
Hybrid Pulling/Pushing for I/O-Efficient Distributed and
Iterative Graph Computing

Zhigang Wang†, Yu Gu†, Yubin Bao†, Ge Yu†, Jeffrey Xu Yu‡

†Northeastern University, China
‡The Chinese University of Hong Kong, China

wangzhiganglab@gmail.com, {guyu, baoyubin, yuge}@ise.neu.edu.cn, yu@se.cuhk.edu.hk

ABSTRACT
Billion-node graphs are rapidly growing in size in many applica-
tions such as online social networks. Most graph algorithms gen-
erate a large number of messages during iterative computations.
Vertex-centric distributed systems usually store graph data and mes-
sage data on disk to improve scalability. Currently, these distributed
systems with disk-resident data take a push-based approach to han-
dle messages. This works well if few messages reside on disk.
Otherwise, it is I/O-inefficient due to expensive random writes. By
contrast, the existing memory-resident pull-based approach indi-
vidually pulls messages for each vertex on demand. Although it
can be used to avoid disk operations regarding messages, expensive
I/O costs are incurred by random and frequent access to vertices.

This paper proposes a hybrid solution to support switching be-
tween push and pull adaptively, to obtain optimal performance for
distributed systems with disk-resident data in different scenarios.
We first employ a new block-centric technique (b-pull) to improve
the I/O-performance of pulling messages, although the iterative
computation is vertex-centric. I/O costs of data accesses are shifted
from the receiver side where messages are written/read by push to
the sender side where graph data are read by b-pull. Graph data
are organized by clustering vertices and edges to achieve high I/O-
efficiency in b-pull. Second, we design a seamless switching mech-
anism and a prominent performance prediction method to guaran-
tee efficiency when switching between push and b-pull. We con-
duct extensive performance studies to confirm the effectiveness of
our proposals over existing up-to-date solutions using a broad spec-
trum of real-world graphs.

Keywords
I/O-Efficient; Distributed Graph Computing; Push; Pull

1. INTRODUCTION
The proliferation of popular online social networks such as Face-

book and Twitter largely depends on graph analysis over billion-
node graphs. In order to handle large graphs, many systems have
been developed. Pregel [17] by Google as one of the early dis-
tributed systems takes a vertex-centric method based on the Bulk-

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

SIGMOD’16, June 26-July 01, 2016, San Francisco, CA, USA
c⃝ 2016 ACM. ISBN 978-1-4503-3531-7/16/06. . . $15.00

DOI: http://dx.doi.org/10.1145/2882903.2882938

Synchronous-Parallel [26] model (BSP) to process graph analysis
jobs. Pregel is a Master-Slave framework (Fig. 1), where Master
divides a job into several tasks assigned onto computational nodes,
namely Slaves, in a cluster. Typically, tasks load graph data from
a distributed file system and then partition data among themselves.
Afterwards, they start computation in parallel through a set of iter-
ations, called “supersteps”. The workload in one superstep consists
of local computation (i.e., invoking a user-defined function for each
vertex) and exchanging intermediate results (i.e., messages). One
computational node is referred to as a sender/receiver side when the
task on it is sending/receiving messages. Without loss of generality,
we assume that each node runs only one task. This paper thereby
discusses communication among nodes, instead of tasks. Two con-
secutive supersteps are separated by a synchronization barrier to
guarantee that the message exchange work is finished.

Figure 1: Illustration of iterative graph processing

The framework of Pregel has been driving much of the research
on enhancing its performance, including graph partitioning [8, 23],
communication [8, 20, 22], and convergence [25, 31]. This paper
focuses on performing graph analysis on a cluster I/O-efficiently,
as the memory resource of a given cluster can be easily exhausted
due to two main factors. One is the drastically growing rate of real-
world graph volumes, e.g., there are over 4.75 billion content items
shared on Facebook daily. The other one is the increased mes-
sage scale in proportion to the graph volume. Adding new physical
nodes can alleviate memory pressure, but is not always feasible.
The issue we investigate is to find an I/O-efficient way to handle a
large number of messages received on every computational node.

Motivation: The fastest way to handle messages received is to keep
them in memory. Take Giraph [2], an open-source Pregel imple-
mentation, as an example. In computing PageRank and the single
source shortest path (SSSP) [17] over a web graph wiki with 5.7
million vertices and 130 million edges (disk storage size of 1GB)
on a cluster of 5 computational nodes, it needs 10 times more mem-
ory than the original graph size to guarantee that the overall run-
time will not increase rapidly due to disk I/O costs of messages and

479

memory contention. Otherwise, the performance will drop signifi-
cantly. As an indication of how Giraph scales when graph data and
partial message data reside on disk, Fig. 2 shows the overall runtime
and the percentage of messages on disk for PageRank (10 super-
steps) and SSSP (converging after 284 supersteps). We vary the
message buffer size from mem (all messages are kept in memory)
down to 0.5 million on a computational node, while the percentage
of messages that need to be stored on disk increases from 0% to
98%. As illustrated, the computing time increases from 130 to 510
seconds for PageRank, and from 490 to 780 seconds for SSSP,
which confirms the expensive I/O cost incurred by messages. In
particular the runtime of PageRank has largely increased from 130
to 160 seconds even though only 4% of messages reside on disk.

 0

 100

 200

 300

 400

 500

0.5 2.0 3.5 5.0 6.5 8.0 9.5mem
 0

 20

 40

 60

 80

 100

ru
n

ti
m

e
 (

s
e

c
)

p
e

rc
e

n
ta

g
e

(%
)

message buffer (million)

runtime
percentage

(a) PageRank

 0

 100

 200

 300

 400

 500

 600

 700

 800

0.5 2.0 3.5 5.0 6.5 8.0 9.5mem
 0

 20

 40

 60

 80

 100

ru
n

ti
m

e
 (

s
e

c
)

p
e

rc
e

n
ta

g
e

(%
)

message buffer (million)

runtime
percentage

(b) SSSP

Figure 2: The impact of messages (over wiki)

Problem Analysis: Almost all existing distributed graph systems
[2, 20, 3], like Giraph, take a push-based approach to handle mes-
sages by pushing them from source vertices at the sender side to
destination vertices at the receiver side. The push-based approach
is efficient if most messages are kept in memory because every
source vertex will be accessed only once in one superstep. How-
ever, it is most likely that the receivers need to store messages on
disk, since the message volume can be large. That is I/O-inefficient
as shown in Fig. 2, due to the poor temporal locality of messages
among destination vertices, caused by writing data randomly. An-
other preferred approach is to pull messages from source vertices
on demand when destination vertices are updating themselves. A
receiver avoids writing/reading messages, as they can be consumed
immediately after being generated. However, one source vertex
may be read multiple times if it is the neighbor of several destina-
tion vertices. Since the graph volume is rapidly growing, graph data
usually reside on disk. Thus, the I/O cost of reading vertices is still
considerable, and may offset that of accessing messages in push,
especially when the number of messages is decreasing during iter-
ations. In fact, existing distributed pull-based systems such as Ser-
aph [30] and GraphLab PowerGraph [8] are designed for memory-
resident computation, and no special optimizations are considered
for speeding up I/O access.

Obviously, push and pull are suitable for different scenarios,
which is determined by the number of messages. However, nei-
ther of them works best in all cases. That motivates us to com-
bine the two approaches and design a hybrid solution which sup-
ports switching between them adaptively. However, this is a non-
trivial task due to the following two reasons. First, for current pull-
based approaches, each destination vertex individually sends pull
requests for desired messages. The frequent and random access
to source vertices may cost more than writing/reading messages
in push based on our test. Thus, directly combining them is not
cost effective. Second, in order to gain optimal performance, some
important issues such as the proper switching time and effective
performance prediction model need to be explored, which are es-
pecially difficult in a complex distributed system.

Our Contributions: In order to solve the above two challenges,
we propose a novel hybrid solution, called hybrid, to implement an

I/O-efficient and adaptive message exchange mechanism for disk-
resident graph computations.

First, we design a block-centric pull approach called b-pull to
optimize the cost of accessing source vertices when pulling mes-
sages. Specifically, in b-pull, vertices in one block can send a block
identifier to pull messages to be generated and sent for them, in-
stead of sending requests for each one individually. b-pull shifts
I/O costs of data accesses from messages to vertices. Recall that in
a push-based system, messages received are from other computa-
tional nodes and are for different vertices. Their distribution might
be random and not have patterns to follow. It is difficult to cluster
messages received without high overhead. A similar problem also
occurs for existing pull-based approaches, but data accessed are
source vertices. However, in b-pull, graph data can be organized in
an efficient way to reduce the I/O cost by clustering source vertices
and edges based on the requested block.

Second, we propose a seamless switching mechanism by first
decoupling push and b-pull, and then reorganizing the decoupled
functions reasonably, to reduce extra switching costs. Additionally,
a prominent performance metric is given through deeply analyzing
the total communication and I/O costs for push and b-pull. We
should stress that hybrid is not a replacement for our b-pull and
existing push approaches. Instead, it always tries to choose a prof-
itable one between them to run graph algorithms during iterations,
although b-pull outperforms push in many cases. To this end, it
employs b-pull and push as core components and builds a feasible
switching scheme on top of them.

The major contributions of our work are summarized as below.

• We propose a new pull-based approach called b-pull which
uses a block-centric mechanism to pull messages, in order to
reduce the high I/O cost of dealing with messages received
in iterations when the memory is not sufficient. A new data
structure is designed to separate vertices and edges into dif-
ferent blocks. Furthermore, edges in one block can be clus-
tered well to improve the locality when accessing vertices.

• We present a hybrid solution for handling iterative compu-
tations I/O-efficiently, by combining push and b-pull and
switching between them adaptively. hybrid obtains optimal
performance in different scenarios due to the seamless switch-
ing mechanism and the prominent performance prediction.

• We implement our proposals in a prototype system called
HybridGraph, and then conduct experimental studies to con-
firm the efficiency of hybrid, in comparison with two typi-
cal push-based systems called Giraph and MOCgraph, and a
well-known pull-based system GraphLab PowerGraph.

Paper Organization: The remainder of this paper is organized as
follows. Section 2 discusses the related work. Section 3 introduces
the overview of push, pull, and hybrid. Section 4 describes the
b-pull technique and Section 5 presents the hybrid solution after
analyzing the performance of push and b-pull. Section 6 reports
our experimental studies. We conclude this work in Section 7.

2. RELATED WORK
A lot of representative distributed graph systems have been de-

veloped and we summarize them in Table 1.

Push-based Systems: As we all know, iterative graph algorithms
generate a large number of messages [32], and it is a non-trivial task
to efficiently manage them on external storage. Among existing
distributed systems with disk-resident data, one policy employed

480

by PEGASUS and Gbase, is to directly access messages using a
distributed file system underneath, e.g., HDFS, for fault tolerance,
leading to an expensive I/O-cost. Bu et al. design a Mapper Input
Cache to keep data on local disks instead of HDFS for optimiza-
tion, which reduces the runtime by nearly 20% based on their ex-
periments [5]. Besides, Giraph manages messages on local disks if
it cannot hold all of them in memory. Although the local disk has a
superior performance, it is still far from ideal. As reported by Zhou
et al. [32], for PageRank over their largest graph dataset, the run-
time of Giraph with memory capacity of 1.5GB×46 is roughly 6
times more than that with memory capacity of 4GB×46, due to
local I/O costs. In addition, Pregelix exploits “join” as used in
the database community to model the matching operation between
messages and vertices, and utilizes a B-tree to improve the disk
performance, but the effect is limited for message-intensive algo-
rithms, like PageRank.

Table 1: Distributed Graph Systems
Name PUSH PULL DISK
Giraph++ [25] X
Blogel [27] X
GiraphX [24] X
GPS [20] X
GRE [29] X
Mizan [15] X
Naiad [18] X
Pregel [17] X
Trinity [22] X
Faunus [1] X X
PEGASUS [14] X X
Gbase [13] X X
Giraph [2] X X
GraphX [9] X X
MOCgraph [32] X X
Hama [3] X X
Pregelix [4] X X
Surfer [6] X X
Chronos [10] X X
Kineograph [7] X X
Pregel+ [28] X X
Kylin [11] X
Seraph [30] X
GraphLab PowerGraph [16, 8] X
LFGraph [12] X

Another preferred solution is to reduce the number of messages
resident on disk. Giraph uses a Combiner to combine messages
sent to the same vertex into a single one, which decreases the stor-
age requirements at the receiver side. Furthermore, MOCgraph on-
line processes messages received in a streaming manner, instead
of keeping them until the next superstep. Combiner inherently re-
quires messages involved in combining to be resident in memory.
For online computing in MOCgraph, vertices also should be kept
in memory. However, it is difficult to satisfy these requirements
when processing extremely large graphs. In addition, neither of
them works when messages are not commutative.

Many push-based systems also keep graph data on disk during
iterations to improve the scalability. Giraph exchanges data be-
tween memory and disk using the LRU replacement strategy, but
the poor locality of data accesses limits the effectiveness. Hama
records the edge offset of each vertex to avoid loading unneces-
sary edges. It is suboptimal when all edges are required, such as
PageRank. GraphX partitions vertices and edges into collections
independently to process them in parallel, leading to many-to-many
associations among collections. This data structure works well in
memory, but is I/O-inefficient if collections reside on disk. The

reason is that when performing “join” at an edge collection (“join
site”), vertices from many vertex collections may be written/read
on disk when the memory cannot hold them. MOCgraph organizes
graph data by a hot-aware re-partitioning method, to keep more
high in-degree vertices in memory for its online computing tech-
nique. Apparently, all of them ignore the cost of accessing vertex
values, since vertex-centric push-based systems access each vertex
once in a superstep. However, that is a problem in pull-based sys-
tems, and we design a new block-centric data structure to address it.
Apart from the vertex-centric model, Giraph++ and Bolgel propose
a sub-graph centric model to accelerate graph analysis, as vertices
in the same subgraph directly communicate with each other and can
be updated by existing sequential algorithms. This is complement
to our work and can be implemented when the partition structure
on each computational node is opened up to users.

Pull-based Systems: As listed in Table 1, there exist several pull-
based systems only designed for memory-resident computations.
In these systems, destination vertices need to send pull requests
to source vertices individually, which consumes much traffic even
though some requests can be combined [7, 30, 28, 11]. GraphLab
PowerGraph employs a vertex-cut mechanism to reduce the net-
work cost of sending requests and transferring messages at the ex-
pense of incurring the space cost of vertex replications. Also, in
these pull-based systems, reading a source vertex may be performed
multiple times if it is the neighbor of different destination ver-
tices, which is not free [10]. Since none of these systems con-
siders the I/O cost, adapting their techniques for computations of
disk-resident vertices may cause serious I/O-inefficiency. Finally,
Chronos, Kineograph, and Pregel+ support push and pull mean-
while, but either push or pull is used for a given algorithm. How-
ever, the hybrid solution presented in this paper can switch be-
tween push and our block-centric pull (b-pull) adaptively during
iterations to obtain optimal performance. Our b-pull focuses on
improving the I/O efficiency of reading vertices, and optimizing
the communication cost of sending pull requests and exchanging
messages. We stress that the push-based system Blogel supports
block-level communication to save network resources, but only for
specific algorithms like connected components. This is because a
block is modeled as a sub-graph and vertices within it must share
the same value, which makes it unsuitable for many algorithms, like
PageRank and SSSP. Blogel and b-pull are technically orthogonal
and have totally different implementation mechanisms.

3. OVERVIEW OFpush,pull, ANDhybrid
We model a graph as a directed graph G = (V,E), where V is

a set of vertices and E is a set of edges (pairs of vertices). For an
edge (u, v), u is the source vertex denoted as svertex, and v is the
destination vertex denoted as dvertex. The in-neighbors of u is a
set of vertices that have an edge linking to u, and its out-neighbors
is a set of vertices that u has an edge to link. The in-degree/out-
degree of u is the number of its in-neighbors/out-neighbors. We
state that the memory resource is limited if it cannot store messages
entirely. In this case, the limited memory resource is supposed to
be allocated for more I/O-inefficient messages in a high priority
instead of graph data [32]. This paper thereby assumes graph data
(vertices and edges) reside on disk. In the following, we introduce
the logic of push-based and pull-based approaches, and then give
an overview performance analysis for push, pull, and our hybrid.

Push: Giraph [2], an open-source implementation of Pregel, takes
a vertex-centric mechanism for iterative graph analysis in a se-
quence of supersteps. In one superstep, every vertex u in G com-
putes a user-defined function in parallel. We denote this function as

481

compute(). For simplicity, let MI(u) and MO(u) denote the mes-
sages received and sent to/from u, then the compute is as follows
and an implementation of PageRank is given in Fig. 3(a).

compute(ui,M i
I(u)) → (ui+1,M i+1

O (u)) (1)

Specifically, in the i-th superstep, first, u gets a message iterator
msgs of M i

I(u) which keeps messages received from in-neighbors
in the (i-1)-th superstep, and then initializes a sum to zero (Lines 2-
3). Second, after computing the sum of message values (Lines 4-5),
its value is updated from ui to ui+1 (Lines 6-8). Third, u sends the
new updated value divided by its out-degree as messages M i+1

O (u)
to all its out-neighbors (Lines 9-11). M i+1

O for all vertices are the
basis to form M i+1

I in superstep (i+1). Finally, u will be inac-
tive by voting to halt if the number of supersteps has reached to
the maximal value maxNum. Note that an inactive vertex will be-
come active again when it receives messages from its in-neighbors.
We call this a push-based approach for the following two reasons.
First, svertices send messages voluntarily. Second, messages are
already available on local memory/disk when they are required by
dvertices to execute compute().

Figure 3: push and pull

Fig. 4(a) gives a brief introduction to the data flow for a typi-
cal superstep i on one computational node. In Giraph, M i

I(u) and
M i+1

O (u) may be possibly stored on disk when the memory is not
enough to hold all of them.

i

I
M

i

I
M

1i

O
M

+

1i

I
M

+

1i

I
M

+

i

O
M

i

I
M

Figure 4: Data Flow: push and pull

Pull: The key idea of pull-based approaches is to decouple compute()
into two functions, namely, pullRes() and update(), as shown in
Eq. (2) and Eq. (3). We explain decoupled functions using PageRank
in Fig. 3(b). The pullRes function is used by a svertex u to respond
the pull request from a dvertex v for generating a desired mes-
sage in M i

O(u)/M
i
I(v) (Lines 1-6). The update function is similar

to the compute function in push-based systems without pushing
messages. It updates v’s value using the pulled messages M i

I(v).
In particular, a vertex u indicates that it should send messages to its
out-neighbors by calling a setResFlag function (Line 18). This sig-
nal is kept at u. On demand, in the next superstep, u will respond
a pull request from any its out-neighbors dvertices if the signal is

true (Line 2). We outline the implementation of pull in Fig. 4(b).
Although existing pull-based systems assume that graph data re-
side in memory, it is most likely that we manage them on external
storage when handling large graphs.

pullRes(ui) → M i
O(u) (2)

update(vi,M i
I(v)) → vi+1 (3)

Hybrid: In hybrid, we first decouple the computing logic for both
push and pull, and then re-organize decoupled functions to sup-
port the switching operation. Thus, the performance of hybrid is
determined by push and pull.

We analyze the total cost C in computing, for push and pull, as
shown in Eq. (4). N represents the number of supersteps. In one
superstep, we use Ccpu, Cnet, and Cio, to represent the computa-
tion cost, communication cost, and I/O cost, respectively.

C = (Ccpu + Cnet + Cio)×N (4)

Note that the computing workload of pull is the same as push’s
but executed in two functions. Consequently, the difference be-
tween push and pull in terms of Ccpu can be considered to be neg-
ligible. Without loss of generality, suppose push and pull work us-
ing the synchronous computing model, even though both of them
support the asynchronous iteration. push and pull thereby have the
same N for a given algorithm. Obviously, we only need to discuss
Cnet and Cio below. For simplicity, we directly use network bytes
and I/O bytes as the values of Cnet and Cio.

First, compared with push, the extra cost of sending pull requests
in pull, can be offset by the large communication gains due to con-
catenating/combining messages (described in Sec. 4.2), when the
number of messages is large. Second, in push, messages in M i+1

O

are carried across two consecutive supersteps and may end up to
be kept on disk if the message volume exceeds the allocated mem-
ory resource, which incurs high I/O costs. This problem is avoided
in pull because messages produced in pullRes() are consumed in
update() immediately in the same superstep. Nevertheless, when
graph data reside on disk, pull will frequently and randomly ac-
cess svertices to respond requests, which usually costs more than
accessing messages on disk as reported in Sec 6.1.

In conclusion, first, when processing a large number of messages
using limited memory resources, pull always outperforms push if
the I/O cost of accessing svertices can be optimized. We make this
condition satisfied by designing a new block-centric pull (b-pull)
in Section 4. In addition, b-pull also optimizes Cnet compared
with pull. Second, the decreased number of messages inevitably
narrows the gap between push and b-pull in terms of Cnet and Cio,
even making push beat b-pull. Thus, we design a hybrid solution to
choose the profitable one to run iterative computations by switching
between the two approaches adaptively (in Section 5).

4. BLOCK-CENTRIC PULLING METHOD
This section describes our block-centric pulling approach called

b-pull by discussing three key issues. First, we present a data struc-
ture called VE-BLOCK for sending messages and storing a graph on
disk. Second, we give the details on how to pull messages in block-
centric using VE-BLOCK. Third, we discuss how to determine the
proper number of blocks in VE-BLOCK to enhance the efficiency.
Before that, we list important symbols in Table 2.

4.1 Efficient Graph Storage VE-BLOCK
The VE-BLOCK data structure consists of two components: Vblocks

and Eblocks. The main purpose behind VE-BLOCK is to improve
the efficiency when pulling messages while allowing fast access to

482

update vertex values. Here, consider an adjacency list to represent a
graph in which for every vertex it keeps a quadruple (id, val, |Vo|, Vo),
where we denote by id and val the id and value of one vertex, re-
spectively. Vo is a list of out-neighbors, and |Vo| is the out-degree.
In VE-BLOCK, suppose that there are V fixed-sized Vblocks, b1,
b2, . . . , bV , in total. We simply range-partition all vertices into
V blocks based on the vertex ids, since graph partitioning is an
NP-hard problem.1 A Vblock keeps a list of triples (id, val, |Vo|).
Given bi, we have V variable-sized Eblocks, gi1, gi2, . . . , giV , to
maintain outgoing edges from any svertex in bi. In particular gij
maintains any edge (u, v) for u in bi and v in bj , for 1 ≤ j ≤ V .
Furthermore, in gij , edges from the same svertex u are clustered in
a fragment. The svertex id id and an integer indicating the number
of clustered edges, are the auxiliary data of a fragment.

Table 2: Definitions of symbols
Symbol Definition
Ti A computational node.
T Number of computational nodes.
V Number of vertex blocks (Vblocks) which store vertices.
bi, Xi The i-th vertex block bi and its metadata Xi.
gij An edge block (Eblock) which stores outgoing edges.
Et/Et Edges read from disk by push/b-pull at superstep t.
f Number of fragments covering all outgoing edges in Et.
M Number of messages produced at one superstep.
Mdisk Messages resident on disk in push at one superstep.
Cio(push)/
Cio(b-pull)

Number of bytes of disk-resident data accessed by
push/b-pull at one superstep.

BRi/BSi Message receiving/sending buffer on Ti in b-pull.
Bi, B Message receiving buffer on Ti in push, and B=

∑
Bi.

B⊥ Lower bound of B making Cio(push)<Cio(b-pull).
Qt Performance metric used in hybrid at superstep t.
srr /srw Random read/write throughput of disk (MB/s).
ssr Sequential read throughput of disk (MB/s).
snet Network throughput (MB/s).

Accordingly, when a svertex needs to update its value, only a
Vblock bi it belongs to is accessed. On the other hand, messages
are pulled based on bi, which means that all vertices as dvertices
in bi will pull messages from svertices to update themselves. In
this way, the cost of pull requests is minimized to a Vblock identi-
fier. When a computational node receives the pull request, i.e., the
Vblock id of bi, it only needs to access Eblocks gji and Vblocks
bj , for 1 ≤ j ≤ V , to respond the request.

In order to further improve the efficiency, we also maintain the
meta-information, Xj , for a Vblock bj in the computational node
where bj is stored. Here, Xj keeps five items: the number of
svertices in bj (#), the total in-degree (ind) and out-degree (outd)
of svertices, a bitmap xj , and a Vblock responding indicator (res).
Xj is used during pulling messages, as described in Section 4.2.

4.2 Pull Requesting and Pull Responding
Two components are used to pull messages. The pull requesting

operation (Pull-Request) is performed at the computational node
that requests messages to be consumed, and the pull responding
operation (Pull-Respond) is performed at the computational node
that sends messages on demand.

We discuss Pull-Request in Algorithm 1. In a superstep, each
computational node Tx will invoke Pull-Request to request mes-
sages for every Vblock bi held by it from any computational node
Ty . Here, Tx works as the receiver. All messages received for ver-
tices in bi are kept in the message receiving buffer BRx. At the
same time, an active-flag vector is updated, to indicate whether a

1VE-BLOCK can also be applied to any partitioning method by re-
ordering vertices.

vertex value should be updated or not. After receiving all messages,
each active vertex in bi will perform the vertex-centric computation
by calling update(). Like the active-flag vector, a responding-flag
vector is used to indicate whether a svertex is supposed to send
messages to its out-neighbors. Obviously, pulling messages is done
in Vblocks, namely, the block-centric pulling mechanism.

In the same superstep, Ty needs to react to pull requests, as the
sender. This is done by Pull-Respond (Algorithm 2). Assume Ty

receives a pull request for Vblock bi from Tx. It will check for
every Vblock bj that Ty holds, to see if there are any messages
among vertices in bj that need to be sent to vertices in bi. To this
end, Ty uses the meta-information Xj in three steps. 1) Ty checks
the Vblock responding indicator res in Xj . If it is true, Ty needs
to check further, i.e., checking the i-th bit in the bitmap xj . 2)
If the i-th bit is on, it indicates that there are edges directed from
vertices in bj to vertices in bi. 3) When both are true, Ty calls
pullRes() for any vertex u as svertex in bj to generate messages, if
u’s responding-flag is true.

At the sender side, suppose that several svertices generate mes-
sages to a dvertex v. In Algorithm 2, these message values can be
concatenated to share the same v’s id. v’s id is thereby transferred
only once, which reduces communication costs. In addition, if the
message value is commutative and associative [17], values are sup-
posed to be combined into one, namely, the Combiner, to further
improve the performance. Similarly, in Algorithm 1, messages re-
ceived at the receiver side also can be concatenated or combined to
save the memory space.

Algorithm 1: Pull-Request
1 foreach Vblock bi ∈ VE-BLOCK on Tx do
2 foreach each computational node Ty do
3 send a pull request for Vblock bi to Ty ;
4 insert the messages received from Ty into a buffer BRx;
5 concatenate or combine messages in BRx;
6 update the active-flag vector;

7 foreach vertex u in Vblock bi do
8 u.update() if u is active;
9 update the responding-flag vector by invoking setResFlag();

Algorithm 2: Pull-Respond (Vblock bi that Tx holds)
1 foreach each Vblock’s metadata Xj on Ty do
2 if Xj .res is 1 and the i-th bit in Xj ’s bitmap is 1 then
3 foreach each fragment in Eblock gji do
4 if u.getResFlag() is true then
5 //u is the svertex of the fragment;
6 insert u.pullRes() into a sending buffer BSy ;
7 concatenate or combine messages in BSy ;

8 send messages in BSy to Tx that requests messages for bi;

4.3 The Number of Vblocks
In VE-BLOCK, all vertices of a graph are range-partitioned into

V fix-sized Vblocks, and all edges are stored in V × V variable-
sized Eblocks. The number of Vblocks, V , becomes critical to
determine the efficiency. We discuss it from two perspectives, the
memory usage and the I/O cost.

Memory Usage: A computational node Ti holds two buffers for
messages: BRi for receiving messages (in Pull-Request), and BSi

for sending messages (in Pull-Respond). Note that the memory
for metadata including Xi, and the active-flag and responding-flag
vectors, is negligible. Suppose Ti keeps Vi vertices and outgoing
edges from Vi. Giraph (push) uses Bi as the maximum number

483

of messages in memory on Ti
2, i.e., available memory resources.

We then analyze how to calculate a reasonable Vblock granularity
Vi for Ti based on the size of BSi and BRi, for a given Bi, and
the total number of Vblocks V =

∑
Vi. For simplicity, we use

ni (= |Vi|) to estimate Vi.
Suppose there exist T computational nodes. BSi is divided into

T sub-buffers, as T computational nodes may send pull requests
to Ti simultaneously. BSi is inversely proportional to V , because a
large V can decrease the number of vertices in a Vblock, and then
decrease the number of messages in the sub-buffer on Ti.

Messages are sent to Ti by T nodes in parallel, and may not be
put into BRi in time. To handle this case at the receiver side, we
have two options which are separately setting a sub-buffer for each
node, like BSi, and controlling the data-flow during sending mes-
sages. The space complexity of the former is O(T ·BRi). The mem-
ory usage increases by (T -1) times, compared with BRi. Thus, we
follow the latter idea in this paper. Once the sender starts the send-
ing operation, messages will be sent to Ti in packages one by one.
The new package will not be delivered until the old one has been
handled by Ti (i.e., messages have been put into BRi and concate-
nated/combined). Like BSi, BRi is inversely proportional to Vi, as
the decreased number of vertices in a Vblock can reduce the num-
ber of messages received.

For algorithms that support the Combiner, when a pull request
is received by Ti, messages in a sub-buffer will not be sent un-
til all messages from Ti are produced. The goal is to thoroughly
combine messages to achieve high communication gains. Obvi-
ously, the maximum number of messages after being combined for
one Vblock is equal to that of vertices as dvertices, ni

Vi
. Thus,

BSi =
ni
Vi

T . BRi = 2ni
Vi

, because we pre-pull messages for bi+1

when vertices in bi are updating their values, to reduce the blocking
time of pulling messages. Finally, we set Vi using Eq. (5).

For algorithms that only support concatenating, buffering all mes-
sages increases the memory usage since their values cannot be com-
bined. Thus, at the sender side, we immediately flush out messages
in each sub-buffer if the message scale exceeds a given sending
threshold, like Giraph. BSi is thereby negligible. At the receiver
side, the number of message values received is determined by the
sum of the in-degree per vertex in one Vblock. The pre-pulling op-
timization is disabled due to the increased memory usage. In this
scenario, we set Vi using Eq. (6).

Vi =
2ni + niT

Bi
(5)

Vi =

∑
u∈Vi

in-degree(u)

Bi
(6)

I/O Cost: It is worth noting that the main I/O cost is shifted from
the receiver side in push to the sender side. Pull-Respond needs
I/O costs to respond pull requests as shown in Algorithm 2. Re-
call that we can possibly arrange edges in each Eblock gij using
fragments such that edges with the same svertex are clustered to-
gether, which significantly improves the locality. Nevertheless, for
each fragment, we still need I/Os to access the fragment’s aux-
iliary data and the corresponding svertex value in Vblock. The-
orem 1 tells us that the totally expected number of fragments is
proportional to V . Because disk I/Os in Pull-Request are indepen-
dent of V , the total I/O costs of b-pull are proportional to V .

THEOREM 1. ∀u ∈ V , the expected number of its fragments
is proportional to V .
2Bi indicates the message receiving buffer size. We ignore the
space of the sending buffer because Giraph immediately flushes out
messages at the sender side once a sending threshold is satisfied.

Following the analysis, we set V as small as possible on the pre-
requisite of providing sufficient memory for (BRi+BSi).

5. THE HYBRID SOLUTION
This section first gives a performance analysis of push, pull and

b-pull, and then describes a hybrid solution to combine push and
b-pull to obtain optimal performance for different scenarios.

5.1 Performance Analysis
Suppose that there exist four vertices, s1, s2, d1, and d2, which

are distributed on two computational nodes T1 (s1 and s2), and T2

(d1 and d2), as shown in Fig. 5. As discussed in Section 3, we
analyze Cnet and Cio, the main factors affecting the performance.

Figure 5: Comparisons of push, pull, pull (vertex-cut), and b-
pull (block-centric)
Analyzing Communication Costs: Most push-based systems such
as Giraph [2] and GPS [20] do not concatenate/combine messages
at the sender side T1, because the poor locality of messages among
dvertices limits the communication gain. The gain usually cannot
offset the cost of concatenating/combining. By contrast, in pull-
based approaches, messages are generated for requested svertices
on demand. For example, in Fig. 5 (b), all messages for d1 are
generated based on the requested d1 and then can be concaten-
cated/combined. This mechanism makes concatenating/combining
cost effective, but incurs extra cost of sending pull requests. In
the worst case, pull requests will be sent up to (|V |T) times if we
do not combine requests due to the poor locality among svertices.
GraphLab PowerGraph employs a vertex-cut mechanism for ef-
ficiency and handles the computation by a Gather-Apply-Scatter
model. As shown in Fig. 5(c), d1 is cut into a master in T2 and a
mirror in T1. Pull requests and messages are transferred between
the master and mirrors in Scatter and Gather, respectively. Note that
extra messages are used to synchronize mirror values in Apply. Ob-
viously, the number of mirrors dominates the communication cost
which is proportional to |V | and increases with T sub-linearly [8].
Finally, for b-pull, the upper bound of the number of requests is
VT ≪ |V |. As shown in Fig. 5(d), suppose d1 and d2 are as-
signed into the same Vblock. The pull request will be sent only
once. However, the number of messages is dominated by the data
placement policy, and may be more than that for pull with vertex-
cut because GraphLab PowerGraph designs many sophisticated yet
special policies to optimize this problem. As a result, for Cnet, b-
pull beats push and pull, and can offer a comparable performance
to pull with vertex-cut.

Analyzing I/O Costs: The cost of reading svertices in existing
pull-based approaches is considerable, because sending pull re-
quests for each dvertex individually leads to frequent and random
disk accesses (as shown in Figs. 8 and 10). However, b-pull can
decrease the upper bound of the number of I/O requests from |E|

484

in pull to the number of fragments in VE-BLOCK. Thus, in the fol-
lowing, we just analyze Cio for push and b-pull.

Let Gt = (V t, Et) be the subgraph used in the t-th superstep,
where V t ⊆ V and Et ⊆E. Also, M is the number of messages
produced. Et and Et stand for the set of edges loaded from disk in
b-pull and push, respectively. Now, we show the I/O cost of push
in Eq. (7) and b-pull in Eq. (8), and then compare them in Theorem
2. Here, Mdisk is the set of messages resident on disk in push,
and F t is the set of fragments covering all edges in Et. We de-
note by IO(.) the number of bytes of the given data. Specifically,
2IO(Mdisk) is the total number of written and read bytes regard-
ing messages. IO(F t)/IO(V t

rr) denotes the I/O cost of fragments’
auxiliary data/values of svertices in Vblocks (i.e., V t

rr) read by
Pull-Respond. IO(V t) indicates the cost of updating vertex val-
ues, which is the same for both b-pull and push. Note that IO(Et)
depends on the specific implementation of push [2, 32]. Without
loss of generality, we only consider the implementation in Giraph
[2], and others can also be used in our hybrid solution.

Cio(push) = IO(V t) + IO(Et) + 2IO(Mdisk) (7)
Cio(b-pull) = IO(V t) + IO(Et) + IO(F t) + IO(V t

rr)(8)

The size of Mdisk, |Mdisk|, is equal to M−B, if M > B =∑T
i=1 Bi. Otherwise, it is 0 (Mdisk=∅). Let f be the size of F t.

Theorem 2 describes the sufficient condition of using b-pull. That
is, (|E|

2
−f) is B’s lower bound, namely B⊥, which makes push

outperform b-pull in terms of I/O bytes. |E| and f are available
after building VE-BLOCK. Accordingly, we can decide whether
using b-pull or not before starting to run iterative computations.

THEOREM 2. Assume that each vertex in V t = V should broad-
cast messages to all of its neighbors at the t-th superstep. If B ≤
(|E|

2
− f), then Cio(push) ≥ Cio(b-pull).

On the other hand, Theorem 2 only guarantees the effectiveness
if each vertex should send messages to all its out-neighbors at every
superstep, such as PageRank. For other algorithms, like SSSP, the
number of vertices sending messages (called responding vertices)
varies with iterations, i.e., M is not constant. In this scenario, the
I/O cost comparison is non-deterministic, even though B ≤ B⊥.

Favorite Scenarios: pull with vertex-cut is the up-to-date exist-
ing pull-based approach, but its performance is seriously degraded
when graph data reside on disk, due to frequent svertex accesses.
push also suffers from the performance degradation which is mainly
caused by writing messages randomly and disabling combining/concatenating
messages. By contrast, our b-pull avoids disk I/O costs incurred
by messages and greatly reduces the cost of accessing svertices,
while simultaneously offering a comparable communication effi-
ciency to pull with vertex-cut. That makes b-pull outperform pull
with vertex-cut in disk scenarios. b-pull also beats push in most
cases, but the decrease of M narrows the gap, even making push
beat b-pull. This is because b-pull will pay extra costs IO(F t)
and IO(V t

rr), compared with push. On the other hand, the I/O and
communication cost of push is roughly proportional to M. Not
surprisingly, for SSSP-like algorithms, with the change of M dur-
ing iterations, push and b-pull have different favorite scenarios, and
using a single one can hardly achieve optimal performance.

5.2 Switching between push and b-pull
To support the switching operation between push and b-pull,

hybrid should accommodate them from two perspectives: the com-
puting functions for expressing processing logics, and the data stor-
age for supporting consistent and efficient data accesses.

Computing Functions: Like pull, b-pull also decouples compute()
in push into pullRes() and update(). For push, compute() is di-
vided into three functions: load(), update(), and pushRes(). Here,
load() loads messages received at the previous superstep into a lo-
cal buffer (Eq. (9)), to prepare to be consumed in update(). Γin(u)
is the set of u’s in-neighbors. Following update(), pushRes() is
immediately invoked to broadcast new messages M i+1

O (u) to u’s
out-neighbors (Eq. (10)).

load(
∑

x∈Γin(u)

M t−1
O (x)) → M t

I(u) (9)

pushRes(ut+1) → M t+1
O (u) (10)

Data Storage: The decoupling of compute() supports a seamless
switching between push and b-pull. As shown in Fig. 6, when
switching from b-pull to push, we first invoke b-pull’s pullRes()
and update() to update vertex values, and then immediately invoke
push’s pushRes() based on new values. Obviously, although b-
pull and push are completed in a single superstep, update() is in-
voked only once for each vertex, which avoids reading/writing con-
flicts. Conversely, when switching from push to b-pull, load() and
update() are invoked to update vertex values which will be used
by pullRes() at the next superstep. In addition, the shared update()
makes push and b-pull can share vertex values, i.e., Vblocks in
VE-BLOCK. However, edges in Eblocks cannot be accessed effi-
ciently in push, as pushRes() requires all outgoing edges of vertex
u, but they are organized in fragments and distributed among dif-
ferent Eblocks. We thereby store edges twice. One is organized
by Eblocks and used in b-pull. The other one is organized in an
adjacency list, like Giraph, and used in push.

Figure 6: Switching between push and b-pull

5.3 Switching Time
The key to gain optimal performance in hybrid is deciding the

right switching time, which is the focus of this section.
As we all know, many researchers have explored how to accu-

rately predict metrics (e.g., the number of messages and active ver-
tices) in iterations. Among them, Shang and Yu [21] present that
metrics collected by the current superstep can be used to predict
those of the remaining supersteps. They confirm the effectiveness
for multiple algorithms over real graphs. This paper also adopts
their method but the difference is that we should choose a metric
which can characterize the performance of push and our b-pull.

Performance Metric and Switching Condition: The overall per-
formance of push and b-pull is mainly dominated by the commu-
nication cost Cnet and I/O cost Cio. Thus, at the t-th superstep,
we use Mco (the number of concatenated or combined messages
across network in b-pull) and Cio to estimate the performance. For

485

Cnet, we assume that Bytem is the size of one destination vertex id
if messages are concatenated, or a whole message if messages are
combined. McoBytem thereby denotes the extra communication
volume of push, compared with b-pull. Recall that IO(Mdisk) is
the number of written/read bytes incurred by writing/reading mes-
sages in push. Thus,

(
IO(Et)+IO(Mdisk)−IO(Et)−IO(F t)

)
is

the difference of push and b-pull in terms of the number of sequen-
tial read bytes. On the other hand, IO(V t

rr) stands for the num-
ber of random read bytes incurred by pulling messages. Finally,
we give a metric Qt to evaluate the performance difference be-
tween push and b-pull at superstep t in Eq. (11). Here, srr/srw/ssr
and snet stand for the random-read/random-write/ sequential-read
throughput (MB/s), and the network throughput (MB/s), respec-
tively. Apparently, b-pull has superior performance if Qt ≥ 0.

Qt =
McoBytem

snet
+

IO(Mdisk)

srw
− IO(V t

rr)

srr

+
IO(Et) + IO(Mdisk)− IO(Et)− IO(F t)

ssr

(11)

Switching Interval: If we use the dynamic information collected at
the t-th superstep to predict the metric at the (t+∆t)-th superstep,
the switching interval is ∆t, ∆t≥ 1. As reported by Shang et al.
[21], the accuracy of prediction is proportional to 1

∆t
. The dynamic

information required by Qt+∆t includes Cio(push), Cio(b-pull)
and Mco. When running push, we can figure out the set of required
Eblocks if b-pull is run, based on the distribution of edges used in
pushRes(). After that, Cio(b-pull) is estimated using the metadata
of Eblocks. Mco is estimated by MRco, where Rco is the con-
catenating/combining ratio in the last superstep using b-pull. In
contrast, we can easily calculate Cio(push) and other dynamic in-
formation when running b-pull. Note that M is not available if
hybrid is switching from push to b-pull, because no new message
is produced (as shown in Fig. 6). Besides, although no extra work
is incurred during switching from b-pull to push, there still ex-
ists a slight performance loss caused by resource contention, since
pullRes() and pushRes() are run in a single superstep. Obviously,
frequent switching is not cost effective. We thereby set ∆t as 2.

The Boundary of hybrid: Shang et al. [21] divide well-known
graph algorithms into three categories based on the change of active
vertices, namely, Always-Active-Style, Traversal-Style, and Multi-
Phase-Style. We use the three categories to discuss the boundary
of hybrid, as the number of active vertices dominates that of re-
sponding vertices and then decides M. First, for Always-Active-
Style, an accurate prediction of Qt+2 is always available and can be
used by hybrid to make a smart choice between b-pull and push,
as the behavior of vertices stays the same during iterations, like
PageRank. Second, the number of active vertices for Traversal-
Style algorithms, such as SSSP, usually varies with iterations. Thus,
the prediction accuracy may be poor. However, hybrid still works
well, because the variation usually keeps monotonic for a long time
and then hybrid benefits from switching during several subsequent
supersteps. Finally, the current hybrid is not suitable for Multi-
Phase-Style algorithms. This is because they exhibit a periodical
change in terms of the active vertex volume, which prevents hybrid
from accumulating the switching gain.

5.4 Execution of hybrid
Now, we present the execution of hybrid in Algorithm 3. Here,

maxNum is the maximum number of supersteps. The graph load-
ing operation includes two tasks (Line 1): 1) storing graph data,
including organizing vertices in Vblocks and storing edges twice,
and 2) calculating B⊥ used in Theorem 2. After that, we decide the

initial execution mode based on Theorem 2, i.e., b-pull if B ≤ B⊥,
and push, otherwise (Lines 2-3). During iterations, if preMode is
not equal to curMode, we start the switching operation as shown
in Fig. 6 (Lines 13-14). Otherwise, runPull() or runPush() is in-
voked based on curMode and returns the dynamic information
which is used to estimate Qt+2 to determine curMode of the next
superstep (Lines 6-11).

Algorithm 3: Hybrid-Execution (B, G, maxNum)
1 loading G, and calculating B⊥;
2 preMode← initMode(B,B⊥);
3 curMode← preMode;
4 for t = 1 to maxNum do
5 if preMode equals curMode then
6 if is_pull(curMode) then
7 [Mco,Cio(push),Cio(b-pull)]← runPull();

8 else
9 [Mco,Cio(push),Cio(b-pull)]← runPush();

10 preMode← curMode;
11 curMode← evaluate(Mco,Cio(push),Cio(b-pull));

12 else
13 runSwitch(preMode, curMode);
14 preMode← curMode;

6. PERFORMANCE STUDIES
We have implemented our techniques in a prototype system called

HybridGraph3. We compare it with the two push-based systems
Giraph and MOCgraph and the well-known pull-based system GraphLab
PowerGraph4. MOCgraph employs a message online computing
technique to improve the performance of Giraph when messages
are commutative. It is the up-to-date push-based system in terms of
I/O-efficiency. GraphLab PowerGraph is memory-resident and we
modify it to support access to vertices and edges on disk, to confirm
the I/O-inefficiency of existing pull-based techniques. GraphLab
PowerGraph is implemented using C++, while other systems tested
are based on Java. We use b-pull to indicate our basic pull-based
approach using the block-centric mechanism. Furthermore, we use
hybrid to stand for our hybrid solution combining push and b-pull.
GraphLab PowerGraph’s pull approach is represented by pull. In
addition, we use push and pushM to indicate the push approach
used in Giraph and MOCgraph, respectively.

We conduct testing using two clusters, a local cluster with HDDs
(7,200 RPM) and an amazon cluster with SSDs. Each of them con-
sists of 30 computational nodes with one additional master node
connected by a Gigabit Ethernet switch, where one node is equipped
with 4 CPUs. Other configurations are listed in Table 3.

We test four graph algorithms, namely, PageRank [17], SSSP
[17], LPA [19], and SA [15], using 6 real graphs listed in Table 4.
By default, we use 5 nodes for small graphs livej, wiki, and orkut,
and 30 nodes for large graphs twi, fri and uk. A graph is parti-
tioned by the range method [2] for Giraph, MOCgraph, and Hy-
bridGraph. Many intelligent partitioning methods are offered in
GraphLab PowerGraph, but only Oblivious is used since others
exhibit the similar I/O-performance. Fig. 3(b) gives the logic of
PageRank, and other algorithms are described below.

• SSSP [17]: It finds the shortest distance between a given
source vertex to any other vertex. Initially, the given source

3The source code is available at https://github.com/HybridGraph.
4We use the synchronous version of MOCgraph and GraphLab
PowerGraph in the testing, and HybridGraph can be extended to
support the asynchronous iteration.

486

 0

 10

 20

 30

 40

 50

 60

 70

livej wiki orkut twi

ru
n
tim

e
 (

se
c)

graph dataset

F F

push
pushM
pull
b-pull
hybrid

(a) Runtime of PageRank

0

5

10

15

20

25

30

35

livej wiki orkut twi

ru
n
tim

e
 (

1
0
 s

e
c)

graph dataset

F F

push
pushM
pull
b-pull
hybrid

(b) Runtime of SSSP

 0

 10

 20

 30

 40

 50

livej wiki orkut twi

ru
n
tim

e
 (

se
c)

graph dataset

FF

push
pull
b-pull
hybrid

(c) Runtime of LPA

 0

 5

 10

 15

 20

 25

 30

livej wiki orkut twi

ru
n
tim

e
 (

1
0
 s

e
c)

graph dataset

FF

push
pull
b-pull
hybrid

(d) Runtime of SA

Figure 7: Testing runtime with sufficient memory on the local cluster

 0

 10

 20

 30

 40

 50

 60

 70

livej wiki orkut twi fri uk

ru
n
tim

e
 (

1
0
 s

e
c)

graph dataset

960
sec

1188
sec

931
sec

F F F

push
pushM
pull
b-pull
hybrid

(a) Runtime of PageRank

 0
 2
 4
 6
 8

livej wiki orkut twi fri uk

graph dataset

ru
n

tim
e

 (
1

0
 s

e
c)

2318sec 5220sec 9957sec

F F FFF

 25

 50

 75

 100
ru

n
tim

e
 (

1
0

 s
e

c)
2318sec 5220sec 9957sec

F F FFF

push
pushM
pull
b-pull
hybrid

(b) Runtime of SSSP

 0

 2

 4

 6

 8

 10

 12

livej wiki orkut twi fri uk

ru
n
tim

e
 (

1
0

2
 s

e
c)

graph dataset

F F F

push
pull
b-pull
hybrid

(c) Runtime of LPA

0.0
0.4
0.8
1.2
1.6
2.0
2.4

livej wiki orkut twi fri uk

graph dataset

ru
n

tim
e

 (
1

0
2
 s

e
c)

1870
sec

4160
sec

5842
sec

F F FF

4

6

8

10

ru
n

tim
e

 (
1

0
2
 s

e
c)

1870
sec

4160
sec

5842
sec

F F FF

push
pull
b-pull
hybrid

(d) Runtime of SA

Figure 8: Testing runtime with limited memory on the local cluster

vertex is active and has the shortest distance 0 as its value.
In every superstep, the value of a vertex is updated to be the
minimum value received from its in-neighbors, if the min-
imum value is lower than the current one the vertex holds.
The new minimum distance will be sent to its out-neighbors.

• LPA [19]: It is a near linear community detection algorithm
based on label propagation. The label value of each vertex
is initialized by its own unique vertex id. In the following
supersteps, the value is updated by the label that a maximum
number of its neighbors have. Messages, i.e., community
labels, are thereby not commutative. All vertices must send
messages to collect the whole information of all neighbors.

• SA [15]: It is to simulate advertisements on social networks.
Each vertex represents a person with a list of favorite ad-
vertisements as its value. Selected vertices are identified as
sources and send values to their out-neighbors. For one ver-
tex, any received advertisement is either further forwarded to
out-neighbors or ignored, which is decided by his/her inter-
ests. Advertisements as messages are not commutative if we
update a value by the advertisement that a maximum number
of its responding in-neighbors (i.e., sending messages) have.

Below, we first evaluate memory demands in particular when
messages are far larger than the memory allowed to hold messages,
to validate the effectiveness of b-pull and hybrid. Second, the de-
tailed performance report of switching between push and b-pull is
given. Third, we study scalability. Finally, we report the perfor-
mance of loading raw graph data, and then analyze the blocking
time and network traffic of push and b-pull. For PageRank and
LPA, the average metrics (e.g., runtime and I/O bytes) of one su-
perstep are reported, by totally running 5 supersteps, as the work-
load of each superstep is constant. SSSP and SA are run until they
converge and we report the metrics of the whole iterations.

In particular, we state two testing scenarios: 1) sufficient mem-
ory. All systems tested manage data in memory. 2) limited mem-
ory. Giraph has multiple data management policies, and we take
the same one given by Zhou et al. [32] for efficiency. That is,
graph data reside on disk and message data may also reside on
disk if the message buffer of one computational node Bi is full.
We set the buffer as Bi=0.5 million for small graphs livej, wiki
and orkut, Bi=1 million for the large graph twi, and Bi=2 mil-

lion for larger graphs fri and uk. Correspondingly, MOCgraph and
GraphLab PowerGraph use the buffer to cache vertices. Specially,
we set a larger buffer for GraphLab PowerGraph (Bi=2.5 million)
to guarantee that most vertices (> 70%) reside in memory, because
the runtime is unacceptable when Bi=0.5 million for small graphs.
The LRU replacing strategy is used to manage vertices in GraphLab
PowerGraph. For MOCgraph, other data (the remaining vertices,
edges, and messages sent to disk-resident vertices) reside on disk.
GraphLab PowerGraph manages edges and the remaining vertices
on disk. Now, HybridGraph always stores data in VE-BLOCK on
the external storage. However, Bi affects the number of Vblocks
based on Eq. (5) and Eq. (6). In addition, missing bars labelled with
‘F’ in the figures reported indicate unsuccessful runs.

Table 3: Configurations of two clusters
Cluster RAM Disk srr /srw/ssr† snet

‡

local 6.0GB 500GB 1.177/1.182/2.358MB/s 112MB/s
amazon 7.5GB 30GB 18.177/18.194/18.270MB/s 116MB/s

† Reported by the disk benchmarking tool fio-2.0.13, using the mixed I/O pattern
“random/sequential mixed reads and writes, and 50% of the mix should be reads”.
This is because reads and writes are performed at the same time in a real system.
‡ Reported by the network benchmarking tool iperf-2.0.5.

Table 4: Real Graph Datasets (M: million)
Graph Vertices Edges Degree Type Disk size
livej5 4.8M 68M 14.2 Social networks 0.50GB
wiki6 5.7M 130M 22.8 Web graphs 0.98GB
orkut7 3.1M 234M 75.5 Social networks 1.59GB
twi8 41.7M 1,470M 35.3 Social networks 12.90GB
fri9 65.6M 1,810M 27.5 Social networks 17.00GB
uk10 105.9M 3,740M 35.6 Web graphs 33.02GB

5http://snap.stanford.edu/data/soc-LiveJournal1.html
6http://haselgrove.id.au/wikipedia.htm
7http://socialnetworks.mpi-sws.org/data-imc2007.html
8http://an.kaist.ac.kr/traces/WWW2010.html
9http://snap.stanford.edu/data/com-Friendster.html
10http://law.di.unimi.it/webdata/uk-2007-05/

6.1 Overall Performance Evaluation
We test algorithms on all datasets in two scenarios: one is suf-

ficient memory where push-based and pull-based approaches have
different favorites (Fig. 7), and the other is limited memory where
hybrid is supposed to be better (Fig. 8 and Fig. 9).

487

 0

 10

 20

 30

 40

 50

 60

 70

livej wiki orkut twi fri uk

ru
n
tim

e
 (

1
0
 s

e
c)

graph dataset

841sec 1305 sec

F F F

push
pushM
pull
b-pull
hybrid

(a) Runtime of PageRank

0.0

0.3

0.6

livej wiki orkut twi fri uk

graph dataset

ru
n

tim
e

 (
1

0
2
 s

e
c)

1844sec 4731sec 12833sec 2470sec
1699
sec

F F F

2

4

6

8

10

12

14

ru
n

tim
e

 (
1

0
2
 s

e
c)

1844sec 4731sec 12833sec 2470sec
1699
sec

F F F

push
pushM
pull
b-pull
hybrid

(b) Runtime of SSSP

 0

 2

 4

 6

 8

 10

 12

 14

livej wiki orkut twi fri uk

ru
n
tim

e
 (

1
0

2
 s

e
c)

graph dataset

F F F

push
pull
b-pull
hybrid

(c) Runtime of LPA

0.0

0.4

0.8

1.2

1.6

2.0

livej wiki orkut twi fri uk

graph dataset

ru
n
tim

e
 (

1
0

2
 s

e
c)

1714
sec

4102
sec

5013
sec

F F F

6
8

10
12

ru
n
tim

e
 (

1
0

2
 s

e
c)

1714
sec

4102
sec

5013
sec

F F F

push
pull
b-pull
hybrid

(d) Runtime of SA

Figure 9: Testing runtime with limited memory on the amazon cluster

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

livej wiki orkut twi fri uk

i/o
 b

yt
e
s

(1
0

1
0
)

graph dataset

4x10
11

1x10
12

2x10
12

F F F

push
pushM
pull
b-pull
hybrid

(a) PageRank

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

livej wiki orkut twi fri uk

i/o
 b

yt
e
s

(1
0

1
0
)

graph dataset

2x10
12

5x10
12

1x10
13

F FF FFF

push
pushM
pull
b-pull
hybrid

(b) SSSP

 0

 2

 4

 6

 8

 10

 12

livej wiki orkut twi fri uk

i/o
 b

yt
e
s

(1
0

1
0
)

graph dataset

2x10
11

6x10
11

7x10
11

F F F

push
pull
b-pull
hybrid

(c) LPA

 0

 10

 20

 30

 40

 50

livej wiki orkut twi fri uk

i/o
 b

yt
e
s

(1
0

1
0
)

graph dataset

1x10
12

3x10
12

4x10
12

F F F F

push
pull
b-pull
hybrid

(d) SA

Figure 10: Testing I/O costs with limited memory on the local cluster

Runtime test using sufficient memory on the local cluster: In
general, b-pull has superior performance to push, especially for
SSSP and SA over the large diameter graph wiki, which has a
long convergent stage where few vertices are updated. This is be-
cause b-pull reads edges based on the responding vertex set Vres,
instead of the active vertex set Vact as push/pushM, where Vres⊆
Vact. pushM beats push, because its message online computing
can greatly alleviate the memory pressure to avoid starting Java
garbage collection frequently. One observation we can make is that
hybrid and b-pull even beat pull in some cases, as they send fewer
pull requests than pull and can offer a comparable message trans-
fer efficiency by combining messages. However, compared with
pushM, the gains of hybrid and b-pull may be offset by extra costs
of accessing svertices (e.g., SSSP over orkut). In sufficient mem-
ory, communication costs dominate the sign of Qt. hybrid thereby
runs b-pull since it can efficiently concatenate/combine messages,
leading to the same performance as b-pull’s.

Runtime test using limited memory on the local cluster: Since
pull-based approaches can avoid the expensive message disk I/Os,
the speedup of b-pull/hybrid compared with push is even up to
a factor of 35 (PageRank over uk). Compared with pushM, b-
pull/hybrid can still offer roughly 7x speedup for SSSP over wiki
and 16x speedup for PageRank over uk. Note that for SSSP over
twi, b-pull does not work well as expected (only 1.7x faster than
pushM). The reason is that the highly skewed power-law degree
distribution increases the number of fragments, and then the in-
creasing costs of accessing svertices and auxiliary data of fragments
are difficult to be offset, especially when the number of messages
decreases. The optimal solution is to switch push and b-pull during
iterations. For SSSP, hybrid contributes to decreasing the runtime
of b-pull by up to 37.6% over twi. For SA, the gain achieved by
hybrid is up to 9% over twi and fri.

Runtime test using limited memory on the amazon cluster: This
suite of experiments is run on the amazon cluster to show the im-
pact of SSDs (Fig. 9). As expected, pull, pushM, b-pull and hybrid
benefit from SSDs since SSDs exhibit faster random reads/writes
than HDDs. Generally, the speedup is between 1.74 and 3.6. In
particular, for SSSP over twi, b-pull is only 1.1 times faster than
pushM, instead of 1.7 times on the local cluster, as the fast random
read/write performance of SSDs narrows the runtime gap. How-

ever, our hybrid is still 1.7 times faster than pushM. In conclusion,
b-pull and hybrid still perform best. On the other hand, an inter-
esting observation is that the performance of push is not improved,
and even worse in some cases. This is because Giraph employs
a sort-merge mechanism to handle disk-resident messages, where
sorting is computation-intensive. However, each node in the ama-
zon cluster is quipped with virtual CPUs. Its computing power is
not so strong as the node’s in the local cluster (physical CPUs).

Testing disk I/O costs using limited memory on the local cluster:
In the same setting used in Fig. 8, Fig. 10 reports I/O costs, in terms
of the total number of read and written bytes. Obviously, pull ex-
hibits an extremely expensive I/O cost due to random and frequent
access to svertices, even though we use LRU to manage vertices.
pushM beats push, as its message online computing technique con-
sumes messages sent for memory-resident dvertices immediately.
Finally, when running SSSP over twi, the I/O cost of b-pull is usu-
ally more than that of push and pushM, since the gain achieved by
avoiding message I/Os cannot offset the cost incurred by access-
ing svertices and auxiliary data of fragments. However, hybrid can
optimize it by switching adaptively.

6.2 Analyzing hybrid during Iterations
We validate the effectiveness of hybrid using the same setting in

Figs. 8 and 9. We first explore the features of the performance met-
ric Qt, including the prediction accuracy and the impact of hard-
ware characteristics. After that, a detailed analysis is given to show
the resource requirements of hybrid. Except for the impact of hard-
ware characteristics, other experiments are run on the local cluster.

Testing the prediction accuracy of Qt. The accuracy of predict-
ing the performance metric is determined by Cio(push), Cio(b-pull)
and Mco. Figs. 11-13 report the prediction accuracy of them for
SSSP and SA. The y-axis shows the ratio of the predicted value
(collected at the t-th superstep) to the actual value (collected at the
(t+2)-th superstep), since the switching interval is 2. The distance
between the ratio and 1 is inversely proportional to the accuracy.
We observe that the accuracy of SA is low, especially during su-
persteps 6-10. The reason is that the number of active vertices sud-
denly varies with iterations. For Cio(push), considering that edges
are organized in blocks, even though one vertex is active, all edges
in the corresponding edge block should be accessed. The I/O cost

488

is thereby not sensitive to the variation of active vertices, which
partially offsets the impact of the sudden change of message I/Os,
based on Eq. (7). As a result, Cio(push) has an extremely high
accuracy. The accuracy of Cio(b-pull) is further boosted, because
Cio(b-pull) does not include message disk I/Os (Eq. (8)).

0

1

2

3

4

5

 0 2 4 6 8 10 12 14 16

ra
ti
o

superstep

livej
wiki
orkut
twi
fri
uk

(a) SSSP

 0

 1

 2

 3

 4

 5

 6

 7

 8

 0 2 4 6 8 10 12 14 16

ra
ti
o

superstep

livej
wiki
orkut
twi
fri
uk

(b) SA

Figure 11: The prediction accuracy of Mco

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

 0 2 4 6 8 10 12 14 16

ra
ti
o

superstep

livej
wiki
orkut
twi
fri
uk

(a) SSSP

 0

 1

 2

 3

 4

 5

 6

 0 2 4 6 8 10 12 14 16

ra
ti
o

superstep

livej
wiki
orkut
twi
fri
uk

(b) SA

Figure 12: The prediction accuracy of Cio(push)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

 0 2 4 6 8 10 12 14 16

ra
ti
o

superstep

livej
wiki
orkut
twi
fri
uk

(a) SSSP

0

1

2

3

4

 0 2 4 6 8 10 12 14 16

ra
ti
o

superstep

livej
wiki
orkut
twi
fri
uk

(b) SA

Figure 13: The prediction accuracy of Cio(b-pull)

Evaluating the impact of hardware characteristics on Qt. We
explore the impact by running SSSP over twi, since hybrid achieves
the most gain in this case, and other cases exhibit the similar phe-
nomenon. Fig. 14 (a) shows values of Qt on the local cluster
(HDDs) and the amazon cluster (SSDs). There obviously exist
two switching points: one happens at the 11th superstep, and the
other happens at the 26th superstep. For the two clusters, we ob-
serve that the switching points do not change. A straightforward
explanation is that both b-pull and push can benefit from the fast
random read/write performance of SSDs. From the perspective of
Qt, when the sign of Qt changes, the number of messages is usu-
ally small. As listed in Table 3, snet is significantly more than
ssr/srd/srw. Thus, the impact of the communication volume can
be ignored. Furthermore, srr , srw, and ssr , are close in values.
Based on Eq. (11), we can find that the final sign of Qt is mainly
dominated by

(
Cio(push)−Cio(b-pull)

)
which only relies on the

graph topology and the special graph algorithm, and is orthogo-
nal to the hardware characteristics. However, the absolute value of
Qt, |Qt|, indicates the expected gain, which is affected by the hard-
ware. For example, when Qt<0, |Qt

HDD|> |Qt
SSD|. That means,

for the local cluster, switching from b-pull to push can achieve
more gains, which is validated in Fig. 8 (b) and Fig. 9 (b). Tak-
ing SSSP over orkut and twi as examples, for HDDs, the gains of

hybrid compared with b-pull are 19% and 38%, respectively. How-
ever, for SSDs, the gains are only 10% and 35%, respectively.

Analyzing resource requirements of hybrid. In this suite of ex-
periments, we analyze resource requirements by running SSSP over
twi. Here we ignore the report of SA since it has a similar perfor-
mance with SSSP. We use push and b-pull as compared solutions,
as hybrid always chooses one of them to execute iterative compu-
tations. Figs 14 (b)-(d) report the change of I/O-pressure, network
communication costs, and memory usage. Generally, compared
with push and b-pull, hybrid does not incur extra resource require-
ments if the switching operation does not happen, even though
it maintains two replicas of edges. This is because when exe-
cuting push/b-pull, hybrid only accesses edges in the adjacency
list/Eblocks. However, in the case of switching from b-pull to
push (at the 11th superstep), the resource requirements increase,
because hybrid must pull messages from svertices, while simulta-
neously pushing new messages to dvertices. That means, at the
11th superstep, hybrid also processes messages which should have
been handled at the 12th superstep in push. Although shifting the
message processing does not incur extra work, the sudden increase
of I/O-pressure, network costs, and memory usage, may slightly
slow down the performance due to resource contention. Based on
our test, hybrid takes 22.944s to accomplish the computation at su-
perstep 11. Compared with the sum of 17.512s (b-pull at superstep
11) and 5.01s (push at superstep 12), the performance degradation
does not exceed 2%. This can be easily offset by the switching
gains (70%/38%, compared with push/b-pull). By contrast, when
switching from push to b-pull at superstep 26, messages that should
have been generated and pushed at this superstep will be pulled at
superstep 27. The resource requirements will not increase. Note
that the memory usage of hybrid is more than that of push, even
though switching from b-pull to push has been done at superstep
11. The is because hybrid always needs to maintain the metadata
information of VE-BLOCK (used by b-pull).

6.3 Scalability
We test the scalability of PageRank in Fig. 15 using the-state-of-

the-art push-based and pull-based approaches: pushM and hybrid.
All tests are run using limited memory. Obviously, decreasing the
number of nodes increases the volume of data on each node, and
then leads to more disk I/Os, i.e., writing/reading more messages
for pushM, and reading more data in VE-BLOCK for b-pull inte-
grated into hybrid. The former is much more expensive than the
latter. Thus, we observe a super-linear performance degradation
for pushM, when reducing the number of computational nodes. By
contrast, the runtime increases sub-linearly for hybrid.

6.4 The performance of loading graph data
Fig. 16 reports the performance of loading graph data in Hy-

bridGraph using three data structures adj (i.e., adjacency list, used
by push), VE-BLOCK (used by b-pull), and adj+VE-BLOCK (used
by hybrid). We measure the performance in terms of runtime and
I/O bytes written onto local disks. The y-axis indicates the per-
formance ratio of adj/VE-BLOCK/adj+VE-BLOCK to adj. Build-
ing VE-BLOCK increases the runtime of loading data, as each adja-
cency list must be parsed into fragments (computation-intensive)
and additional auxiliary data of fragments are written onto disk
(I/O-intensive). Furthermore, compared with VE-BLOCK, although
adj+VE-BLOCK keeps a replica of edges in an adjacency list, the
overall loading runtime just slightly increases, due to the fast se-
quential write. Generally, for b-pull and hybrid, the extra cost in
loading data can be easily offset by the performance gains during
computation, as shown in Fig. 8 and Fig. 9.

489

-10
4

-10
3

-10
2

-10
1
0

10
1

10
2

10
3

10
4

10
5

 0 5 10 15 20 25 30

m
e
tr

ic
 Q

t

superstep

b-pull to push

push to b-pull

HDD
SSD

(a) Performance metric

 0

 5

 10

 15

 20

 25

 30

 35

 0 5 10 15 20 25 30

io
 b

yt
e
s

(1
0

9
)

superstep

b-pull to push

push to b-pull

push
b-pull
hybrid

(b) Disk I/O costs

 0

 2

 4

 6

 8

 10

 12

 0 5 10 15 20 25 30

#
n
e
tw

o
rk

 m
sg

s
(1

0
8
)

superstep

b-pull to push

push to b-pull

push
b-pull
hybrid

(c) Network costs

 0

 10

 20

 30

 40

 50

 60

 70

 0 5 10 15 20 25 30

m
e
m

o
ry

 (
1
0

7
 b

yt
e
s)

superstep

b-pull to push

push to b-pull

push
b-pull
hybrid

(d) Memory usage

Figure 14: Analyzing Qt, I/O costs, network costs, and memory usage for hybrid (SSSP over twi, limited memory)

6.5 Blocking time and network traffic
This section analyzes the efficiency of push and b-pull from the

perspectives of blocking time and network traffic. Here, block-
ing time is the time of exchanging messages among computational
nodes. We run PageRank in the same setting used in Fig. 7 (a).
Fig. 17 shows the average value and fluctuant range (min-max) for
blocking time over wiki and orkut datasets. Note that b-pull starts
exchanging messages from the 2nd superstep.

 0

 10

 20

 30

 40

10 15 20 25 30

ru
n

ti
m

e
 (

1
0

 s
e

c
)

of computional nodes

livej
wiki
orkut
twi
fri
uk

(a) pushM (PageRank)

 0

 2

 4

 6

 8

 10

10 15 20 25 30

ru
n

ti
m

e
 (

1
0

 s
e

c
)

of computional nodes

livej
wiki
orkut
twi
fri
uk

(b) hybrid (PageRank)

Figure 15: Scalability of computations (local cluster)

0.0

0.5

1.0

1.5

2.0

livej wiki orkut twi fri uk

ra
ti
o

graph dataset

adj
VE-BLOCK
adj+VE-BLOCK

(a) Runtime

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

livej wiki orkut twi fri uk

ra
ti
o

graph dataset

adj
VE-BLOCK
adj+VE-BLOCK

(b) I/O costs

Figure 16: The performance of loading graph in adj, VE-BLOCK
, and adj+VE-BLOCK , on the local cluster

Fig. 18 shows the network traffic for push and b-pull. The net-
work traffic includes all input and output on bytes, and is extracted
by GANGLIA 11, a cluster monitoring tool, where the monitoring
interval is for every 2 seconds. In particular, we disable the com-
bining function of b-pull, to reduce the impact on network traf-
fic and then make a relatively fair comparison with push. Even
so, the almost 50% reduction of network traffic is still achieved
due to concatenating messages to the same destination vertices. In
push, both concatenating and combining are disabled, as they are
not cost-effective. The traffic of pushM is the same as push’s, since
it cannot optimize communication costs.

It is worth noting that in push and pushM, all distributed tasks
will produce and send messages in parallel, whereas in b-pull, the
message operation is triggered by pulling requests from destination
vertex blocks. Our tests show b-pull offers a comparable paral-
lelism and superior communication efficiency to push.

11Ganglia. http://ganglia.sourceforge.net/

 0

 2

 4

 6

 8

 10

 1 2 3 4 5

b
lo

c
k
in

g
 t

im
e

 (
s
e

c
)

superstep

push
pushM

b-pull

(a) Blocking time of wiki

 0

 2

 4

 6

 8

 10

 12

 14

 16

 1 2 3 4 5

b
lo

c
k
in

g
 t

im
e

 (
s
e

c
)

superstep

push
pushM

b-pull

(b) Blocking time of orkut

Figure 17: Blocking time: push vs. b-pull

 0

 2

 4

 6

 8

 10

 12

 0 50 100 150 200 250 300

n
e

tw
o

rk
 t

ra
ff

ic
 (

1
0

 M
B

)

time (second)

push in
push out

b-pull in
b-pull out

(a) Network traffic of wiki

 0

 2

 4

 6

 8

 10

 12

 14

 0 50 100 150 200 250 300

n
e

tw
o

rk
 t

ra
ff

ic
 (

1
0

 M
B

)

time (second)

push in
push out

b-pull in
b-pull out

(b) Network traffic of orkut

Figure 18: Network traffic: push vs. b-pull

7. CONCLUSION
This paper proposes a new adaptive and I/O-efficient message

processing mechanism based on the system HybridGraph we have
developed for vertex-centric computing on Cloud. A large num-
ber of messages generated in iterations have to be stored on disk
when memory is not sufficient, and it is most likely to happen when
graphs become larger and larger. First, we show that the way of
consuming messages received immediately will reduce the I/O cost
at the receiver side to zero. The I/O cost reduction shifts to the
sender side, and becomes the I/O cost of reading a graph. There-
fore, by effectively organizing a graph beforehand, we design a
new pulling approach b-pull to reduce I/O costs. Furthermore, to
obtain optimal performance, push and b-pull are seamlessly com-
bined in our hybrid framework and adaptively switched according
to the variation in message scale. In experiments, we show that our
proposed b-pull and hybrid methods can obviously outperform the
up-to-date push-based and pull-based methods for computations of
disk-resident graph data.

Acknowledgements. This work is supported by the National Ba-
sic Research Program of China (973 Program) under Grant No.
2012CB316201, the National Natural Science Foundation of China
(61433008, 61472071, and 61272179), Research Grants Council of
the Hong Kong SAR, China No. 14209314 and 418512, and China
Scholarship Council. Authors are also grateful to anonymous re-
viewers for their constructive comments. Yu Gu is the correspond-
ing author of this work.

490

8. REFERENCES
[1] Faunus. http://thinkaurelius.github.io/faunus/.
[2] Giraph. http://giraph.apache.org/.
[3] Hama. https://hama.apache.org/.
[4] Y. Bu, V. Borkar, J. Jia, M. J. Carey, and T. Condie. Pregelix:

Big (ger) graph analytics on a dataflow engine. Proc. of the
VLDB Endowment, 8(2):161–172, 2014.

[5] Y. Bu, B. Howe, M. Balazinska, and M. D. Ernst. Haloop:
efficient iterative data processing on large clusters. Proc. of
the VLDB Endowment, 3(1-2):285–296, 2010.

[6] R. Chen, X. Weng, B. He, and M. Yang. Large graph
processing in the cloud. In Proc. of SIGMOD, pages
1123–1126. ACM, 2010.

[7] R. Cheng, J. Hong, A. Kyrola, Y. Miao, X. Weng, M. Wu,
F. Yang, L. Zhou, F. Zhao, and E. Chen. Kineograph: taking
the pulse of a fast-changing and connected world. In Proc. of
EuroSys, pages 85–98. ACM, 2012.

[8] J. E. Gonzalez, Y. Low, H. Gu, D. Bickson, and C. Guestrin.
Powergraph: Distributed graph-parallel computation on
natural graphs. In Proc. of OSDI, volume 12, page 2, 2012.

[9] J. E. Gonzalez, R. S. Xin, A. Dave, D. Crankshaw, M. J.
Franklin, and I. Stoica. Graphx: Graph processing in a
distributed dataflow framework. In Proc. of OSDI, pages
599–613, 2014.

[10] W. Hant, Y. Miao, K. Li, M. Wu, F. Yang, L. Zhou,
V. Prabhakaran, W. Chen, and E. Chen. Chronos: a graph
engine for temporal graph analysis. In Proc. of EuroSys,
page 1. ACM, 2014.

[11] L.-Y. Ho, T.-H. Li, J.-J. Wu, and P. Liu. Kylin: An efficient
and scalable graph data processing system. In Proc. of IEEE
BigData, pages 193–198. IEEE, 2013.

[12] I. Hoque and I. Gupta. Lfgraph: Simple and fast distributed
graph analytics. In Proc. of the First ACM SIGOPS
Conference on Timely Results in Operating Systems, page 9.
ACM, 2013.

[13] U. Kang, H. Tong, J. Sun, C.-Y. Lin, and C. Faloutsos.
Gbase: a scalable and general graph management system. In
Proc. of SIGKDD, pages 1091–1099. ACM, 2011.

[14] U. Kang, C. E. Tsourakakis, and C. Faloutsos. Pegasus: A
peta-scale graph mining system implementation and
observations. In ICDM, pages 229–238. IEEE, 2009.

[15] Z. Khayyat, K. Awara, A. Alonazi, H. Jamjoom,
D. Williams, and P. Kalnis. Mizan: a system for dynamic
load balancing in large-scale graph processing. In Proc. of
Eurosys, pages 169–182. ACM, 2013.

[16] Y. Low, D. Bickson, J. Gonzalez, C. Guestrin, A. Kyrola, and
J. M. Hellerstein. Distributed graphlab: a framework for
machine learning and data mining in the cloud. Proc. of the
VLDB Endowment, 5(8):716–727, 2012.

[17] G. Malewicz, M. H. Austern, A. J. Bik, J. C. Dehnert,
I. Horn, N. Leiser, and G. Czajkowski. Pregel: a system for
large-scale graph processing. In Proc. of SIGMOD, pages
135–146. ACM, 2010.

[18] D. G. Murray, F. McSherry, R. Isaacs, M. Isard, P. Barham,
and M. Abadi. Naiad: a timely dataflow system. In Proc. of
SOSP, pages 439–455. ACM, 2013.

[19] U. N. Raghavan, R. Albert, and S. Kumara. Near linear time
algorithm to detect community structures in large-scale
networks. Physical Review E, 76(3):036106, 2007.

[20] S. Salihoglu and J. Widom. Gps: A graph processing system.
In Proc. of SSDBM, page 22. ACM, 2013.

[21] Z. Shang and J. X. Yu. Catch the wind: Graph workload
balancing on cloud. In Proc. of ICDE, pages 553–564. IEEE,
2013.

[22] B. Shao, H. Wang, and Y. Li. Trinity: A distributed graph
engine on a memory cloud. In Proc. of SIGMOD, pages
505–516. ACM, 2013.

[23] I. Stanton and G. Kliot. Streaming graph partitioning for
large distributed graphs. In Proc. of SIGKDD, pages
1222–1230. ACM, 2012.

[24] S. Tasci and M. Demirbas. Giraphx: parallel yet serializable
large-scale graph processing. In Euro-Par 2013 Parallel
Processing, pages 458–469. Springer, 2013.

[25] Y. Tian, A. Balmin, S. A. Corsten, S. Tatikonda, and
J. McPherson. From" think like a vertex" to" think like a
graph. Proc. of the VLDB Endowment, 7(3):193–204, 2013.

[26] L. G. Valiant. A bridging model for parallel computation.
Communications of the ACM, 33(8):103–111, 1990.

[27] D. Yan, J. Cheng, Y. Lu, and W. Ng. Blogel: A block-centric
framework for distributed computation on real-world graphs.
Proc. of the VLDB Endowment, 7(14):1981–1992, 2014.

[28] D. Yan, J. Cheng, Y. Lu, and W. Ng. Effective techniques for
message reduction and load balancing in distributed graph
computation. In Proc. of WWW, pages 1307–1317, 2015.

[29] J. Yan, G. Tan, and N. Sun. Gre: A graph runtime engine for
large-scale distributed graph-parallel applications. arXiv
preprint arXiv:1310.5603, 2013.

[30] Z. Yang, J. Xue, Z. Qu, S. Hou, and Y. Dai. Seraph: An
efficient system for parallel processing on a shared graph,
2013.

[31] J. Yin and L. Gao. Scalable distributed belief propagation
with prioritized block updates. In Proc. of CIKM, pages
1209–1218, 2014.

[32] C. Zhou, J. Gao, B. Sun, and J. X. Yu. Mocgraph: Scalable
distributed graph processing using message online
computing. Proc. of the VLDB Endowment, 8(4):377–388,
2014.

APPENDIX
A. ARCHITECTURE OF HybridGraph

Fig. 19 gives the overview architecture of HybridGraph which is
implemented on top of Apache Hama 0.2.0-incubating. Like Gi-
raph, HybridGraph also employs a Master-Slave framework, con-
sisting of a master node and multiple computational nodes. The
master node is in charge of computational nodes through four com-
ponents: 1) Task Scheduler, divides a graph job into several tasks
and schedules them to computational nodes; 2) Synchronous Con-
troller, coordinates the progress of tasks; 3) Fault Detector, detects
failures during iterations; 4) Switcher, makes a smart decision on
using push or b-pull for the next superstep. Currently, Hybrid-
Graph handles fault-tolerance by simply recomputing from scratch.
Note that some algorithms always converge to the same results
from any input. That motivates the need for a lightweight fault-
tolerance solution which we plan to investigate as future work.

B. AN EXAMPLE USING b-pull
We discuss computing SSSP by our b-pull approach on two

computational nodes, T1 and T2. Fig. 20 shows the VE-BLOCK for
an example graph, where v3 is the source vertex to compute. Given
a vertex id vi, val is the shortest distance, |Vo| is the out-degree, and
Vo is the out-neighbors of vi. The vertices of the example graph G
are partitioned into three Vblocks: b1 = {v1, v2}, b2 = {v3, v4},

491

and b3 = {v5}, and the edges of G are distributed into Eblocks ac-
cordingly. Here, bi is with Eblocks, gi1, gi2, and gi3. Suppose b1
and b2 with their Eblocks are assigned to the computational node
T1, and b3 with its Eblocks is assigned to T2. Xi is the meta-
information of bi, and only maintained by the computational node
to which bi belongs. In particular, for instance, the bitmap in X1

(100) indicates that the vertices in b1 only have out-neighbors in
Eblock g11. Here, the res of X2 is set to be 1 since the value of
source vertex v3 is 0 and should be sent to its out-neighbors.

Figure 19: HybridGraph Architecture

We discuss the iterative process of push and our b-pull in Fig. 21.
In the push-based approach, in the 1st superstep, the source-vertex
v3 updates its shortest distance to be zero and then pushes mes-
sages to its 3 out-neighbors v2, v4, and v5. In the 2nd superstep,
they update their shortest distances, and push messages to their out-
neighbors. In every superstep, the messages will be stored at the
receiver side to be used for the next superstep. The SSSP compu-
tation will terminate in 4 supersteps.

Figure 20: The VE-BLOCK structure

In our b-pull, in the 1st superstep, the source vertex v3 only up-
dates its value to be zero. There are no any messages sending. In
the 2nd superstep, via pull requesting based on Vblock ids, v2, v4,
and v5 request messages to be sent from the vertex v3, and then
update their own values. Different from the push-based approach,
the messages received in the same superstep will be consumed im-
mediately. b-pull needs 5 supersteps, which is one more than push.
But in the last one, no data are transferred except block-centric pull
requests. The cost is negligible, and we thereby state that b-pull

Figure 21: Illustration of SSSP in push and b-pull

and push have the same supersteps for a given algorithm in the
synchronous computing model in Eq. (4).

Next, we further explain b-pull using Pull-Request (Algorithm 1)
and Pull-Respond (Algorithm 2). Consider the 2nd superstep in
our b-pull. The computational node T1 sends pull requests for
Vblocks b1 and b2, and the computational node T2 sends pull re-
quests for Vblock b3 simultaneously. We discuss the process for
requesting b1 in Fig. 22. The other are the same. As shown in
Fig. 22, ¬ T1 sends the pull request for b1 to T1 and T2. T1 re-
ceives the request from itself, and then checks the meta-information
for Vblocks T1 holds. Vblock b1 is skipped, as the res of X1 is 0.
However, the res of X2 is 1 and the 1st bit in the bitmap in X2 is 1,
which indicates that some vertices in b2 should broadcast the most
recent values, and there exist edges from b2 to b1 in Eblock g21.
As a result, b2 may produce messages to be sent to vertices in b1.
Then, v3 and v4 in b2 are checked while scanning g21. Since only
v3 is the responding vertex at the 1st superstep, we obtain the value
of v3 and the outgoing edge (v3, v2, 0.8) with a weight 0.8. ® T1

invokes v3.pullRes() to produce a message (v2, 0.8), and then puts
it into the sub-buffer of BS1. ¯ Messages in sub-buffer are sent to
T1 and are kept in the receiving buffer BR1. ° When all messages
have been pulled from T1 and T2, T1 invokes update() for the ac-
tive vertex v2 in b1 to update its value (v2.update()). ± The new
value of v2 is stored, and v2 is marked as responding to respond
pull requests at the next superstep.

C. TESTING THE IMPACT OF THE VEBLOCK
GRANULARITY

We conduct testing to explore the impact of V using PageRank
and SSSP over graphs livej and wiki, on 5 nodes of the local clus-
ter (described in Section 6). Fig. 23 and Fig. 24 show the curve
of the memory requirement measured by summing up the byte size
of messages in buffer and metadata in VE-BLOCK, and I/O bytes,
respectively, when varying the number of Vblocks. The x-axis
is the number of Vblocks (V) where x indicates that V = x×10
Vblocks are used, and min is the minimum number 5 of Vblocks
used, which means that each node has 1 Vblock. For PageRank,
we set the number of supersteps as 10 and report the average. For
SSSP, we run it until the algorithm converges, and report the maxi-

492

Figure 22: Message data-flow for b1 on T1 in the 2nd superstep

mum value among supersteps. With the increase of V , the memory
requirement rapidly drops, while the cost of I/O bytes significantly
increases, as more fragments are generated (Theorem 1). We also
show the overall runtime when varying V in Fig. 25. In particu-
lar, we find that for SSSP there exists a turning point between V=5
(min) and V=100 (x = 10). This is because the iterative compu-
tation of SSSP exhibits a gradual convergence stage where fewer
edges are required. In this scenario, although a smaller V , such
as min, can decrease the number of fragments (Theorem 1), one
Eblock stores more edges on average. Since data are scanned in
Eblocks, many useless edges are accessed, which wastes I/O band-
with. This algorithm-specific characteristic does not violate Theo-
rem 1. Besides, the prior knowledge about the number of required
edges and the corresponding variation during iterations, is not eas-
ily achieved. Thus, we still calculate V using the rules described in
Section 4.3 under the assumption that all edges are required.

 0

 5

 10

 15

 20

 25

 30

min 5 10 15 20 25 30 35 40

m
e

m
o

ry
 (

1
0

7
 b

y
te

s
)

of Vblocks (x10)

PageRank
SSSP

(a) Memory requirement

 0

 2

 4

 6

 8

 10

min 5 10 15 20 25 30 35 40

i/
o

 b
y
te

s
(1

0
8
)

of Vblocks (x10)

PageRank
SSSP

(b) I/O bytes

Figure 23: Memory requirements and I/O bytes (over livej)

 0

 5

 10

 15

 20

 25

min 5 10 15 20 25 30 35 40

m
e

m
o

ry
 (

1
0

7
 b

y
te

s
)

of Vblocks (x10)

PageRank
SSSP

(a) Memory requirement

 0

 5

 10

 15

 20

min 5 10 15 20 25 30 35 40

i/
o

 b
y
te

s
(1

0
8
)

of Vblocks (x10)

PageRank
SSSP

(b) I/O bytes

Figure 24: Memory requirements and I/O bytes (over wiki)

D. PROOF
The proof of Theorem 1.

PROOF. Let F [V] denote the number of fragments associated
with u as svertex in Vblock, and E(F [V]) is the expected F [V].
Given a vertex u in Vblock bi, let the indicator Zj denote the event

 2

 4

 6

 8

 10

 12

min 5 10 15 20 25 30 35 40

ru
n

ti
m

e
(1

0
 s

e
c
)

of Vblocks (x10)

PageRank
SSSP

(a) livej

 2

 4

 6

 8

 10

 12

 14

 16

 18

min 5 10 15 20 25 30 35 40

ru
n

ti
m

e
(1

0
 s

e
c
)

of Vblocks (x10)

PageRank
SSSP

(b) wiki

Figure 25: Overall runtime (PageRank and SSSP)

that there exists at least one of its outgoing edges in Eblock gij ,
i.e., one fragment exists in gij . The expectation Zj is E(Zj) =

1−(1−P [V])d[u], where d[u] stands for the out-degree of u. Here,
P [V] is the probability of putting an edge into Eblock gij among
V Eblocks, and P [V]∝ 1

V . The expected number of fragments is:

g(V) = E(F [V]) =
V∑

j=1

E(Zj) = V
(
1− (1− P [V])d[u]

)
.

As can be inferred, the first derivative is:

g
′
(V) = 1− (1 +

d[u]− 1

V)(1− 1

V)d[u]−1.

Considering that d[u]≥1 for most graphs, the second derivative is:

g
′′
(V) = −d[u](d[u]− 1)

V (1− 1

V)d[u]−2 ≤ 0.

Thus, we have: g
′
(V)≥ g

′
(V→+∞)=0. Suppose V1≤V2. Ob-

viously, E(F [V1])≤E(F [V2]), which means E(F [V]) ∝ V .

The proof of Theorem 2.

PROOF. We use Sm, Sv , Se, Sf represent the average size of per
message, per vertex value, per edge, and auxiliary data of each frag-
ment, respectively. We first analyze the features of accessing edges.
For b-pull, at each superstep, edges may be involved in update()
to update vertex values, besides being used in pullRes() to broad-
cast messages. By contrast, they are accessed only once in push
because compute() covers the logics of update() and pullRes().
When all vertices broadcast messages to their neighbors along out-
going edges, |Et| = |E| = M. Accordingly, in the worst case,
IO(Et) = 2IO(Et) = 2Se|E| = 2SeM. Second, the I/O bytes
of accessing disk-resident messages in push is: 2(|E|−B)Sm. For
b-pull, considering that Sm ≥ Sv and Sm ≥ Sf , we have:

IO(F t) + IO(V t
rr) ≤ f(Sf + Sv) ≤ 2fSm.

Finally, suppose B ≤ (|E|
2

− f), we can infer that:

Cio(push)− Cio(b− pull) ≥ 2Sm(|E| −B − f)− Se|E| ≥ 0

, because Sm ≥ Se.

E. THE EFFECTIVENESS OF COMBINING
Distributed systems usually set a sending threshold to control the

communication behavior, in order to make full use of the network
idle time and reduce the overhead of building connections. Assume
that the threshold is 2. As shown in Fig. 5 (a), for push, s1 gener-
ates two messages m(s1, d1) and m(s1, d2) for d1 and d2. Then
the system starts the sending operation because a buffer overflow
occurs. After that, s2 also generates a message m(s2, d1) for d1.
However, it cannot be combined with m(s1, d1) since the latter is

493

Table 5: Comparisons of runtime in five scenarios about GraphLab PowerGraph (seconds)
scenarios PageRank SSSP LPA SA

livej wiki orkut livej wiki orkut livej wiki orkut livej wiki orkut

original 3.0 3.6 5.0 58.8 105.7 120.8 7.4 11.1 18.6 30.4 80.5 47.5
ext-mem 3.1 4.1 5.9 60.2 108.8 129.6 7.6 11.7 19.2 31.6 85.5 49.0
ext-edge 3.9 4.8 7.1 93.5 207.4 220.6 8.6 12.5 21.6 41.6 163.7 64.6
ext-edge-v3 4.5 5.0 7.1 137.2 259.2 222.8 8.8 13.0 21.1 80.4 233.5 64.6
ext-edge-v2.5 654.7 960.4 1187.8 2318.4 5219.5 9956.5 387.0 1024.2 1103.4 1869.5 4160.3 5841.7

unavailable. Thus, the communication gain is limited and usually
cannot offset the cost of executing combining. By contrast, for pull
(including b-pull), messages are generated based on the demand of
the destination vertex. For example, when d1 sends a pull request,
s1 and s2 will generate messages for it. This mechanism obviously
guarantees that all messages for d1 can be combined.

We modify MOCgraph to support combining messages at the
sender side. The modified version is identified as pushM +com.
We define the combining ratio as #_of_combined_messages

#_of_total_messages
. Not

surprisingly, as shown in Fig. 26 (a) (in the same setting used in
Fig. 7 (a)), when varying the sending threshold from 1MB to 32MB,
the runtime of pushM increases because a large threshold cannot
make full use of the network idle time. By contrast, pushM +com
works well, as many messages can be combined (i.e., a large com-
bining ratio shown in Fig. 26 (b)), leading to a communication gain.
However, the gain is easily offset by the cost of combining if the
threshold is small. On the other hand, for b-pull, the communi-
cation gain is orthogonal to the threshold. Consequently, the only
challenge for b-pull is to set a reasonable threshold to make full
use of network resources. Fortunately, this constraint is relatively
loose. As shown in Fig. 26, b-pull works well from 1MB to 4MB.
This paper thereby uses 4MB as the default sending threshold.

 0

 5

 10

 15

 20

 25

1 2 4 8 16 32

ru
n

ti
m

e
 (

s
e

c
)

sending threshold (MB)

pushM
pushM+com
b-pull

(a) Runtime

0.0

0.2

0.4

0.6

0.8

1.0

1 2 4 8 16 32

c
o

m
b

in
in

g
 r

a
ti
o

sending threshold (MB)

pushM+com
b-pull

(b) Combining ratio

Figure 26: Testing the effectiveness of combining for pushM
and b-pull (PageRank over orkut)

F. EVALUATING THE PERFORMANCE OF
MODIFIED GraphLab PowerGraph

In this suite of experiments, we use five testing scenarios to con-
firm that our extension does not incur extra costs compared with the
original GraphLab PowerGraph. The first one is 1) original: using
the original GraphLab PowerGraph to process data in memory. The
other four scenarios use our disk extension: 2) ext-mem: all data are
memory-resident, like original; 3) ext-edge: edges reside on disk
and vertices are kept in memory; 4) ext-edge-v3: edges reside on
disk and each task caches 3 million vertices at most in memory; 5)
ext-edge-v2.5: edges reside on disk and each task caches 2.5 mil-
lion vertices at most in memory.

Table 5 reports the performance in five scenarios using 5 compu-
tational nodes of the local cluster. Apparently, ext-mem achieves a
comparable performance with the original GraphLab PowerGraph,
which validates that our extension is reasonable. Furthermore, the

runtime of ext-edge slightly increases, because edges are read only
once per superstep. Finally, with the increase of the number of disk-
resident vertices, the overall performance seriously degrades, due
to frequently reading/writing disk-resident vertices, even though
we have employed the LRU replacing strategy.

G. DETAILED DISCUSSION ON THE BOUND-
ARY OF hybrid

The switching mechanism of our hybrid relies on the sign of Qt

which is determined by sub-metrics Cio(push), Cio(b-pull) and
Mco. We predict them using the mechanism proposed by Shang
et al. [21]. Shang et al. divide graph algorithms into three cat-
egories based on the change of active vertices, namely, Always-
Active-Style, Traversal-Style, and Multi-Phase-Style. We discuss
the boundary of hybrid accordingly.

Always-Active-Style: Every vertex in each superstep sends mes-
sages to all its neighbors. The typical algorithm is PageRank. We
can always achieve the predicted Qt+2 accurately, since the be-
havior of vertices does not change. hybrid can choose an optimal
mechanism based on Qt+2.

Traversal-Style: Some vertices are treated as starting points, and
the other ones are involved in computing based on the user-defined
processing logic. SSSP follows this style. Not surprisingly, when
the number of active vertices is drastically changing, the prediction
mechanism proposed by Shang et al. [21] works poorly. Specif-
ically, when the active vertex scale is decreasing, we have Qt >
Qt+2, because Qt is proportional to the number of messages. If we
use Qt as the predicted value of Qt+2, the switching timing from
b-pull to push (i.e., the sign changes from positive to negative) will
be put off. Nevertheless, hybrid still achieves an impressive gain
in runtime. This is because the sign of Qt keeps unchanged in the
subsequent n supersteps (due to a continuous decrease of the num-
ber of active vertices), and then hybrid can always benefit from
the switching operation. Here, n depends on the specified algo-
rithm and the graph topology. Take SSSP over twi as an example.
n=15 after switching from b-pull to push (as shown in Fig. 14 (a)).
Similarly, switching from push to b-pull will be put off when the
number of active vertices is increasing. In conclusion, the total gain
in runtime is up to 37.6%.

Multi-Phase-Style: The entire computation is divided into a num-
ber of phases, and each phase needs several supersteps. The behav-
ior of vertices changes repeatedly among phases. That means the
increase and decrease of the active vertex scale will occur period-
ically. Like Traversal-Style, the prediction accuracy is poor. But
the difference is that the sum of gains after executing the delayed
switching is negligible, because the sign of Qt changes frequently.
Taking the minimum spanning tree algorithm as an example [21],
n=1 after switching from b-pull to push. A possible solution is
to analyze the historical information of iterations to explore the
change style, and then guide the switching operation. We will vali-
date the effectiveness of this solution as future work.

494

