
Cypher-based Graph Pa�ern Matching in Gradoop

Martin Junghanns
University of Leipzig & ScaDS Dresden/Leipzig

junghanns@informatik.uni-leipzig.de

Max Kießling
University of Leipzig & Neo Technology

max.kiessling@neotechnology.com

Alex Averbuch
Neo Technology

alex.averbuch@neotechnology.com

André Petermann
University of Leipzig & ScaDS Dresden/Leipzig

petermann@informatik.uni-leipzig.de

Erhard Rahm
University of Leipzig & ScaDS Dresden/Leipzig

rahm@informatik.uni-leipzig.de

ABSTRACT

Graph pa�ern matching is an important and challenging operation
on graph data. Typical use cases are related to graph analytics.
Since analysts are o�en non-programmers, a graph system will
only gain acceptance, if there is a comprehensible way to declare
pa�ern matching queries. However, respective query languages
are currently only supported by graph databases but not by dis-
tributed graph processing systems. To enable pa�ern matching on
a large scale, we implemented the declarative graph query language
Cypher within the distributed graph analysis platform Gradoop.
Using LDBC graph data, we show that our query engine is scalable
for operational as well as analytical workloads. �e implementation
is open-source and easy to extend for further research.

CCS CONCEPTS

•Computing methodologies→ Distributed algorithms;

•Information systems→ Graph-based data models;

KEYWORDS

Cypher, Graph Pa�ern Matching, Apache Flink, Gradoop

1 INTRODUCTION

Graph pa�ern matching is the problem of �nding all subgraphs
of a data graph that match a given pa�ern or query graph. It has
manifold applications in research and industry, e.g., in social net-
work analysis, life sciences or business intelligence. An established
solution to manage and query graph data is using a graph database
system such as Neo4j [18]. �ese systems provide �exible data
models to �t di�erent application domains and o�er declarative
graph query languages to enable non-programmers to express a
query without a deeper understanding of the underlying system. In
contrast, graph processing systems focus on large-scale applications
with very large amounts of graph data and high computational
requirements for graph analysis and mining [13]. In such cases,
parallel and distributed execution on many processors became an
established solution. However, expressing graph algorithms in such
systems requires a profound knowledge of the underlying frame-
works and programming APIs. Moreover, support for graph pa�ern
matching is still limited [6].

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for pro�t or commercial advantage and that copies bear this notice and the full citation
on the �rst page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permi�ed. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior speci�c permission and/or a
fee. Request permissions from permissions@acm.org.
GRADES’17, Chicago, IL, USA
© 2017 ACM. 978-1-4503-5038-9/17/05. . .$15.00
DOI: h�p://dx.doi.org/10.1145/3078447.3078450

In consequence, valuable insights may remain hidden as analysts
are restrained either by limited scalability of graph databases or
missing functionality of graph processing systems. In particular,
we see a need to extend graph processing by query capabilities
that show the same expressiveness as those of graph database
systems. �is motivated us to add the pa�ern matching core of
Neo4j’s declarative graph query language Cypher1 to Gradoop, a
distributed open-source framework for graph analytics and process-
ing [12]. Our query engine is fully integrated and pa�ern matching
can be used in combination with other analytical graph operators
provided by the framework. Gradoop is based on the data�ow
framework Apache Flink [3] which scales out computation across
multiple machines.

In short, our contributions are: (1) We provide the �rst implemen-
tation of the Cypher query language based on a distributed data�ow
system, (2) we implemented a modular query engine which is the
foundation for our ongoing research on graph pa�ern matching in
distributed environments and (3) we present results of scalability
experiments based on the LDBC social network. We provide the
source code as part of the Gradoop framework under an open
source license2.

�e remainder of this paper is organized as follows: In Section
2 we provide prelimiaries on the graph data model, graph pa�ern
matching and Cypher. Section 3 describes the implementation
of our query engine while Section 4 presents evaluation results.
Finally, we brie�y discuss related work and give an outlook on our
ongoing research.

2 BACKGROUND

We �rst introduce the graph data model of Gradoop. A�erwards,
we specify the formal semantics of graph pa�ern matching and
outline the core features of the Cypher graph query language.

2.1 Extended Property Graph Model

�e Property Graph Model [16] is a widely accepted graph data
model used by many graph database systems [2]. A property graph
is a directed, labeled and a�ributed multigraph. Vertex and edge
semantics are expressed using type labels (e.g., Person or knows).
A�ributes have the form of key-value pairs (e.g., name:Alice or
classYear:2015) and are referred to as properties. Properties are
set at the instance level without an upfront schema de�nition. �e
Extended Property Graph Model adds support for graph collections
containing multiple, possibly overlapping property graphs, which
are referred to as logical graphs [12]. Like vertices and edges, logical
graphs have a type label and an arbitrary number of properties.

1h�ps://neo4j.com/developer/cypher-query-language/
2h�p://www.gradoop.com

https://neo4j.com/developer/cypher-query-language/
http://www.gradoop.com

GRADES’17, May 19, 2017, Chicago, IL, USA Martin Junghanns, Max Kießling, Alex Averbuch, André Petermann, and Erhard Rahm

Figure 1: Extended Property Graph with L = {100}, V =

{10, 20, .., 50}, E = {1, 2, .., 8}, T = {Community, Person,knows, ...},
K = {area,name, classYear , ...} and A = {Leipziд,Alice, 2014, ...}.

De�nition 2.1. (Extended Property Graph Model.) A tuple
G = (L,V ,E, l , s, t ,T ,τ ,K ,A,κ) represents an extended property
graph. L is a set of graphs (graph identi�ers), V is a set of vertices
(vertex identi�ers) and E is a set of edges (edge identi�ers). Graph
containment is represented by the mapping l : V ∪ E → P(L) \ ∅
whereas the mappings s : E → V / t : E → V determine a source
and a target vertex for every edge. An edge is directed from source
to target. A logical graphGi = (Vi ,Ei) (i ∈ L) represents a subset of
verticesVi ⊆ V and a subset of edges Ei ⊆ E such that ∀v ∈ Vi : i ∈
l (v) and ∀e ∈ Ei : s (e), t (e) ∈ Vi ∧ i ∈ l (e). T is a set of type labels
and τ : L ∪V ∪ E → T assigns a label to a graph, vertex or edge.
Similarly, properties are de�ned by a set of property keys K , a set
of property values A and a mapping κ : (L ∪V ∪ E) ×K → A∪ {ε },
where ε is returned if the element has no value for a given key. A
graph collection G = {G1,G2, ...,Gn } is a set of logical graphs.

Figure 1 shows an example social network represented by a single
logical graph containing persons, universities and cities as well as
their mutual relations. �e EPGM further de�nes a set of operators
to analyze logical graphs and graph collections [12]. Since the in-
and output of such operators are always single graphs or graph
collections, the power of the EPGM is its ability to combine multiple
operators to analytical programs. �e Gradoop framework already
provides operator implementations for subgraph extraction, graph
transformation, graph grouping, set operations on multiple graphs
as well as property-based aggregation and selection [12, 14]. In this
paper we describe the addition of a pa�ern matching operator that
uses the Cypher query language for pa�ern de�nition.
2.2 Graph Pattern Matching

A match in graph pa�ern matching can be de�ned in many di�erent
ways [8]. We focus on �nding either graph homomorphisms or
isomorphims between a user-de�ned query graph and subgraphs of
a data (property) graph. Here, a subgraph will match, if there exists
a homomorphic/isomorphic mapping between the vertices (and
edges) of the query graph and those of the subgraph. Considering
only one mapping semantic would be either too strict or too general
for certain use cases. For example, if we search for friends of friends
of Alice in the graph of Figure 1, a homomorphic semantics for
vertices would also return Alice which might be counter-intuitive
and can be prevented by isomorphic semantics. In the following, we
provide respective de�nitions for pa�ern matching in the context
of extended property graphs:

De�nition 2.2. (�ery graph). Let G be a data graph. A tuple
Q = (Vq ,Eq , s, t ,θv ,θe) is a query graph of query vertices Vq and
query edges Eq . θv : V (G) → {true, f alse} and θe : E (G) →
{true, f alse} are predicate functions de�ned on type labels and
properties of data vertices and edges.

De�nition 2.3. (Homomorphism/Isomorphism). A graph G ′ =
(V ′,E ′) will be a subgraph of a (logical) graph G = (V ,E), denoted
by G ′ v G, i� V ′ ⊆ V and E ′ ⊆ E with ∀e ∈ E ′ : s (e), t (e) ∈ V ′.
Given a query graph Q and a subgraph G ′, G ′ will match Q by
homomorphism, denoted by Q ∼ G ′, if there are two mappings
fv : Vq → V ′ and fe : Eq → E ′, such that ∀vq ∈ Vq : θv (fv (vq))
and ∀e ∈ Eq : (fv (s (eq)), fv (t (eq))) ∈ E ′ ∧ θe (fe (eq)). If fv and
fe are bijective, then G ′ matches Q by isomorphism, denoted by
Q ' G ′. If G ′ matches Q , then Q will be embedded in G ′. An
embedding is represented by a tuple (fv , fe)G′ .

Based on the previous de�nitions, we are now able to de�ne a
new EPGM operator for graph pa�ern matching:

De�nition 2.4. (Graph pattern matching). Given a logical
(data) graph G and a query graph Q , the graph pa�ern matching
operator returns a collection of new logical graphs GQ , such that
G ′ ∈ GQ ⇔ G ′ v G ∧Q ∼ G ′ (or Q ' G ′ for isomorphism). Note,
that the resulting logical graphs are added to the set of all graphs,
i.e., ∀Gi ∈ GQ : i ∈ L.
2.3 Cypher�ery Language

For the pa�ern matching operator, it is necessary to declare a query
graph Q . For this purpose, we adopt core features of Cypher, the
graph query language of Neo4j. Since Cypher is designed on top of
the property graph model, it can also be used to express a query on a
logical graph. Furthermore, there is an ongoing e�ort to standardize
Cypher as a graph query language within the openCypher3 project.

Having the social network of Figure 1 in mind, we give an exam-
ple for searching pairs of persons who study at the University of
Leipzig, have di�erent genders and know each other either directly
or transitively by at most three friendships. With Cypher, that
query can be expressed as follows:
1: MATCH (p1:Person)-[s:studyAt]->(u:University),

2: (p2:Person)-[: studyAt]->(u),

3: (p1)-[e:knows *1..3]->(p2)

4: WHERE p1.gender <> p2.gender

5: AND u.name = 'Uni Leipzig '

6: AND s.classYear > 2014

7: RETURN *

In the MATCH clause, we specify the structure of the query graph
including predicates on type labels (e.g., :Person or :studyAt).
Variables (e.g., p1 and s) are optional and declared to reuse pa�ern
elements as well as to de�ne �lter predicates in the WHERE clause.
Edge directions are denoted by arrows, e.g., (a)-[e]->(b) repre-
sents an edge e from vertex a to vertex b. In line 3, we use a variable
length path expression on the query edge to declare the presence
of at least 1 and up to 3 edges of type :knows between p1 and
p2. Predicates can be de�ned on the properties of query elements,
e.g., u.name = ’Uni Leipzig’ �lters all universities that have
the property value Uni Leipzig bound to the property key name.
Binary relations can be expressed between two properties (lines 4)
or properties and literals (lines 5 and 6).
3h�p://www.opencypher.org/

Cypher-based Graph Pa�ern Matching in Gradoop GRADES’17, May 19, 2017, Chicago, IL, USA

Table 1: Example EPGM datasets in Gradoop

L : (id:100, label:Community, area:Leipzig)

V : (id:10, label:Person, graphs:[100], name:Alice, gender:female)
(id:20, label:Person, graphs:[100], name:Eve, yob: 1984)

E : (id:5, label:knows, graphs:[100], sid:10, tid:20)
(id:6, label:knows, graphs:[100], sid:20, tid:10)

A key di�erence between our implementation and Neo4j is the
RETURN clause. In the EPGM, an operator always returns either a
graph or a graph collection. Here, the operator returns all subgraphs
of the input graph that match the pa�ern. In contrast, Neo4j returns
a tabular representation with variables and their bindings. However,
since we add variable bindings as properties to the resulting logical
graphs, arbitrary post-processing is possible. A second distinction is
the pa�ern matching semantic. While Neo4j applies homomorphic
semantic for vertices and isomorphic semantic for edges, we allow
the user to set the semantics when calling the operator (Section 3).

2.4 Gradoop on Apache Flink

Gradoop is an EPGM reference implementation on top of the dis-
tributed data�ow system Apache Flink [3]. Systems like Apache
Flink or Apache Spark [19] are designed to implement data-centric
algorithms on shared nothing clusters without handling the techni-
cal aspects of parallelization. �e fundamental programming ab-
stractions are datasets and transformations among them. A dataset
is a set of data objects partitioned over a cluster of computers. A
transformation is an operation that is executed on the elements of
one or two input datasets and produces a new dataset. A transfor-
mation can be computed concurrently using the threads provided
by the worker machines. Each thread processes a partition of the
dataset, there is no shared memory among threads. Well known
transformations are map and reduce, but also relational operators
are supported, e.g., selection (�lter), join, groupBy and project. Ap-
plication logic is expressed by user-de�ned functions which are ar-
guments of transformations and applied to dataset elements during
execution. For example, a �lter transformation takes a user-de�ned
predicate function as input, applies it on each dataset element and
returns only those elements where the function evaluates to true.

�e main programming abstractions provided by Gradoop are
LogicalGraph and GraphCollection as well as a set of graph oper-
ators to express transformations among them. A GraphCollection
consists of three Flink datasets representing its graph heads (L),
vertices (V) and edges (E). Table 1 shows a subgraph of Figure 1
represented as Flink datasets. A graph head contains the data (i.e.,
type label and properties) associated to a single logical graph. As
vertices and edges may be contained in multiple logical graphs, they
not only carry data but also store their graph membership (i.e., l (v)
and l (e)). Edges additionally store their source and target vertex
identi�er. A LogicalGraph graph is a special case of a graph col-
lection in which the graph head dataset consists of a single element.
EPGM operators are implemented using Flink transformations on
the datasets of a logical graph or a graph collection [12].
2.5 Translating Cypher into relational algebra

Since vertices and edges of a logical graph are represented by Flink
datasets, they can also be interpreted as distributed relational ta-
bles containing semi-structured tuples. As Flink already provides
relational dataset transformations, our approach is to translate the
Cypher query into relational algebra [10].

Table 2: Tabular representations of query embeddings.

(a) Embeddings for a basic structural pattern.

fv (p1) fe (s) fv (u)

(id:10, name:Alice) (id:3, sid:10, tid:40) (id:40, name:Uni Leipzig)
(id:20, name:Eve) (id:4, sid:20, tid:40) (id:40, name:Uni Leipzig)

(b) Embeddings for a variable length path expression on edge e.

fv (p1) fe (e) fv (p2)
(id:10, name:Alice) (sid:10, tid:20, via:[5]) (id:20, name:Eve)
(id:10, name:Alice) (sid:10, tid:30, via:[5,20,7]) (id:30, name:Bob)

To store a collection of subgraphsGQ that match a query graphQ
in a relational table, we represent their embeddings (fv , fe)Gi ∈GQ

within rows. For example, consider the following query executed
on the social network of Figure 1:
MATCH (p1:Person)-[s:studyAt]->(u:University)

WHERE s.classYear > 2014 RETURN p1.name , u.name

Table 2a illustrates the tabular representation of all possible
embeddings for the given query. Each column maps a query ver-
tex/edge to its corresponding vertex/edge in the input graph. To
compute such embeddings, we decompose a Cypher query into a
series of relational operations and incrementally construct the �nal
embeddings. Selection is applied to evaluate predicates on vertices,
edges and embeddings while projection is applied to �lter unneces-
sary properties, e.g., V ′ = πid,name (στ (v)=′Person′ (V)) returns a
table of embeddings containing identi�ers and name properties of
matching vertices. �e join operator is used to combine two embed-
dings, e.g., V ′ ./v=s (e) (στ (e)=′studyAt ′∧κ (e, ′classY ear ′)>2014 (E))
connects each person with their outgoing edges of type studyAt.
Dependent on the speci�ed query semantics (isomorphism/homo-
morphism), we additionally need to check for vertex and edge
uniqueness a�er performing a join.

Translating a variable length path expression in relational alge-
bra is not straightforward. In general, a Cypher query such as
MATCH (p1:Person)-[e:knows *1..3]->(p2:Person)

WHERE p1.gender <> p2.gender RETURN p1.name , p2.name

computes all paths between two vertices (p1 and p2), where the
length of each path is between a lower (e.g., 1) and an upper bound
(e.g., 3). A single path of length k can be translated into a k-way
join between the input embeddings (e.g., fv (p1)) and the graph’s
edges. To represent a path as part of the embedding, we use the
notation shown in Table 2b. While source and target identi�ers
(i.e., sid and tid) store a path’s start and end vertex, the �eld via
contains all (alternating) edge and vertex identi�ers in between.
Note, that a path may contain duplicate vertex and edge identi�ers
depending on the speci�ed query semantics. �e result of a variable
length path expression is the union of all embeddings containing
paths of length lowerBound ≤ k ≤ upperBound .

3 IMPLEMENTATION

�e challenges of building a query engine for graphs represented by
vertex and edge datasets are well-known from relational databases
[4], i.e., query transformation and optimization. In the context
of distributed data�ow systems, we additionally need to �nd an
e�cient implementation of query operators using dataset transfor-
mations, identify a compact data structure for the representation
of embeddings and minimize data shu�ing among machines.

GRADES’17, May 19, 2017, Chicago, IL, USA Martin Junghanns, Max Kießling, Alex Averbuch, André Petermann, and Erhard Rahm

We implemented our query engine as an extensible module
within the Gradoop framework to allow easy improvement dur-
ing ongoing research. �e following example shows the usage of
Cypher pa�ern matching in Gradoop, i.e., within a Java program:
LogicalGraph g = csvDataSource.getLogicalGraph ();

String q = "MATCH (p1:Person)-[e:knows *1..3]->(p2:Person)

WHERE p1.gender <> p2.gender RETURN *";

GraphCollection matches = g.cypher(q, HOMO , ISO);

csvDataSink.write(matches);

�e operator takes the query string as well as vertex and edge
semantics (i.e., ISO or HOMO) as input. When executing the program,
the engine �rst parses the query, simpli�es it and creates a query
graph object. We then apply a greedy optimizer that utilizes sta-
tistics about the input graph to �nd a good query execution order.
�e result of that step is a query plan where each entry represents
a query operator that is implemented using Flink transformations.
In the following, we will brie�y discuss main components of our
query engine and necessary improvements within Gradoop.

3.1 �ery operators

�e translation of relational operators (see Section 2.5) into Flink
dataset transformations is handled by query operators. Our imple-
mentation currently supports the following operators: SelectAnd-
ProjectVertices/-Edges and Select-/ProjectEmbeddings for
selection and projection, JoinEmbeddings for joining and Expand-
Embeddings for evaluating variable length path expressions.

Figure 2 shows a possible query plan for the input query of the
beginning of Section 3. �e data�ow is de�ned from bo�om to top
forming a tree structure. �e plan’s inputs are the vertex and edge
datasets provided by Gradoop. Each do�ed box depicts a single
query operator including its performed speci�c relational operation.
Tree nodes are labeled by the Flink transformations used to execute
the speci�c query operator logic.

�e leaf operators SelectAndProjectVertices/-Edges com-
bine the Select → Project → Transform steps which have to
be performed for every query vertex/edge. Select initially �lters
the input vertices/edges by evaluating element-centric predicates
(e.g., those on labels). Project only keeps properties required for
evaluating subsequent predicates. Finally, Transform converts the
element into an embedding for further processing. One way to
express these steps is a chain of Filter → Map → Map trans-
formations. However, Flink provides the FlatMap transformation
which, in contrast to Map, can emit an arbitrary number of ele-
ments (zero or one in our case). �is allows us to perform all
three steps in a single transformation hereby omi�ing otherwise re-
quired object (de-)serializations at the same time. JoinEmbeddings
connects two subqueries by joining the datasets containing their
corresponding embeddings. We are using the FlatJoin transfor-
mation since the joined embedding will only be emi�ed, if the
speci�ed query semantics (i.e., isomorphism or homomorphism)
apply. SelectEmbeddings is applied to evaluate predicates that
span multiple query elements and ProjectEmbeddings removes
unnecessary properties. Due to the extensibility of our implemen-
tation, it is easy to integrate new query operators, for example, to
join subqueries on property values.

We want to discuss ExpandEmbeddings in further detail. In
Section 2.5, we describe that a variable length path expression can

Figure 2: �ery plan describing themapping between query

operators, relational algebra and Flink transformations.

be translated into the union of k-way (iterative) joins between
embeddings and a set of edges. To express iterations in data�ows,
Flink includes the Bulk Iteration operator which provides while
loop semantics. Here, the iteration body is a directed data�ow and
an iteration’s output is input of the next one. In each iteration
(see Figure 2), we select (�lter) embeddings (paths) of the previous
iteration, perform a 1-hop expansion by joining them with the edge
set and keep only paths that satisfy the speci�ed query semantics.
If the current iteration is greater or equal than the lower bound,
valid embeddings will be added to the result set using a union
transformation. �e iteration will terminate, if the upper bound is
reached or no more valid paths can be produced.

3.2 Cost-based query optimization

Figure 2 represents one possible operator order for our input query.
However, �nding a good order is a challenging problem since there
is generally a huge number of possible execution plans for a single
query [9]. Apache Flink contains a data�ow optimizer that can
choose between join strategies (partitioning vs. broadcast, hash-
join vs. sort-merge-join) and reuses data partitions to minimize
shu�ing [1]. However, the optimizer does not utilize statistics for
operator reordering which is crucial for query performance4.

�erefore, our query engine supports a �exible integration of
query planners to optimize the operator order. Our reference im-
plementation follows a greedy approach by decomposing the query
into sets of vertices and edges and constructing a bushy query plan
by iteratively joining embeddings and choosing the query plan that
minimizes the size of intermediate results. Vertices and edges that
are covered by that plan are removed from the initial sets until
there is only one plan le�.

�e greedy planner uses pre-computed statistics about the data
graph to estimate the cardinality of a join operation. We currently
utilize the total number of vertices and edges, vertex and edge label
distributions as well as the number of distinct source and target
vertices overall and by edge label. We use basic approaches from
relational query planning to estimate the join cardinality [9].
4h�ps://cwiki.apache.org/con�uence/display/FLINK/Optimizer+Internals

https://cwiki.apache.org/confluence/display/FLINK/Optimizer+Internals

Cypher-based Graph Pa�ern Matching in Gradoop GRADES’17, May 19, 2017, Chicago, IL, USA

3.3 Embedding data structure

One key aspect of implementing a query engine on a distributed
data�ow system is the design of an e�cient data structure for
the representation of intermediate and �nal query results, i.e., em-
beddings. Since embeddings are shu�ed between workers and
processed by query operators both (de-)serialization as well as read-
/write access must be e�cient. �e following listing describes our
embedding implementation.

idEntry := (ID,id)

pathEntry := (PATH ,offset)

idData := idEntry | pathEntry

pathData := (path -length ,ids)

propData := (byte -length ,value)

Embedding := idData[], pathData[], propData []

We use three arrays to represent an embedding. �e �rst array
(idData[]) stores mappings between query and graph elements.
We use a �ag to distinguish between entries for vertex and edge
identi�ers (ID) and o�sets for variable length paths (PATH). �e
la�er point into a second array (pathData[]) in which each path is
represented by the number of its elements (path-length) and their
ordered identi�ers (ids). �e third array (propData[]) contains
property values associated with query variables including their
byte length which di�ers depending on the value’s type.

�e following listing shows the physical embedding for the sec-
ond row of Table 2b. We use byte arrays to store the entries and
Gradoop methods for their (de-)serialization.
byte[] idData = {ID ,10,PATH ,0,ID ,30}

byte[] pathData = {3,5,20,7}

byte[] propData = {5,Alice ,3,Bob}

Given an index, identi�ers and path entries can be read in con-
stant time as each entry in the �rst array has a �xed length. For
properties, we need to pursue length information until the prop-
erty at a speci�ed index is reached. Updating, i.e., merging two
embeddings in a join operation is an append-only operation for
identi�ers and properties. For paths we need to update the o�sets in
the second embedding which is bound by the number of id entries.

We maintain a meta data object that stores the mapping informa-
tion between query variables/properties and indices of embedding
entries, e.g., a mapping {p1:0, p1.name:0} determines that the
identi�er of query variable p1 is stored at idData[0] and the prop-
erty value at propData[0]. �e meta data is utilized and updated
by the query operators but not part of the embedding data structure.

3.4 Indexed logical graph

As discussed in Section 2.4, Gradoop uses two Flink datasets to rep-
resent a logical graph. During our evaluation, we discovered that
having multiple transformations (e.g., �lter) consuming a single
dataset causes Flink to replicate the dataset’s elements according
to the number of transformations5. �us, we added an alterna-
tive graph representation, called IndexedLogicalGraph, which
partitions vertices and edges by their type label and manages a sep-
arate dataset for each label. If a query vertex (or edge) has a label
predicate, the planner will only load the speci�c dataset instead of
computing the union of all vertex (or edge) datasets.

5h�p://apache-�ink-mailing-list-archive.1008284.n3.nabble.com/
Dataset-and-select-split-functionality-td16318.html#a16329

4 EVALUATION

One key feature of distributed shared nothing systems is their ability
to respond to growing data sizes or problem complexity by adding
more machines. We therefore evaluate the scalability of our engine
with respect to increasing computing resources and data volume,
and queries of di�erent complexity.

Setup. �e experiments were performed on a cluster with 16
workers connected via 1 GBit Ethernet. Each worker consists of an
Intel Xeon E5-2430 6 x 2.5 Ghz CPU, 48 GB RAM, two 4 TB SATA
disks and runs openSUSE 13.2. We use Hadoop 2.6.0 and Flink 1.1.2.
We run Flink with 6 threads and 40 GB memory per worker.

For our experiments we use the LDBC-SNB data set [7]. �e
generator was designed to resemble the structural properties of a
real world social network: node degree distribution based on power-
laws and skewed property value distributions. For our experiments
we generated datasets with scale factor (SF) 10 (19GB, 29M vertices,
167M edges) and 100 (191GB, 271M vertices, 1.6B edges) and store
them in HDFS using a Gradoop-speci�c CSV format.

For the evaluation we compiled six queries with a broad variety
of characteristics (see Appendix). �eries 1 to 3 are operational
queries which only touch a small share of the input graph and
whose selectivity can be controlled by parametrized predicates.
Note, that we also include variable length path operations. �eries
4 to 6 are analytical queries that consider larger parts of the input
graph. In contrast to the operational queries, the analytical ones
produce a larger number of intermediate and �nal result graphs.

�e query execution time includes loading the graph from HDFS,
�nding all matches and counting them. We run �ve executions per
query and report the average runtime.

4.1 Scalability

We �rst evaluate absolute runtime and relative speedup of our en-
gine6. We executed the queries on both data sets using an increasing
number of workers in each run. While all queries bene�t from more
resources, the operational queries gain the best improvements. For
example, on SF 100 we could reduce the runtime of �ery 2 (low se-
lectivity) from about 26 minutes on a single machine to 1.5 minutes
on 16 workers. Figure 3 shows that for �ery 1 to 3 (each with low
selectivity) the speedup is nearly linear up to 16 workers. In some
cases, we achieve super-linear speedup since more distributed main
memory prevents Flink from spilling intermediate join results to
disk. For SF 10, we achieve near linear speedup on 1 to 4 workers
and then stagnate due to the small data set size (Appendix, Tab. 4).

For the analytical queries, increasing resources is less pro�table.
We observed two e�ects: �rst, for a large result set cardinality the
impact of data shu�ing is more crucial and second, node degree
distributions based on power laws lead to a skewed load distribution
among the workers. �ese e�ects can be seen in Figure 3. For SF
10, the speedup of �ery 4 decreases due to a large amount of
results (340M) and the speedups of queries 5 and 6 stagnate at eight
workers due to load imbalance caused by traversing friendships.

We also evaluate scalability with increasing data volume and a
�xed number of workers. �e results in Figure 4 show that the run-
time increases almost linearly with the data volume. For example,
the execution of �ery 6 required about 42 seconds on scale factor
10 and 411 seconds on scale factor 100.
6Runtimes for all queries and data sets are reported in the appendix in Table 4.

http://apache-flink-mailing-list-archive.1008284.n3.nabble.com/Dataset-and-select-split-functionality-td16318.html#a16329
http://apache-flink-mailing-list-archive.1008284.n3.nabble.com/Dataset-and-select-split-functionality-td16318.html#a16329

GRADES’17, May 19, 2017, Chicago, IL, USA Martin Junghanns, Max Kießling, Alex Averbuch, André Petermann, and Erhard Rahm

 1

 2

 4

 8

 16

 1 2 4 8 16

S
p

e
e

d
u

p

Linear
Q1.SF100
Q2.SF100
Q3.SF100
Q4.SF10
Q5.SF10
Q6.SF10

Figure 3: Speedup over workers

 10

 100

 1000

SF 10 SF 100

R
u

n
ti
m

e
 [

s
]

Query 1
Query 2
Query 3
Query 4
Query 5
Query 6

Figure 4: Data size increase (16 workers)

 100

 200

 300

 400

 500

 600

 700

 800

Query 1 Query 2 Query 3

R
u

n
ti
m

e
 [

s
]

high
medium
low

Figure 5: �ery selectivity (4 workers)

4.2 Runtime vs. predicate selectivity

We further evaluate how predicate selectivity a�ects query runtime.
We produced di�erent result cardinalities by �ltering persons by
their �rst name, ranging from highly uncommon to very common
values. �e results can be seen in Figure 5. It can be observed that
predicates only a�ect runtimes if they increase join cardinalities
in the order of several magnitudes, especially if this applies for
consecutive joins. For �ery 3, the number of intermediate results
increases superlinearly with the number of selected people, whereas
for queries 1 and 2 the size of intermediate results grows linearly.
�is leads to signi�cant runtime di�erences: while for �ery 3
runtime for low selectivity predicates doubles compared to medium
and high selectivity predicates, the linear increase of intermediate
results for �ery 1 has almost no impact on query runtime.

5 RELATEDWORK

We propose the �rst implementation for complex Cypher queries
on a distributed data�ow system. Our work is related to:

Distributed graph systems. GraphFrames [6] is a graph ana-
lytics system similar to Gradoop but based on Apache Spark [19].
It o�ers limited pa�ern matching capabilities restricted to homo-
morphism, �xed path lengths and label-only predicates. Complex
predicates need to be programmatically evaluated in post process-
ing steps which prohibits early intermediate result reduction. Graph
processing systems like Apache Giraph [5] focus on iterative graph
algorithms and provide a vertex-centric messaging abstraction to
implement algorithm logic. PSgL [17] is a pa�ern matching imple-
mentation based on Apache Giraph that provides optimizations to
reduce intermediate results and improve load balancing. Although
it provides no declarative language nor is it publicly available, the
proposed ideas could be used to improve our implementation.

Graph algebras and graph query optimization. Our transla-
tion of graph queries to relational algebra was mainly inspired by
the work of Hölsch [10] who proposed a graph algebra including
formal operators for path traversals and equivalence rules for query
optimization. Huang [11] proposed optimization techniques for
structural pa�ern matching on a distributed relational database.

Other Cypher implementations. Graph database systems like
Neo4j [18] focus on pa�ern matching in operational scenarios with
limited support for large-scale graph algorithms. Standardization
e�orts within the openCypher project have lead to a broader adop-
tion of the query language. For example, SAP HANA, a distributed
relational database system, o�ers the ability to de�ne graphs on
relations and query them using Cypher [15].

6 CONCLUSION

We outlined our work on Cypher pa�ern matching with Gradoop.
Analysts are now able to integrate declarative pa�ern matching
within a graph analytical program. Our �rst experimental results
are promising as we could already show good scalability for increas-
ing computing resources and near perfect scalability for increasing
data set sizes. However, query performance depends heavily on
data and query graph characteristics as well as the query execution
strategy. In our ongoing work we want to further improve the
query planner to consider more sophisticated estimation methods
and to utilize query properties like recurring subqueries to avoid
redundant computation. As shown in the evaluation, load balancing
and data shu�ing are the bo�lenecks at large scale. We want to in-
vestigate how di�erent join implementations and data partitioning
as well as replication strategies can further reduce runtimes.
REFERENCES

[1] Alexander Alexandrov and others. 2014. �e Stratosphere Platform for Big Data
Analytics. �e VLDB Journal 23, 6 (2014).

[2] Renzo Angles. 2012. A Comparison of Current Graph Database Models. In Proc.
ICDE Workshops.

[3] Paris Carbone and others. 2015. Apache Flink: Stream and Batch Processing in a
Single Engine. IEEE Data Eng. Bull. 38, 4 (2015).

[4] Surajit Chaudhuri. 1998. An Overview of �ery Optimization in Relational
Systems. In Proc. PODS.

[5] Avery Ching and others. 2015. One Trillion Edges: Graph Processing at Facebook-
scale. Proc. VLDB Endow. 8, 12 (Aug. 2015).

[6] Ankur Dave and others. 2016. GraphFrames: An Integrated API for Mixing
Graph and Relational �eries. In Proc. SIGMOD GRADES Workshop.

[7] Orri Erling and others. 2015. �e LDBC social network benchmark: Interactive
workload. In Proc. SIGMOD.

[8] Brian Gallagher. 2006. Matching structure and semantics: A survey on graph-
based pa�ern matching. AAAI FS 6 (2006).

[9] Hector Garcia-Molina, Je�rey D. Ullman, and Jennifer Widom. 2008. Database
Systems: �e Complete Book (2 ed.). Prentice Hall Press.

[10] Jürgen Hölsch and Michael Grossniklaus. 2016. An Algebra and Equivalences to
Transform Graph Pa�erns in Neo4j. In Proc. EDBT Workshops.

[11] Jiewen Huang, Kartik Venkatraman, and Daniel J. Abadi. 2014. �ery optimiza-
tion of distributed pa�ern matching. In Proc. ICDE.

[12] Martin Junghanns and others. 2016. Analyzing Extended Property Graphs with
Apache Flink. In Proc. SIGMOD NDA Workshop.

[13] Martin Junghanns, André Petermann, Martin Neumann, and Erhard Rahm. 2017.
Management and Analysis of Big Graph Data: Current Systems and Open Chal-
lenges. In Handbook of Big Data Technologies.

[14] Martin Junghanns, André Petermann, and Erhard Rahm. 2017. Distributed
Grouping of Property Graphs with GRADOOP. In Proc. BTW.

[15] Philip Mugglestone. 2017. Graph Processing with SAP HANA 2. h�ps://blogs.sap.
com/2016/12/01/graph-processing-with-sap-hana-2/. (accessed: March 2017).

[16] Marko A Rodriguez and Peter Neubauer. 2010. Constructions from dots and
lines. ASIS&T Bull. 36, 6 (2010).

[17] Yingxia Shao and others. 2014. Parallel Subgraph Listing in a Large-scale Graph.
In Proc. SIGMOD.

[18] Neo Technology. 2017. Neo4j Graph Database. h�ps://neo4j.com/. (accessed:
March 2017).

[19] Matei Zaharia and others. 2012. Resilient distributed datasets: A fault-tolerant
abstraction for in-memory cluster computing. In Proc. USENIX NSDI.

https://blogs.sap.com/2016/12/01/graph-processing-with-sap-hana-2/
https://blogs.sap.com/2016/12/01/graph-processing-with-sap-hana-2/
https://neo4j.com/

Cypher-based Graph Pa�ern Matching in Gradoop GRADES’17, May 19, 2017, Chicago, IL, USA

APPENDIX

�ery 1 - All messages of a person

Parameterized Cypher�ery

MATCH (person:Person)<-[: hasCreator]-(message:Comment|Post)

WHERE person.firstName = "{firstName}"

RETURN message.creationDate , message.content

Result cardinalities for di�erent predicate selectivities

High Medium Low
SF 10 63 2,704 784,051
SF 100 6 41,634 7,594,399

�ery 2 - Posts to a persons comments

Parameterized Cypher�ery

MATCH (person:Person)<-[: hasCreator]-(message:Comment|Post),

(message)-[: replyOf *0..10] - >(post:Post)

WHERE person.firstName = "{firstName}"

RETURN message.creationDate , message.content ,

post.creationDate , post.content

Result cardinalities for di�erent predicate selectivities

High Medium Low
SF 10 31 4,465 818,869
SF 100 6 32,929 7,249,529

�ery 3 - Friends that replied to a post

Parameterized Cypher�ery

MATCH (p1:Person)-[:knows]->(p2:Person),

(p2)<-[: hasCreator]-(comment:Comment),

(comment)-[: replyOf *1..10] - >(post:Post),

(post)-[: hasCreator]->(p1)

WHERE p1.firstName = "{firstName}"

RETURN p1.firstName , p1.lastName ,

p2.firstName , p2.lastName ,

post.content

Result cardinalities for di�erent predicate selectivities

High Medium Low
SF 10 71 4,876 252,344
SF 100 5,138 52,404 2,579,714

�ery 4 - Person pro�le

Cypher�ery

MATCH (person:Person)-[: isLocatedIn]->(city:City),

(person)-[: hasInterest]->(tag:Tag),

(person)-[: studyAt]->(uni:University),

(person)<-[: hasMember|hasModerator]-(forum:Forum)

RETURN p1.firstName , p1.lastName ,

city.name , tag.name , uni.name , forum.title

Result cardinalities for di�erent predicate selectivities

Cardinality
SF 10 343,871,500
SF 100 3,566,155,862

�ery 5 - Close friends

Cypher�ery

MATCH (p1:Person)-[:knows]->(p2:Person),

(p2)-[:knows]->(p3:Person),

(p1)-[:knows]->(p3)

RETURN p1.firstName , p1.lastName ,

p2.firstName , p2.lastName ,

p3.firstName , p3.lastName

Result cardinalities for di�erent predicate selectivities

Cardinality
SF 10 4,940,388
SF 100 66,191,525

GRADES’17, May 19, 2017, Chicago, IL, USA Martin Junghanns, Max Kießling, Alex Averbuch, André Petermann, and Erhard Rahm

�ery 6 - Recommendation

Cypher�ery

MATCH (p1:Person)-[:knows]->(p2:Person),

(p1)-[: hasInterest]->(t1:Tag),

(p2)-[: hasInterest]->(t1),

(p2)-[: hasInterest]->(t2:Tag)

RETURN p1.firstName , p1.lastName , t2.name

Result cardinalities for di�erent predicate selectivities

Cardinality
SF 10 87,382,672
SF 100 863,732,154

Table 3: Intermediate Result Sizes

Pa�ern Selectivity
High Medium Low

(:Person) 2 39 1,757
(:Person)<-[:hasCreator]-(:Comment|Post) 31 4,465 818,869
(:Person)-[:knows]->(:Person) 19 947 51,114
(:Person)-[:knows]->(:Person)<-[:hasCreator]-(:Comment) 18,129 636,678 38,122,006

Table 4: �ery runtimes in seconds (Speedup)

�ery Selectivity Scale factor Number of workers
1 2 4 8 16

�ery 1

Low SF 10 89 46 (1.9) 25 (3.6) 15 (5.9) 12 (7.4)
SF 100 915 445 (2.1) 237 (3.9) 123 (7.4) 91 (10.1)

Medium SF 10 88 46 (1.9) 26 (3.4) 15 (5.9) 11 (8.0)
SF 100 866 447 (1.9) 230 (3.8) 116 (7.5) 87 (10.0)

High SF 10 88 45 (2.0) 26 (3.4) 15 (5.9) 12 (7.3)
SF 100 866 441 (2.0) 238 (3.6) 116 (7.5) 87 (10.0)

�ery 2

Low SF 10 130 69 (1.9) 38 (3.4) 22 (5.9) 17 (7.7)
SF 100 1,602 757 (2.1) 359 (4.5) 180 (8.9) 115 (13.9)

Medium SF 10 123 64 (1.9) 33 (3.7) 19 (6.6) 14 (8.8)
SF 100 1,444 701 (2.1) 327 (4.4) 167 (8.7) 121 (11.9)

High SF 10 123 64 (1.9) 34 (3.6) 18 (6.8) 14 (8.8)
SF 100 1,439 701 (2.1) 234 (6.1) 167 (8.6) 115 (12.5)

�ery 3

Low SF 10 178 87 (2.1) 54 (3.3) 30 (5.9) 25 (7.1)
SF 100 3,012 1,554 (1.9) 706 (4.3) 374 (8.1) 294 (10.2)

Medium SF 10 105 54 (1.9) 28 (3.8) 15 (7.0) 11 (9.6)
SF 100 1,330 616 (2.2) 289 (4.6) 143 (9.3) 90 (14.8)

High SF 10 104 52 (2.0) 27 (3.9) 15 (6.9) 11 (9.5)
SF 100 1,314 609 (2.2) 276 (4.8) 138 (9.5) 84 (15.6)

�ery 4

SF 10 854 380 (2.3) 250 (3.4) 142 (6.0) 131 (6.5)
SF 100 - - - - 1,488

�ery 5

SF 10 315 168 (1.9) 115 (2.7) 66 (4.8) 71 (4.4)
SF 100 - - - - 1,039

�ery 6

SF 10 193 104 (1.9) 73 (2.6) 45 (4.3) 42 (4.6)
SF 100 - - - - 411

	Abstract
	1 Introduction
	2 Background
	2.1 Extended Property Graph Model
	2.2 Graph Pattern Matching
	2.3 Cypher Query Language
	2.4 Gradoop on Apache Flink
	2.5 Translating Cypher into relational algebra

	3 Implementation
	3.1 Query operators
	3.2 Cost-based query optimization
	3.3 Embedding data structure
	3.4 Indexed logical graph

	4 Evaluation
	4.1 Scalability
	4.2 Runtime vs. predicate selectivity

	5 Related Work
	6 Conclusion
	References

