the number of non-pruned pairs, and adopt
their techniques to do crowdsourced entity resolution for a
single join. CrowdDB and Deco do not optimize a single join
and we use crowdsourced entity resolution techniques in [56]
to support a single join for them. In all of these methods, we
used 2-gram Jaccard similarity to compute the probability
as follows. Given a value, say tx[Ci], we split it into a set
of 2-grams (i.e., substrings with length of 2). Then given
an edge with two values tx[Ci] and ty[Cj ], we computed the
Jaccard similarity between their 2-gram sets (i.e., computing
the ratio of their intersection size to their union size) as the
probability. We utilized the prefix-filtering techniques to ef-
ficiently identify the tuple pairs with similarities not smaller
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Figure 10: Varying Query: # Rounds

than ε = 0.3 [10, 56]. We also evaluated other similarity
functions in Appendix D.

Evaluation Metrics. We evaluate CDB using the follow-
ing three metrics in crowdsourcing [35] given a query. (1)
Cost: since monetary cost largely depends on #tasks, we
use the #tasks needed to ask the crowd to measure the
cost. (2) Quality: we use the well-known F-measure to mea-
sure quality of the result returned by different systems. F-
measure is the harmonic mean of precision and recall, i.e.,
F-measure = 2·Precision·Recall

Precision+Recall
, where precision is the fraction

of #returned tuples that are correct, and recall is the frac-
tion of #correct tuples that are accurately returned. (3)
Latency: we assign tasks to the crowd in different rounds,
where tasks of any round would not be assigned until all
tasks in the last round are completed. By following the set-
tings of existing works [35] that assume each round takes the
same amount of time, we use #rounds to measure latency.

6.2 Simulated Experiments
We conduct simulated experiments that examine perfor-

mance of queries in Table 4 (Appendix D) and vary quality
of the workers. For statistical significance, we repeat each
experiment for 1K times and report the average result.

6.2.1 The Performance of Different Queries
We evaluate the performance of the five queries in Table 4

on nine methods: Trans, ACD, CrowdDB, Qurk, Deco, OptTree,
MinCut, CDB and CDB+. To make a fair comparison, we assign
each task to five simulated workers that are generated from
the same Gaussian distribution N (0.8, 0.01), which means
that each worker has an average chance of 80% to correctly
answer a task. We first examine the monetary cost, as shown
in Figure 8. Firstly, crowdsourcing entity resolution meth-
ods ACD and Trans outperform Deco, Qurk, CrowdDB because
ACD and Trans can optimize a single join and prune many
unmatched pairs. However ACD and Trans involve more
rounds, because they need to use multiple rounds for a sin-
gle join to do pruning. Even if Trans costs less than ACD,
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Trans sacrifices quality (around 50%), because a transitiv-
ity error will affect many tuples. Secondly, CDB outperforms
ACD and Trans, because ACD and Trans focus on optimizing
join pairs between two tables rather than tuple-level pruning
among multiple tables. This validates our claim that a fine-
grained tuple-level optimization is much preferred in crowd-
sourcing. Thirdly, for tree model based methods, OptTree
performs slightly better than Deco, CrowdDB and Qurk, since
OptTree selects the table-level join order with the minimum
cost by enumerating all possible orders. Deco is better than
Qurk and CrowdDB because Deco uses a cost-based model
while Qurk and CrowdDB use a rule-based model. Our graph
model with tuple-level optimization achieves significant per-
formance superiority compared with tree model-based meth-
ods, e.g., saving more than half of the cost. Fourthly, CDB
and CDB+ perform better than MinCut. The reason is that
MinCut generates sample graphs for determining edge order.
On one hand, it is expensive to enumerate many sample
graphs, since it requires to select many edges to satisfy the
samples. On the other hand, it cannot select high-quality
edges if sampling a small number of samples. On the con-
trary, CDB employs an expectation-based method, which can
effectively estimate the edge order. Although CDB+ does not
bring cost reduction compared with CDB, it improves quality.

Figure 9 shows the performance evaluation on quality.
Obviously, CDB+ performs significantly better than the other
methods that apply the simple majority voting strategy.
CDB+ employs more sophisticated techniques to infer each
worker’s quality and obtain the correct results and assign
tasks to appropriate workers.

Next, we evaluate the latency and report the results in
Figure 10. Although our methods MinCut, CDB and CDB+
significantly improve cost and quality, they do not bring
high latency. Specifically, we can observe that all the meth-
ods except entity resolution take nearly the same number
of rounds to complete the crowdsourcing process. For tree-
based methods, this is natural as the round is exactly the
number of join predicates where tuple pairs in each predicate
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Figure 16: Varying Query (Real): # Rounds

are crowdsourced in parallel. For our graph-based methods,
this is not easy because we need to consider the trade-off be-
tween the benefit of cost brought by task inference and the
benefit of latency brought by asking tasks in parallel. For
entity resolution methods, they take around 5 times more
than graph-based methods because they need to take mul-
tiple rounds to perform crowdsourced entity resolution for
a single join. This result shows that our methods can effec-
tively balance the trade-off.

6.2.2 Varying the Quality of Workers
We vary the quality of simulated workers by tuning the un-

derlying Gaussian distributionN (q, 0.01) as q ∈ {0.7, 0.8, 0.9}.
Similar to the previous settings, we first assign each task to
five workers, then run the five queries in Table 4 on each
dataset, and finally report the results in Figure 11. First, it
has similar trends among the nine methods, that is, in term
of the cost, we have Qurk ≈ CrowdDB ≈ Deco > OptTree >
ACD > Trans > MinCut > CDB ≈ CDB+. Moreover, an inter-
esting observation is that with the increase of worker quality,
the number of tasks needed to ask the crowd decreases, and
thus the cost is reduced. The reason is that with higher
worker quality, the answers given by workers are more ac-
curate, which may help the methods to infer more unknown
tasks, so as to prune more tasks in the next round.

With respect to quality, we can observe that for work-
ers with quality N (0.7, 0.01) and N (0.8, 0.01), CDB+ out-
performs the other methods with significant gains. The per-
formance superiority comes from our result inference and
task assignment techniques. These techniques can effectively
reduce the uncertainty of answering crowdsourcing tasks,
and thus improve the overall quality. For workers with high
quality (e.g., N (0.9, 0.01)), although all of the methods can
achieve high quality, CDB+ still outperforms the other meth-
ods due to its effective quality-control techniques.

As all methods adopt the round-based approach, the av-
erage number of rounds of different kinds of quality are the
same (about 3). These results also show that our methods
achieve quite low latency and can be used in real settings.
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6.3 Real Experiments
We also conduct experiments on the real crowdsourcing

platform AMT. We pack 10 tasks in each HIT with $0.1 as
its price, and ask 5 workers on AMT to answer each HIT.
Then, we show the comparison result of different methods.

6.3.1 The Performance of Different Queries
We first evaluate the cost for different queries. As shown

in Figure 14, compared with Qurk, CrowdDB, Deco, ACD and
OptTree, our proposed methods MinCut, CDB and CDB+ re-
duce the number of selected tasks about 2-3 times, which is
mainly attributed to our tuple-level optimization. ACD and
Trans have more rounds because they need to use multiple
rounds to do entity resolution. Trans has significant lower
quality than CDB as a transitivity error will affect many tu-
ples. As it is expensive to generate many samples for MinCut,
we generate 100 samples and MinCut has low performance.
CDB and CDB+ outperform other competitors as we can se-
lect high-quality tasks and utilize them to prune many tasks.
CDB+ costs similarly as CDB, since workers in real crowd-
sourcing platforms are of high quality to answer the tasks.

With respect to quality, as shown in Figure 15, we can see
that all the methods achieve high quality on all queries, i.e.,
higher than 90% on F-measure. That is because the essential
task for join and selection is actually similar to entity reso-
lution, which is not difficult for AMT workers. Despite that
all methods achieve good performance, CDB+ still achieves
much higher quality than the other methods because it can
tolerant errors and correct errors. The CQL queries with
more predicates have slightly lower quality than those with
less predicates, because the crowd may introduce errors and
more predicates lead to larger chances of introducing errors.

Considering latency, as shown in Figure 16, our methods
have smaller number of rounds than competitors, especially
for the entity resolution methods. As discussed in Section
6.2, since we adopt a round-based approach, our methods
can complete the tasks in few rounds, which results in less
latency. We can see that for each query, our methods can
complete within 4 rounds, which is acceptable in practice.

6.3.2 The Performance of Collection Queries
We evaluate the collection semantics (i.e., collection and

fill) and compare with a baseline method without consider-
ing cleansing of the collected data and duplicate control.

Our collection operator evaluates collecting the names of
top 100 universities in USA. We compare with Deco. As
shown in Figure 17(a), Deco does not consider duplicate
control, and thus many workers return the same answers,
which is a waste of budget. CDB can reduce the numbers
of questions by about 5 times compared with Deco, because
its autocompletion mechanism can remind workers the sim-
ilar universities that have been collected by other workers.
Moreover, with the increase of the collection number, the
improvement of our method is more significant as workers
have small possibility to give duplicate answers for a small
number but have large possibility for more tuples.
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Our fill operator evaluates asking the crowd to fill in the

corresponding state of 100 given universities in USA. For
each university, we ask 5 workers to fill in the task. If more
than 3 results we obtain from workers have high similarity
score in each other, we do not ask other two workers. As
shown in Figure 17(b), CDB reduces 30% cost than Deco.

6.3.3 The Performance of Budget Setting
We vary the budget for crowdsourcing so as to ask the

crowd to find as many answers as possible within the budget
constraint. We still use the queries in Table 4. Since Deco

does not support the budget-aware task selection, we com-
pare with a well-designed baseline. Specifically, the baseline
method first selects the edge with large probability in the
first table (with respect to the best table order) and then
uses a depth-first traversal to find answers joined with the
other table. Figures 18 and 19 show the results. We have
two observations. First, under each budget, both methods
achieve high precision, e.g., the precision of both methods
under each budget is around 98%. This is because the query
is relatively easy for crowdsourcing workers. Second, CDB sig-
nificantly improves recall. For example, for 600 tasks, our
method achieves 60%-80% recall while the recall of baseline
is only 10%. With the increase of the budget, the recall of
CDB increases sharply and becomes flat after 800 questions,
which indicates that nearly all answers have been obtained.
Note that the recall of the baseline only increases slightly
with the increasing budget, which indicates that this method
obtains smaller numbers of correct results. CDB outperforms
baseline significantly, because it picks up the candidate edges
with high probability to collect the answers. Furthermore,
we can see that CDB+ outperforms CDB by 5% on recall and
3% on precision because it can improve quality by truth
inference and task assignment.

7. CONCLUSION
We developed a crowd-powered database system CDB. CDB

adopted a graph-based query model which can provide tuple-
level graph optimization. With the graph model, CDB em-
ployed a unified framework to perform the multi-goal opti-
mization. We formulated the task selection problem which
minimizes the number of tasks to be crowdsourced, proved
that the problem is NP-hard and devised greedy algorithms
to select high-quality tasks. We developed effective algo-
rithms to reduce latency. We optimized the quality by devis-
ing more sophisticated quality-control strategies. We have
implemented CDB and deployed it into AMT and Crowd-
Flower. Experimental results demonstrate CDB outperformed
existing studies in terms of cost, latency and quality.
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APPENDIX
A. SPECIFICATION OF CQL
Data Define Language (DDL). To define attributes or
tuples to be crowdsourced, CQL introduces keyword CROWD.

For example, a requester can define the following CQL to
use CROWD to define that the crowd can be employed to “fill”
the missing values of attributes, gender and affiliation.
CREATE TABLE Researcher (name varchar(64), gender CROWD
varchar(16), affiliation CROWD varchar(64));

Similarly, the requester can also define the use of crowd
for collecting more tuples using the following CQL:
CREATE CROWD TABLE University (name varchar(64), city

varchar(64), country varchar(64));
Different from CrowdDB [24], CQL does not need that a

CROWD table (e.g., University) must have a primary key to
determine if two workers contribute the same tuple, because
this is often not practical in crowdsourcing even if automatic
entity resolution techniques are utilized [19].

Data Manipulation Language (DML). CQL supports
two types of crowd-powered manipulations: 1) Crowd-Powered
Collection: CQL formalizes crowd-powered collection seman-
tics to crowdsource any CROWD column or table (Section A.1).
2) Crowd-Powered Query : CQL defines query semantics to so-
licit the crowd to perform selection and join(Section A.2).
CQL also supports a budget mechanism of imposing cost con-
straint for crowdsourcing.

A.1 Collection Semantics of CQL
CDB provides collection semantics to employ the crowd to

contribute missing data in the defined tables. To this end,
CQL introduces two built-in keywords, FILL and COLLECT,
which are respectively for CROWD attributes and CROWD tables.
Fill Semantics. CQL introduces FILL, which can be con-
sidered as a crowd-powered UPDATE, to crowdsource missing
attribute values (we introduce CNULL to indicate that an at-
tribute value needs to be crowdsourced), e.g.,
FILL Researcher.gender;
Moreover, FILL also allows requester to fill a part of miss-

ing attribute values, e.g., female researchers.
FILL Researcher.affiliation
WHERE Researcher.gender = “female”;

Collection Semantics. We design COLLECT in CQL to col-
lect more tuples from the crowd for a CROWD table. For ex-
ample, the following CQL wants to collect more universities.

Algorithm 1: CDB

Input: CQL query q, D
Output: Result
SQLParser(q);1

G = ConstructGraph(D);2

while there exist uncolored edges in G do3

T = TaskSelection(G);4

P=GenerateParallelTasks(G);5

for each request from a worker w do6

A=TaskAssignment(S ∈ PT , w);7

ColorGraph(A,G);8

return Result=ResultInference(G);9

COLLECT University.name, University.city
WHERE University.country = “US”;

A.2 Query Semantics of CQL
CDB provides query semantics to solicit the crowd to pro-

cess the data, which are either requester-provided or con-
tributed from the crowd, to fulfill a variety of requirements.
CQL introduces CROWDEQUAL to ask the crowd for filtering

tuples according to some criteria. The crowd may recognize
variety of the data. For example, the following CQL may
retrieve tuples with country like “United States”, “US”, etc.
SELECT University.*
FROM University

WHERE University.country CROWDEQUAL “USA”;
The CROWDJOIN can be used for joining tuples, e.g., joining

researchers with their affiliated universities:
SELECT Researcher.*, University.*
FROM Researcher, Researcher
WHERE Researcher.affiliation CROWDJOIN University.name;

B. ALGORITHM OVERVIEW
We give an overview of our method in Algorithm 1. Given

a CQL query, CDB first parses the CQL query (line 1) and con-
structs a graph (line 2). Next it uses the expectation-based
method to select a minimal set of tasks T (line 4). Then
we identify the set of tasks P that can be asked in parallel
(line 5). Next for each worker request, we select a subset of
tasks S and assign the tasks to the worker (line 7). After
collecting the answers from the worker, we color the graphs
based on the answer (line 8). If there exist uncolored edges,
we repeat the above steps until all the edges are colored.

C. PROOFS OF LEMMAS
Proof of Lemma 1. We denote the original graph as G (as-
suming G also contains s and s∗) and the graph constructed
above as G′. Consider a Blue chain from s to s∗, with N
Blue edges in the original graph G. Since all edges on this
chain are Blue, the chain corresponds to a tuple in a final
answer (we call such a chain Blue chain). We call any edge
on a Blue chain a B-edge (note that we removed these edges
from G in step (2)). Hence, every B-edge must be asked.

Next, we show that if we ask all edges in the min-cut of
G′ (in addition to the above Blue edges), we do not need
to ask any other edge. Indeed, we only need to refute the
existence of any other Blue chain except the above Blue
chains in G. Hence, for any possible s-s∗ non-Blue chain,
we need to ask at least one Red edge on the chain. Consider
an arbitrary s-s∗ non-Blue chain P in G. Note that P may
contain zero or more B-edges.
(1) If P contains zero B-edges, the min-cut we constructed
above must contain at least 1 Red edge in P (since other-
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Table 4: The 5 representative queries used on paper and award.
Query Dataset paper Dataset award

2 Joins
(2J)

SELECT Paper.title,Researcher.affiliation, Citation.number
FROM Paper, Citation, Researcher
WHERE Paper.title CROWDJOIN Citation.title AND

Paper.author CROWDJOIN Researcher.name

SELECT Winner.award, City.country
FROM Winner, City, Celebrity
WHERE Celebrity.name CROWDJOIN Winner.name AND

Celebrity.birthplace CROWDJOIN City.name

2 Joins
1 Selection

(2J1S)

SELECT Paper.title,Researcher.affiliation, Citation.number
FROM Paper, Citation, Researcher
WHERE Paper.title CROWDJOIN Citation.title AND

Paper.author CROWDJOIN Researcher.name AND
Paper.conference CROWDEQUAL "sigmod"

SELECT Winner.award, City.country
FROM Winner, City, Celebrity
WHERE Celebrity.name CROWDJOIN Winner.name AND

Celebrity.birthplace CROWDJOIN City.name AND
Celebrity.birthplace CROWDEQUAL "New York"

3 Joins
(3J)

SELECT Paper.title,Citation.number,University.country
FROM Paper, Citation, Researcher,University
WHERE Paper.title CROWDJOIN Citation.title AND

Paper.author CROWDJOIN Researcher.name AND
University.name CROWDJOIN Researcher.affiliation

SELECT Winner.name, Award.place, City.country
FROM Winner, City, Celebrity, Award
WHERE Celebrity.name CROWDJOIN Winner.name AND

Celebrity.birthplace CROWDJOIN City.name AND
Winner.award CROWDJOIN Award.name

3 Joins
1 Selection

(3J1S)

SELECT Paper.title,Citation.number
FROM Paper, Citation, Researcher,University
WHERE Paper.title CROWDJOIN Citation.title AND

Paper.author CROWDJOIN Researcher.name AND
University.name CROWDJOIN Researcher.affiliation AND
University.country CROWDEQUAL "USA"

SELECT Winner.name,City.country
FROM Winner, City, Celebrity, Award
WHERE Celebrity.name CROWDJOIN Winner.name AND

Celebrity.birthplace CROWDJOIN City.name AND
Winner.award CROWDJOIN Award.name AND
Award.place CROWDEQUAL "US"

3 Joins
2 Selections

(3J2S)

SELECT Paper.title,Citation.number
FROM Paper, Citation, Researcher,University
WHERE Paper.title CROWDJOIN Citation.title AND

Paper.author CROWDJOIN Researcher.name AND
University.name CROWDJOIN Researcher.affiliation AND
Paper.conference CROWDEQUAL "sigmod" AND
University.country CROWDEQUAL "USA"

SELECT Winner.name,City.country
FROM Winner, City, Celebrity, Award
WHERE Celebrity.name CROWDJOIN Winner.name AND

Celebrity.birthplace CROWDJOIN City.name AND
Winner.award CROWDJOIN Award.name AND
Celebrity.birthplace CROWDEQUAL "New York" AND
Award.place CROWDEQUAL "US"

Table 5: Efficiency of 5 queries (milliseconds).
Dataset 2J 2J1S 3J 3J1S 3J2S
paper 2 3 4 4 5
award 8 9 11 11 12

wise, we can go from s to s∗ without crossing a cut-edge in
G′, which is a contradiction).
(2) Suppose P contains one or more B-edges. Let e = (u, v)
be the first B-edge such that u 6= s (i.e., closest to s). By
the construction of G′, we know that we can go from u′ to
s∗ in G′. Hence in the min-cut of G′, it contain at least one
Red edge on the s-u chain in G′, which corresponds to a s-u
chain of G. Hence, we can refute the blueness of P as well.

Now, we show that one cannot do better than the min-
cut. Let h denote the size of the min-cut. By the max-flow
min-cut theorem, the value of a max flow is also h. Suppose
that there is a solution S using fewer than h Red edges.
Remove those edges from G′. Removing each Red edge can
only reduce the flow value by 1. So the remaining flow is at
least 1, implying that there is still an s-s∗ non-blue chain,
but no edge in this chain is in S. This is a contradiction,
since we have to ask at least one Red edge from this chain.

Proof of Lemma 2. We provide a reduction from the set
cover problem, which is a well-known NP-hard problem. In
a set cover problem, we are given a ground set U of elements,
and a family S of subsets of U (say S = {S1, . . . , Sm}). The
goal is to cover all elements in U using as few sets in S as
possible. Here is our reduction: For each element e ∈ U , we
create a sample graph Ge, which is simply a chain. Each
such chain Ge contains m = |S| edges. If Si contains e, we
let the color of the ith edge of Ge be Red. All remaining
edges are Blue. We can see that the set cover instance has
a solution with k sets, if and only if we can ask k edges to
resolve all sample graphs.

D. ADDITIONAL EXPERIMENTS
Generation of Dataset paper. Attributes ‘author’, ‘ti-
tle’ and ‘conference’ in paper and ‘affiliation’ in Researcher

were crawled from ACM. Attributes ‘title’ and ‘number’ in
Citation, ‘name’ in Researcher and ‘name’ in University

were crawled from DBLP. We crawled the attributes ‘city’
and ‘country’ in University from the web.
Generation of Dataset award. It is an award dataset
with 4 tables Celebrity, City, Winner and Award. The
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attributes ‘name’, ‘birthplace’ and ‘birthday’ in Celebrity

and the attribute ‘award’ in Winner were from dbpedia [4].
The attributes ‘birthplace’ and ‘country’ in City, ‘name’ in
Winner and ‘name’ in Award were from Yago [5]. We crawled
the attribute ‘place’ in Award from the web.
Five Representative Queries. Table 4 lists 5 representa-
tive queries used in our experiments.
Efficiency. Table 5 shows the efficiency of our method,
which only takes about 10 milliseconds to select the tasks
that can be asked in parallel.
Tradeoffs Among Optimization Objectives. We also
evaluate tradeoffs among objectives of crowdsourcing opti-
mization, i.e., quality, cost, and latency.
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We first compare our quality optimization approach with
majority voting used in the existing systems. We use the
most complex query “3J2S” in Table 4, and compare the ap-
proaches by varying data redundancy (i.e., the number of as-
signments per task). As shown in Figure 20, CDB+ achieves
higher F-measure than majority voting, which shows that
our approach can tolerate errors well even when data redun-
dancy is low. When increasing redundancy, the gap between
the approaches becomes smaller, since majority voting can
also perform well when assigning more workers. However,
higher redundancy will induce higher crowdsourcing cost.

Then, we evaluate the tradeoff between quality and cost.
We use the aforementioned query “3J2S” and examine qual-
ity by varying the number of questions (i.e., cost budget),
where the data redundancy is set as 5. The experimental re-
sult is shown in Figure 21. We can see that, as the increase
of cost, although quality of both approaches improves, CDB+
always outperforms majority voting. Moreover, with the in-
crease of cost, the improvement on quality brought by CDB+
becomes higher. This is because CDB+ has more informa-
tion to infer truth of questions, calculate workers’ quality,
and judiciously assign tasks to appropriate workers.

We also evaluate the tradeoff between cost and latency.
We compare 9 methods by varying the number r of rounds
as latency constraint. Specifically, given a constraint r, each
method applies its optimization techniques in the first r− 1
rounds, and crowdsources all the remaining tasks in the last
round. As shown in Figure 22, with the increase of number
of rounds, the cost of all methods decreases. This reveals
the tradeoff between cost and latency: when having loose
latency constraints, one method has more opportunities to
prune tuple pairs, leading to lower cost. Our proposed meth-
ods CDB and CDB+ achieve the lowest cost at every latency
constraint due to the tuple-level optimization technique. For
example, when the number of round is 5, the costs of CDB

and CDB+ are 3 times less than those of other methods.
Comparison of Different Similarity Functions. We
compared the methods by using different similarity func-
tions to estimate the probability. (1) NoSim that does not
use any similarity estimation and takes the probability of
each edge as 0.5. (2) ED that uses the normalized edit dis-
tance to compute the probability. (3) JAC that tokenizes
each attribute and uses Jaccard on token sets to compute
the probability. (4) CDB that generates 2-gram sets of each
attribute and uses Jaccard on 2-gram sets to compute the
probability. We use the expectation-based method to select
tasks to ask the crowd. Figure 23 shows the number of tasks
and Figure 24 shows the F-measure for different similarity
functions. We have two observations. First, most of similar-
ity functions can indeed reduce the cost, and NoSim without
similarity functions incurs higher cost than other methods
with similarity functions. CDB, ED and JAC nearly take the
same cost because all of the three similarity functions can
estimate a good probability for each edge. Second, differ-
ent similarity functions can slightly affect the quality, and
a good similarity function may improve the quality. CDB is
slightly better than ED and JAC in terms of quality, because
Jaccard may not assign a good probability for attributes
with short string, e.g., conference, and edit distance may
not assign a good probability on attributes with long string,
e.g., title, leading to that some edges with low similarity are
wrongly pruned. CDB leverages 2-grams to handle both short
and long strings, and thus achieves a little better quality. In
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our paper, we take the Jaccard similarity as an example and
leave selecting good similarity functions as future work.

E. MORE RELATED WORKS
Quality Control. To improve crowdsourcing quality, a lot
of quality control strategies are proposed. Most of the strate-
gies assign a crowdsourcing task to multiple workers and ag-
gregate worker answers to infer the truth of each task, called
“truth inference”. (1) Truth inference has been studied a lot
in existing works [35, 37, 40, 36, 66, 61, 49, 70, 17, 59]. The
idea is to assign more weights to the answers given by more
reliable workers. Thus the key step is to obtain each worker’s
reliability (or quality). Existing works typically adopt two
types of approaches. (i) The first type of approaches [39, 20]
leverage a small amount of crowdsourcing tasks with ground
truth (called “golden tasks”). A worker is required to an-
swer these golden tasks at first come, and then the worker’s
quality is initialized based on the answering performance
for these tasks. (ii) The second type of approaches [40, 61,
49, 59, 49, 70, 38] purely leverage workers’ answers to in-
fer each worker’s quality. They often adopt iterative algo-
rithms (e.g., Expectation-Maximization [18, 9, 49, 61], gibbs
sampling [40], variational inference [38]), which gradually
update each worker’s quality until convergence. Compared
with the latter approaches, the first approaches make use
of golden-tasks, which assume a set of tasks with known
truth in advance. Thus CDB mainly uses the more general
latter approaches in estimating workers’ qualities (CDB also
supports the first approaches if the requesters indicate the
known golden tasks). CDB adopts similar approaches with
existing works, however, we are more general in handling
multiple task types, i.e., single choice tasks, multiple choice
tasks and fill-in-blank tasks. (2) Task assignment techniques
have also been widely studied [69, 29, 28, 48, 20, 11, 50, 22],
which assign a set of tasks to the coming worker. The basic
idea is to assign the most uncertainty tasks to the worker.
In CDB, we consider the coming worker’s quality, and assign
tasks such that the quality can be improved the most; CDB
also supports task assignments on multiple task types.

There are some studies on crowd mining[8, 7], data clean-
ing [15, 21], spatial crowdsourcing [6, 64, 30], etc.
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