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ABSTRACT

In many real applications such as bioinformatics and biological
network analysis, it has always been an important, yet challeng-
ing, topic to accurately infer/reconstruct gene regulatory networks

(GRNs) from microarray data, and efficiently identify those match-
ing GRNs with similar interaction structures for potential disease
analysis and treatment tasks. Motivated by this, in this paper, we
formalize the problem of ad-hoc inference and matching over gene

regulatory networks (IM-GRN), which deciphers ad-hoc GRN graph
structures online from gene feature databases (without full GRN
materializations), and retrieves the inferred GRNs that are subgraph-
isomorphic to a query GRN graph with high confidences. Specif-
ically, we propose a novel probabilistic score to measure the pos-
sible interaction between any two genes (inferred from gene fea-
ture vectors), and thus model GRNs by probabilistic graphs, con-
taining edge existence probabilities. In order to efficiently process
IM-GRN queries, we propose effective reduction, pruning, and em-
bedding strategies to significantly reduce the search space of GRN
inference and matching, without materializing all GRNs. We also
present an effective indexing mechanism and an efficient IM-GRN
query processing algorithm by the index traversal. Finally, exten-
sive experiments have been conducted to verify the efficiency and
effectiveness of our proposed IM-GRN query answering approach-
es over real/synthetic GRN data sets.

Keywords

Ad-hoc graph inference and matching; gene regulatory networks;
IM-GRN

1. INTRODUCTION
In many real applications such as bioinformatics [25, 14, 7] and

medical/health databases [8], it has been increasingly important,
yet challenging, to investigate microarray data and better under-
stand gene functions and cellular dynamics. Specifically, since
genes in living organisms do not function alone (i.e., they may in-
teract with each other), one important biological problem is to accu-
rately infer gene regulatory networks (GRNs) from microarray data
(via “reverse engineer” techniques [3, 4, 23, 13]), and use them for
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Figure 1: An example of finding a potential biomarker for cancer over

GRNs inferred from gene feature databases.

important tasks, such as disease analysis and treatment (e.g., can-
cer [12]), derivation of new biological hypothesis about molecular
interactions [4], guide of novel biological perturbation/intervention
experiments [7], design of medicines or drugs [8], and so on.

In this paper, we will tackle an important problem of ad-hoc
matching over the inferred GRN graphs, which has the following
motivation examples in biological databases.

Example 1 (Identification of Diagnostic Biomarkers [6]) Recent

studies showed that GRNs could be used as biomarkers of diseases

(e.g., cancer [12]) for diagnostic and predictive purposes. In par-

ticular, hallmarks of cancer are represented by pathways, on which

genes actively interact with each other. Therefore, in order to con-

firm a potential biomarker, as shown in Figure 1, we can first in-

fer a query GRN graph Q (i.e., a possible cancer biomarker) from

cancer samples (in a query gene feature matrix), and then retrieve

those matching (subgraphs of) GRNs (i.e., similar to Q with high

confidences), inferred from the existing gene feature database D
(which is collected from experiments of the biological literature,

public databases, medical centers, or research institutions). This

way, the retrieved matching GRNs can be used as the supporting

evidence of the cancer biomarker, case studies about physiological

and disease conditions for the cancer biomarker, and references for

treatment methodologies. Similarly, we can also identify diagnostic

biomarkers for other diseases as well. �

Example 2 (Disease Clustering and Classifications) GRN graph

structures often change dynamically for different phases of the dis-

ease or under different physiological/disease conditions. Thus, with

microarray data from heterogeneous data sources (e.g., biomedical

experiments in the literature or from different institutions), it is im-

portant to identify clusters of the inferred GRNs (which might be

under distinct phases or conditions) for comparative network anal-

ysis [5]. During the graph clustering, one classical problem is the

pattern matching, that is, given a query GRN pattern (a represen-

tative pattern) Q, obtaining those inferred GRNs Gi (in the same

cluster) that subgraph-match with Q with high confidences.

Moreover, given a newly emerging (or unknown) disease, it is

crucial to find some existing (labeled) diseases that are similar to
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the unknown disease, in terms of gene interactions. In this case,

we can first infer a query GRN graph Q from gene features of

the new disease (obtained from partial biological experiments due

to time/budget limitations). Then, we can retrieve those inferred

GRNs, Gi, from existing diseases (in the literature or experiments

from institutions), which have the same regulatory structures as Q
with high confidence level. Intuitively, we can classify the new dis-

ease into categories of those retrieved (existing) diseases (via GRN-

s), which may potentially reveal valuable information for treating

the new disease (e.g., by using treatment strategies similar to exist-

ing diseases). �

Inspired by the examples above, in this paper, we will formal-
ize an important and useful problem, namely ad-hoc inference and

matching over gene regulatory networks (IM-GRN), which aims to
efficiently obtain ad-hocly inferred GRNs that match with a given
query GRN Q with high confidences.

In the literature of the GRN inference, a classical scoring-based
method [4] utilizes the Pearson’s correlation score between any t-
wo gene feature vectors, and infers a gene interaction (i.e., an edge)
between two genes in GRN (if this score is above a user-specified
threshold). However, in the case of noisy feature samples and/or s-
mall sample size, the resulting correlation scores may often deviate
from their actual correlation values, which thus lead to inaccurate
edge inference, w.r.t. the score threshold, in GRNs.

Therefore, in this paper, we will propose a novel and robust vari-
ant of the GRN inference measure (based on the Pearson’s correla-
tion). Specifically, this measure can accurately describe the interac-

tion probability between any two genes, derived from gene feature
vectors via randomization techniques. As will be confirmed later in
Section 6.2, our proposed inference measure is more robust than the
classical one over real gene data, in terms of the receiver operating

characteristic (ROC). Accordingly, we model the inferred GRN by
a probabilistic GRN graph, in which each edge is associated with
an existence probability (i.e., our proposed novel measure).

With this GRN graph model, given an ad-hoc inference thresh-
old, our IM-GRN problem is to online reconstruct probabilistic
GRN graphs from database D (by inferring edges w.r.t. the ad-hoc
inference threshold), and meanwhile retrieve those inferred GRNs,
Gi, from biological database D, such that Gi contain an inferred
query GRN Q with high confidences.

Obstacles. To efficiently and effectively process the IM-GRN query,
we need to overcome several major obstacles. First, in the IM-GRN
problem, users (e.g., biologists) can flexibly specify an ad-hoc in-
ference threshold for online GRN inference. Due to arbitrary possi-
ble values of the inference threshold, it is both time- and space- in-
efficient to offline materialize all possible GRN graphs Gi (against
all possible inference thresholds) from database D. Moreover, the
offline pre-computations of interaction probabilities for all possible
edges in GRNs (i.e., complete graphs) are neither space-efficient
for storage nor time-efficient for the search, especially in the case
of large-scale biological databases. Thus, we need to design effi-
cient query processing algorithms to tackle the IM-GRN problem
without offline GRN materialization, which is rather challenging.
To the best of our knowledge, there is no prior work that solves
such an IM-GRN problem on ad-hocly inferred graphs.

Second, due to the uncertainty and graph properties in GRNs,
it is also challenging for the IM-GRN problem to efficiently ob-
tain matching probabilistic subgraphs that are isomorphic to the
query graph Q with high confidences. Note that, the isomorphism
checking for graphs is NP-hard. Moreover, in the context of prob-
abilistic graph [19], we usually consider possible worlds semantics
for probabilistic graphs (i.e., GRN), where each possible world is a
materialized instance of the probabilistic graph, Gi, with determin-

istic edges. However, considering that each edge may or may not
exist in the real world, there are an exponential number of possible
worlds, that is, O(2|E(Gi)|), where |E(Gi)| is the number edges
in graph Gi. Thus, it is inefficient, or even infeasible, to tackle
the IM-GRN problem over possible worlds of GRNs. Therefore, in
this paper, we will propose effective pruning mechanisms to greatly
reduce the search space of IM-GRN query answering.

Third, the IM-GRN problem involves a large number of gene
feature vectors of different sample sizes (dimensions). While pri-
or works usually considered encoding or indexing on objects with
the same dimensionality (e.g., R∗-tree [1]), it is challenging to ef-
fectively encode and index gene features of different dimensions.
As a result, in the sequel, we will propose novel encoding/indexing
methods to facilitate efficient IM-GRN query processing over the
large-scale gene feature database D.

In this paper, we make the following contributions.

1. We formally define the problem of ad-hoc inference and match-
ing over gene regulatory networks (IM-GRN) in Section 2.

2. We reduce our IM-GRN problem over graph possible worlds
with the newly proposed inference measure to the one in the
Euclidean space, and design effective pruning strategies to
filter out false alarms of IM-GRN answers in Section 3.

3. We propose an effective pivot-based embedding approach
(guided by a cost model) to encode gene feature vectors of
different dimensions in Section 4.

4. We design an effective indexing mechanism over gene fea-
ture databases, and illustrate a novel IM-GRN query process-
ing algorithm in Section 5.

5. We demonstrate through extensive experiments the effective-
ness and efficiency of our proposed inference approach and
IM-GRN query answering algorithms in Section 6.

In addition, Section 7 reviews previous works on inference of
gene regulatory networks and probabilistic graph databases. Final-
ly, Section 8 concludes this paper.

2. PROBLEM DEFINITION
Section 2.1 presents the data model for gene feature databas-

es. Section 2.2 defines the inference of gene regulatory networks
(GRNs) from gene feature databases. Section 2.3 formalizes our
problem of ad-hoc inference and matching over gene regulatory

networks, namely IM-GRN.

2.1 Data Model for Gene Feature Databases
A gene feature database, D, contains gene expression features

collected from N data sources (e.g., experimental results from the
biological literature, public databases, research institutions, or med-
ical centers). For the i-th data source (1 ≤ i ≤ N ) in database D,
we store its corresponding gene features, represented by an li × ni

matrix, Mi, which are obtained from biological experiments.

DEFINITION 1. (Gene Feature Databases) A gene feature data-

base, D, contains N li ×ni gene feature matrices, denoted as Mi,

in which each element Mi[j][k] records the feature value of the

k-th gene evaluated from the j-th individual (e.g., patient), where

1 ≤ i ≤ N , 1 ≤ j ≤ li, and 1 ≤ k ≤ ni.

From Definition 1, gene features from each data source can be
represented by an li × ni matrix, Mi. Specifically, the j-th row of
matrix Mi stores ni gene feature values, which are collected from
the j-th patient’s sample; the k-th column of matrix Mi is a gene
feature vector, which contains li feature samples of the k-th gene,
collected from li patients, respectively.

Note that, in the gene feature database D, N gene feature ma-
trices (for N data sources, respectively), may be of different sizes
(i.e., with distinct numbers of patients (rows) and genes (columns)).
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2.2 Inference of Gene Regulatory Networks
In this subsection, we give the definition of inferring an inter-

action graph (i.e., GRN), denoted as Gi, from each gene feature
matrix, Mi. In this paper, we consider a variant of a classical
scoring-based measure, absolute Pearson’s correlation coefficient

[4], to decide if two genes interact with each other in GRNs.
Specifically, in [4], the scoring-based method first computes the

absolute Pearson’s correlation coefficient between any two feature
vectors, Xs and Xt, of length li, from the s-th and t-th genes, re-
spectively. Then, two genes (vertices) have a connecting edge in
GRNs, if the resulting coefficient is above a fixed inference thresh-
old. Practically, different thresholds may result in different GRNs.
Thus, it is difficult, and lacking of guidelines, for non-expert users
to set the inference threshold and obtain an effective/accurate GRN.
What is worse, due to small sample sizes or noisy gene feature sam-
ples, the previous correlation measure [4] cannot achieve good in-
ference accuracy (which will be later confirmed by experiments in
Section 6.2).

Inspired by the problem with the scoring-based method, in this
paper, we will design a more robust measure, which is defined as
the confidence level (probability) that the (Pearson’s) correlation
between two gene feature vectors is higher than that of indepen-
dent (randomized) feature vectors. With this probabilistic measure,
users can specify an ad-hoc inference threshold to guarantee the
confidences of the inferred edges in GRNs.

Formally, we give the inference of an edge between two genes
(vertices) in a GRN from gene feature vectors below.

DEFINITION 2. (Inference of Edges in GRNs) Given two li ×
1 feature vectors, Xs and Xt, of two genes (corresponding to ver-

tices vs and vt, respectively), and an inference threshold γ ∈ [0, 1),
vertices vs and vt have a connecting edge, es,t, if it holds that:

es,t.p = Pr{r(Xs, Xt) > r(Xs, X
R
t )} > γ, (1)

where XR
t is a randomized vector of the original vector Xt, and

r(Xs, Xt) is the absolute Pearson’s correlation coefficient [4] be-

tween vectors Xs and Xt, given as follows:

r(Xs, Xt) =

∣∣∣∣∣∣

∑
i(Xs[i]−Xs) · (Xt[i]−Xt)√∑

i(Xs[i]−Xs)2 ·
√∑

i(Xt[i]−Xt)2

∣∣∣∣∣∣
. (2)

Intuitively, Definition 2 computes the probability that two vec-
tors, Xs and Xt, has higher correlation score than that of two ran-
domized (independent) vectors, Xs and XR

t (as given in Eq. (1)).
If this probability, es,t.p, is greater than an ad-hoc confidence level
γ, then there exists an edge, es,t, between two vertices, vs and vt,
corresponding to vectors Xs and Xt, respectively.

DEFINITION 3. (Gene Regulatory Networks, GRNs) Given

an li × ni gene feature matrix Mi, a gene regulatory network

(GRN), Gi, is a probabilistic graph in the form of a triple (V (Gi),
E(Gi), Φ(Gi)). Here, we have:

• V (Gi) is a set of vertices vs with gene labels l(vs);

• E(Gi) is a set of edges es,t associated with existence prob-

abilities es,t.p ∈ [0, 1);

• Φ(Gi) is a mapping function: Φ(Gi) : V (Gi)× V (Gi) 7→
E(Gi).

where the existence probability, es,t.p, of edge es,t is from Eq. (1).

Note that, different users may specify ad-hoc and distinct infer-
ence thresholds γ, and the resulting GRNs can be different. One
possible method to infer GRNs is to offline enumerate all possi-
ble GRNs, under various γ values, which is however not time- and
space- efficient. In contrast, in this paper, we will only organize

gene feature matrices Mi in the database D, without offline mate-
rializing them into all possible GRN structures Gi (w.r.t. different
inference thresholds γ).

In the literature of the GRN inference, there are some other mea-
sures/approaches to reconstruct GRN graphs, such as mutual in-

formation [23, 3], regression [13, 9], and so on. In this paper, we
will only focus on the novel/robust variant of the correlation score
[4] for the GRN inference. We would like to leave the topics of
using similar idea of the randomized vectors for other interesting
inference measures/approaches as our future work.

2.3 Ad-Hoc Inference and Matching Problem
in GRNs

The IM-GRN problem. Next, we give the problem definition
of ad-hoc inference and matching over gene regulatory networks

(namely, IM-GRN). Specifically, given a query gene feature ma-
trix MQ, our IM-GRN problem is to retrieve those gene feature
matrix data, Mi, from database D, such that the query graph Q (in-
ferred from MQ) is matching with (i.e., subgraph isomorphic to)
subgraphs, G, of the inferred GRNs, Gi, with high confidences.

Specifically, we denote MQ as an lQ × nQ query gene feature
matrix, which can be obtained from biological experiments, where
each element MQ[j][k] (for 1 ≤ j ≤ lQ and 1 ≤ k ≤ nQ) s-
tores the feature value of the k-th gene collected from the sample
of the j-th patient. Similar to the inference of GRN graphs men-
tioned in Section 2.2, we can also infer from the query matrix MQ,
and obtain a query GRN graph, Q (representing a graph biomark-
er, a representative graph pattern in a cluster, or a GRN of a new
disease), which contains nQ vertices (i.e., genes), qs, and edges,
qes,t that connect vertices qs and qt (indicating that gene qs inter-
acts with qt), where each edge qes,t is associated with an existence
probability, qes,t.p.

DEFINITION 4. (Ad-Hoc Inference and Matching Over Gene

Regulatory Networks, IM-GRN) Given an lQ × nQ query gene

feature matrix, MQ, a gene feature database D with N gene fea-

ture matrices Mi (1 ≤ i ≤ N ), an inference threshold γ ∈ [0, 1),
and a probabilistic threshold α ∈ [0, 1), an ad-hoc inference and

matching query over gene regulatory networks (IM-GRN) retrieves

matrices Mi ∈ D such that the inferred GRNs Gi and query GRN

Q (via the inference in Definition 2) satisfy the conditions that:

• the query graph Q is isomorphic to a subgraph, G, of the

inferred GRN Gi (denoted as Q ≡ G); and

• the appearance probability of subgraph G is greater than α,

that is, Pr{G} > α.

Here, it holds that:

Pr{G} =
∏

∀qes,t∈E(Q)

Pr{edge es,t exists in E(G)} (3)

=
∏

∀qes,t∈E(Q)

es,t.p

where es,t.p is given by Eq. (1).

Intuitively, in Definition 4, the IM-GRN problem obtains those
GRN graphs Gi (inferred from gene feature matrices Mi) that con-
tain some subgraphs G, such that (1) subgraphs G are isomorphic
to the query graph Q (inferred from the given query matrix MQ),
and (2) subgraphs G (⊆ Gi) have high existence confidence (i.e.,
Pr{G}>α). In particular, as given in Eq. (3), the appearance prob-
ability, Pr{G}, of G is given by the multiplication of (non-) exis-
tence probabilities of edges es,t in G, if their corresponding edges
qes,t in query graph Q exist.
Challenges. To efficiently and effectively solve the IM-GRN prob-
lem, there are several major challenges below. First, as given in
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Symbols Descriptions

D a gene feature database from N data sources
Gi a gene regulatory network (GRN) with ni genes (vertices)
Mi an li × ni matrix, corresponding to the data graph Gi

Q a query gene regulatory network with nQ genes (vertices)
MQ an lQ × nQ matrix, corresponding to the query graph Q
li the number of patient samples in gene feature matrix Mi

ni the number of genes in gene feature matrix Mi

V (Gi) a set of vertices, vj (1 ≤ j ≤ ni), in the GRN graph Gi

E(Gi) a set of edges in the GRN graph Gi

vs (or vt) a vertex in V (Gi)
qs (or qt) a vertex in V (Q)
es,t (or qes,t) an edge connecting vertices vs and vt (or vertices qs and qt)
es,t.p (or qes,t.p) the existence probability of edge es,t (or qes,t)
r(Xs, Xt) the absolute Pearson’s correlation coefficient between

vectors Xs and Xt

dist(Xs, Xt) the Euclidean distance between vectors Xs and Xt

Table 1: Notations and their descriptions.

Definition 2, to obtain the existence probability of each edge es,t
(as shown in Eq. (1)), in turn, we need to compute the absolute
Pearson’s correlation coefficient, r(Xs, X

R
t ), between two random-

ized vectors, which requires applying the Monte Carlo sampling
method, and thus incurs high computation cost. Thus, it is chal-
lenging to efficiently calculate the probability es,t.p. In this paper,
we will propose a novel approach to reduce our IM-GRN problem
over an exponential number of possible worlds over probabilistic
graphs (with edge existence probabilities in Eq. (1)) to the one in
the Euclidean space.

Second, given an ad-hoc inference threshold γ, it is not time-
and space- efficient to offline materialize all GRNs Gi from N ma-
trices Mi ∈ D. Typically, given N li × ni matrices, the space
complexity of offline pre-computing existence probabilities of al-
l pairwise vertices (genes) in (complete) GRN graphs is given by

O(ni·(ni−1)
2

· N). Assuming that ni = 300 and N = 100K, the
required storage is 17.94 Gigabytes with single-precision floating
numbers (or 35.88 Gigabytes with double-precision floating num-
bers), which is not space-efficient. Moreover, to retrieve matching
GRN subgraphs, we also need to sequentially scan all these pre-

computed data with O(
nQ·(nQ−1)

2
·N) time cost and high I/O cost

of reading 17.94 GB (or 35.88 GB) data from the disk, which is
not time- and I/O-efficient, where nQ is the number of genes in
the query GRN graph Q. Thus, we need to design effective prun-
ing methods to reduce the search space of online IM-GRN query
processing, without materializing all GRNs.

Third, each matrix Mi is collected from different numbers of
patients and different sets of genes, which are also distinct from
that of query matrix MQ. As a result, it is non-trivial how to or-
ganize these matrices of different sizes, and efficiently conduct the
subgraph matching over a large number of online inferred GRNs.
Inspired by this, in this paper, we propose an embedding approach
to map matrices into a unified multidimensional data space, design
an effective index mechanism, and present an efficient IM-GRN
query processing approach by traversing the index.
Discussions on a class of problems generalized from IM-GRN

and their applications/solutions. Please refer to a general class
of problems over ad-hocly inferred graphs (similar to IM-GRN) in
real applications like social network analysis and video copyright-
violation detection in Appendix A. We would like to leave topics
of ad-hoc graph problems in these domains as our future work.

Table 1 depicts the commonly used symbols and their descrip-
tions in this paper.

3. IM-GRN PROBLEM REDUCTION

3.1 The Edge Existence Probability Reduction
As mentioned in Section 2.3, it is time-consuming to compute

existence probabilities of edges (as given in Eq. (1)), since we need

to consider randomized vectors, XR
t (e.g., via the Monte Carlo

sampling method [17, 15]). Due to the complexity of computing
absolute Pearson’s correlation coefficient and, in turn, the edge ex-
istence probability, in this subsection, we will reduce the computa-
tion of edge probability es,t.p via Pearson’s correlations to the one
in a Euclidean space.

LEMMA 1. (Reduction of the Edge Existence Probability)

Assume that two feature vectors Xs and Xt are two standardized

vectors of length li > 1 (corresponding to vertices vs and vt in

GRN Gi, respectively). The existence probability, es,t.p, of edge

es,t between two vertices vs and vt in Eq. (1) can be reduced to:

es,t.p = Pr{dist(Xs, X
R
t ) ≥ dist(Xs, Xt)}, (4)

where dist(X,Y ) computes the Euclidean distance between vec-

tors X and Y , that is, dist(X,Y ) =
√∑li

k=1(X[k]− Y [k])2.

PROOF. Please refer to the detailed proof in Appendix B.

Lemma 1 indicates that the edge existence probability es,t.p can
be reduced to the probability that involves the Euclidean distance
(instead of absolute Pearson’s correlation coefficient), which is giv-
en by Eq. (4).

Monte Carlo sampling. In order to estimate the edge existence
probability es,t.p (given in Eq. (4)), we can apply the Monte Carlo
sampling method [17] as follows.

Denote dist(Xs, X
R
t ) as a random variable Z. Then, Eq. (4) can

be written as: es,t.p = Pr{Z > dist(Xs, Xt)}. Here, random
variable Z has the population of size O(li!), which corresponds to
distances, dist(Xs, X

R
t ), with respect to li! possible randomized

vectors XR
t . The Monte Carlo sampling method obtains S inde-

pendent (uniformly distributed) samples from the population, and
estimate the edge existence probability es,t.p as ρ̂, which is given
by the ratio of times that Z > dist(Xs, Xt).

Let ρ be the actual value of es,t.p. We have the following lem-
ma [15] about the required number, S, of samples (i.e., randomized
vectors XR

t ), used for estimating es,t.p with the confidence guar-
antee.

LEMMA 2. (Determining the Sample Size [15]) Given a sam-

ple size S ≥ 3
ǫ2
ln 2

δ
, the estimated edge existence probability ρ̂

is an ǫ-approximation of actual edge existence probability ρ (=
es,t.p), such that:

Pr{(1− ǫ)ρ ≤ ρ̂ ≤ (1 + ǫ)ρ} ≥ 1− δ. (5)

3.2 Pruning Strategies
So far, we have reduced the GRN graph inference problem that

involves absolute Pearson’s coefficient to the one in the Euclidean
distance. As mentioned in Section 2, given a user-specified ad-hoc
inference threshold γ, it is still very costly to compute exact edge
existence probabilities es,t.p (by using the Monte Carlo sampling
method), and reconstruct edges es,t (satisfying es,t.p > γ) for all
the N GRNs Gi. Thus, in this subsection, we will propose effec-
tive pruning methods, namely edge inference pruning and graph

existence pruning, to filter out those false alarms of GRN graphs,
Gi, that do not contain the query graph Q.

3.2.1 Edge Inference Pruning

Our basic idea of the edge inference pruning method is to de-
rive an upper bound, ub_P (es,t), of the edge existence probabili-
ty es,t.p, which can be computed at low cost (compared with the
costly computation of exact probability). Then, if this upper bound
ub_P (es,t) is smaller than or equal to inference threshold γ, we
can safely say that there is no edge es,t between vertices vs and vt.
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LEMMA 3. (Edge Inference Pruning in GRNs) Given an in-

ference threshold γ, and a potential edge es,t between two vertices

vs and vt, if it holds that ub_P (es,t) ≤ γ, then edge es,t does not

exist in Gi.

PROOF. Please refer to the detailed proof in Appendix C.

The computation of probability upper bound ub_P (es,t). Nex-
t, we discuss how to obtain an upper bound, ub_P (es,t), of the
edge existence probability es,t.p. Recall from Section 3.1 that
es,t.p = Pr{Z > dist(Xs, Xt)}, where Z is a random variable
corresponding to distance dist(Xs, X

R
t ) (w.r.t. randomized vec-

tors XR
t ). Then, with the Markov’s inequality1, we can derive the

probability upper bound ub_P (es,t) in the lemma below.

LEMMA 4. (Derivation of Probability Upper Bound ub_P (es,t))
An upper bound, ub_P (es,t), of the edge existence probability es,t.p
can be given by:

ub_P (es,t) =
E(Z)

dist(Xs, Xt)
. (6)

where E(Z) is the expectation of variable Z.

PROOF. Please refer to the detailed proof in Appendix D.

3.2.2 Graph Existence Pruning

As mentioned in Definition 4, the IM-GRN problem aims to re-
trieve subgraphs, G, of the inferred GRNs, Gi, that are matching
with the query graph Q, and with appearance probabilities Pr{G}
greater than α. Thus, we propose a graph existence pruning method,
which obtains upper bounds, UB_Pr{G}, of appearance probabil-
ities Pr{G}, and filters out those false alarms of GRN subgraphs
G satisfying UB_Pr{G} < α.

We summarize the graph existence pruning in the lemma below.

LEMMA 5. (Graph Existence Pruning) Let UB_Pr{G} be

an upper bound of appearance probability Pr{G}, where G is a

candidate subgraph of an inferred GRN Gi that may match with Q.

If it holds that UB_Pr{G} ≤ α, then subgraph G cannot be the

IM-GRN answer.

PROOF. Please refer to the detailed proof in Appendix E.

Intuitively, Lemma 5 computes upper bounds, UB_Pr{G}, of
probabilities Pr{G} (for G ⊆ Gi and G ≡ Q), and we can safely
prune GRN subgraphs G such that their probability upper bounds
are low (i.e., ≤ α).

Based on Eq. (3), we can compute an upper bound UB_Pr{G}
of probability Pr{G} by overestimating edge existence probabil-
ities es,t.p by ub_P (es,t) (as given in Eq. (6)). That is, we have
UB_Pr{G} =

∏
∀qes,t∈E(Q) ub_P (es,t).

4. PIVOT-BASED MATRIX EMBEDDING

4.1 Motivation
Although Section 3.2 provides effective pruning strategies for

inferring GRN graph edges and filtering out GRN false alarms with
low appearance probabilities, they are only limited to the pruning
over a pair of GRN graphs (G,Q). In other words, we still need
to sequentially scan all the (inferred) GRNs from the database, and
compare the query graph Q with each of GRNs Gi by using our
proposed pruning methods. The time complexity of this linear scan

method is given by O(N · cmp_cost), where N is the number
of gene feature matrices Mi (corresponding to GRNs Gi) in the
database D, and cmp_cost is the average time cost of checking

1
http://en.wikipedia.org/wiki/Markov’s_inequality.

whether GRN Gi is the IM-GRN query answer (including subgraph
isomorphism checking and the appearance probability calculation).
Clearly, this is not time-efficient and not scalable for a large-scale
database D (i.e., for a large N value).

Inspired by the inefficiency of the linear scan method above, in
the sequel, we will design a novel and effective matrix embedding
mechanism, which can be used for preparing the index construc-
tion. With the index over the embedded data, we can avoid access-
ing a large portion of the inferred GRNs Gi via the index pruning,
and only need to perform the refinement over a small candidate set
of GRNs (by applying pruning methods discussed in Section 3.2).
Outline. In this section, we will organize gene feature matrices
Mi in database D by designing a pivot-based matrix embedding

approach which maps gene feature vectors into a 2d-dimensional
Euclidean space via pivots. Then, in Section 5, we will illustrate
how to store the embedded data in an index, and use a novel pivot

pruning method to facilitate the IM-GRN query answering.

4.2 Pivot-Based Matrix Embedding
In gene feature database D, different matrices Mi may contain

gene feature vectors (e.g., Xs or Xt) of different dimensions li.
While prior works on indexing usually built multidimensional in-
dices (e.g., R∗-tree [1]) on data of the same dimension, they cannot
directly deal with indexing over data of distinct dimensions. Thus,
it is non-trivial and challenging to construct an index over matrices
of different sizes in D (i.e., feature vectors of distinct arities).
Pivot-based embedding. In order to index matrx data of diverse
dimensions, below, we will design an index over gene feature ma-
trices via pivots. Specifically, for each li × ni matrix Mi ∈ D,
we will select d pivots (vectors) piv1, piv2, ..., and pivd, with
the same dimension li. Then, for each feature vector (column) Xs

(1 ≤ s ≤ ni) of size li in matrix Mi, we can offline pre-compute d
Euclidean distances between Xs and d pivots, pivw (1 ≤ w ≤ ni).
Similarly, for Xs, we can also offline calculate d expected distances
between XR

s and d pivots, where XR
s is a randomized vector.

As a result, we can embed each gene feature vector Xs from
matrix Mi into a 2d-dimensional vector, gi,s, as follows:

gi,s = (dist(Xs, piv1), E(dist(XR
s , piv1)),

dist(Xs, piv2), E(dist(XR
s , piv2)),

...,
dist(Xs, pivd), E(dist(XR

s , pivd))).
For simplicity, we denote gi,s as follows:
gi,s = (xs[1], ys[1];

xs[2], ys[2];
...;
xs[d], ys[d]).

Derivation of pruning conditions via pivots. Next, we will u-
tilize the embedded 2d-dimensional vectors (points), and derive a
pivot pruning method. The basic idea is as follows. Similar to
the edge inference pruning (given in Lemma 3), in the embed-
ded 2d-dimensional space, our goal is to obtain an upper bound,
ub_P (es,t, pivw), of the edge existence probability, es,t.p, w.r.t.
pivots pivw (1 ≤ w ≤ d).

Specifically, since the triangle inequality holds in the Euclidean
space, we have:

|dist(a, b)− dist(b, c)| ≤ dist(a, c) ≤ dist(a, b) + dist(b, c),

for vectors (points) a, b, and c, where dist(·, ·) is a Euclidean dis-
tance function. Then, we can derive a probability upper bound from
Eq. (4) by relaxing the distance bounds:
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es,t.p = Pr{dist(Xs, X
R
t ) > dist(Xs, Xt)} (7)

≤ Pr{dist(Xs, pivw) + dist(XR
t , pivw) > dist(Xs, Xt)

// since dist(Xs, pivw) + dist(X
R
t , pivw) ≥ dist(Xs, X

R
t )

≤ Pr{dist(Xs, pivw) + dist(XR
t , pivw)

>
d

max
r=1

|dist(Xs, pivr)− dist(Xt, pivr)|}

// since dist(Xs, Xt) ≥ |dist(Xs, pivr) − dist(Xt, pivr)|

= Pr{dist(XR
t , pivw) > C},

where constant C = maxd
r=1 |dist(Xs, pivr) − dist(Xt, pivr)|

−dist(Xs, pivw).
From Eq. (7), we have two cases:

• (Case 1) If C ≤ 0 holds, we have: ub_P (es,t, pivw) = 1;

• (Case 2) If C > 0 (i.e., maxd
r=1 |dist(Xs, pivr)−dist(Xt,

pivr)| > dist(Xs, pivw)) holds, we have:

es,t.p ≤ Pr{dist(XR
t , pivw) >

d
max
r=1

|dist(Xs, pivr)

−dist(Xt, pivr)| − dist(Xs, pivw)}.

Let W be a random variable of dist(XR
t , pivw). By apply-

ing the Markov’s inequality, we can further rewrite the in-
equality above as:

es,t.p ≤ E(W )

maxd
r=1

|dist(Xs,pivr)−dist(Xt,pivr)|−dist(Xs,pivw)
.

Thus, we obtain a probability upper bound ub_P (es,t, pivw)

= E(W )

maxd
r=1

|dist(Xs,pivr)−dist(Xt,pivr)|−dist(Xs,pivw)

= E(W )

maxd
r=1

(dist(Xt,pivr)−dist(Xs,pivr))−dist(Xs,pivw)
.

By considering d pivots, we can obtain a tighter upper bound:

ub_P (es,t) =
d

min
w=1

ub_P (es,t, pivw).

Pivot-based pruning. Given a probability upper bound, ub_P (es,t,
pivw), w.r.t. pivot pivw, the basic idea of our pivot-based pruning
is as follows: if the pivot-based upper bound holds that ub_P (es,t,
pivw) ≤ γ, then we can safely prune the edge es,t.

Note that, for Case 1, since γ ∈ [0, 1), we cannot prune edge es,t
(i.e., as ub_P (es,t, pivw) = 1 is always greater than γ). Moreover,
in Case 2, we can obtain the pivot pruning condition that:

E(dist(XR
t , pivw))

maxd
r=1{dist(Xt, pivr)− dist(Xs, pivr)} − dist(Xs, pivw)

≤ γ,

(8)

where maxd
r=1 |dist(Xs, pivr)−dist(Xt, pivr)| > dist(Xs, pivw).

Eq. (8) is equivalent to:

E(dist(XR
t , pivw))≤

d
max
r=1

{γ · dist(Xt, pivr) (9)

−γ · dist(Xs, pivr)− γ · dist(Xs, pivw)}.

Denote yt[w] = E(dist(XR
t , pivw)), xt[r] = dist(Xt, pivr),

xs[r] = dist(Xs, pivr) and xs[w] = dist(Xs, pivw). The prun-
ing condition in Eq. (9) can be transformed to:

yt[w] ≤ γ · xt[r]− (γ · xs[r] + γ · xs[w]),

for some 1 ≤ r ≤ d. Moreover, the condition of Case 2 (i.e.,
C > 0) can be transformed to xt[r] ≥ xs[r] + xs[w].

Pivot-based pruning condition: Consider two embedded points,
gi,s = (xs[1], ys[1]; ...;xs[d], ys[d]) and gi,t = (xt[1], yt[1]; ...;
xt[d], yt[d]), obtained from genes, Xs and Xt, respectively. Figure
2 visualizes the condition of pruning the edge between genes Xs

and Xt, in a 2-dimensional yt[w]-and-xt[r] space (for gene Xt).
Specifically, given the value of xs[r] (= dist(Xs, pivr)), we de-

fine a pivot-based pruning region (PPR), namely PPR(Xs, pivw),

Figure 2: Illustration of the Pivot-Based Pruning Region (PPR) and

the Index Pruning.

in the yt[w]-and-xt[r] data space, which is denoted by the shaded
area (with the sloped lines). According to the pruning conditions
discussed above, PPR is given by the intersection of the halfplane
below line L1 : yt[w] = γ · xt[r]− (γ · xs[r] + γ · xs[w]), that to
the right of line L2 : xt[r] = xs[r]+xs[w], and the area above the
horizontal axis (i.e., xo[r]-axis).

As a result, we can convert the conditions for the pivot-based
pruning to the one related to PPR. Intuitively, given a transformed
point gi,s (via pivots), as long as there exists an r-th dimension such
that point (xt[r], yt[w]) falls into PPR, PPR(Xs, pivw), then we
say that genes (vertices) Xs and Xt do not have a connecting edge,
es,t, between them in the GRN Gi (i.e., edge es,t can be pruned).

4.3 Cost-Model-Based Pivot Selection
Up to now, we have discussed how to utilize pivots to enable the

pruning by deriving the pruning condition. Since different pivots
may lead to different pruning power, one remaining, yet important,
issue is how to select “good” pivots in order to maximize the prun-
ing power. Thus, in this subsection, we will design a cost model to
formalize the pruning power of a pivot selection strategy, and then
propose a cost-model-based pivot selection approach to choose piv-
ots with high pruning power.

Specifically, we illustrate the rationale behind our cost model by
using the example shown in Figure 2. Intuitively, if the pivot-based
pruning region (shaded with the sloped lines), PPR(Xs, pivw), in
Figure 2 is large, then this PPR is expected to achieve high pruning
power (i.e., ruling out all points in PPR). Thus, our goal of finding
good pivots, pivr (1 ≤ r ≤ d), is to maximize the area of PPR.

Alternatively, from Figure 2, the area of PPR is decided by the
position of line L1 : yt[w] = γ ·xt[r]−(γ ·xs[r]+γ ·xs[w]) (note:
γ is a constant, given by online IM-GRN queries). In other words,
the maximization of the PPR area is equivalent to minimizing the
term: (xs[r] + xs[w]) (= dist(Xs, pivr) + dist(Xs, pivw)).

Therefore, given d pivots piv1 ∼ pivd, we can model the “good-
ness” of the selected pivots in matrix Mi by the cost formula below:

Ti =
∑

∀Xs∈Mi

(
d

min
r=1

{
d

min
w=1

{dist(Xs, pivr) + dist(Xs, pivw)}}).

Intuitively, small Ti value implies large (expected) pivot-based
pruning region, and in turn leads to high pruning power. Thus,
during our pivot selection algorithm, we aim to choose d out of ni

feature vectors (e.g., Xs) from Mi as pivots (d ≤ ni), such that the
cost Ti is minimized.
Cost-model-based pivot selection algorithm. Next, we present
the algorithm for the pivot selection, based on our proposed cost
model. In particular, given an li × ni matrix Mi, we have ni fea-
ture vectors Xs of size li. Initially, we randomly select d out of ni

feature vectors from Mi as pivots piv1, piv2, ..., and pivd. Then,
each time we randomly swap one pivot pivr with a non-pivot, Xs,
in order to minimize the cost function Ti. In order to avoid the
local optimum solution, we run such a pivot selection process mul-
tiple times by selecting different initial pivots. The detailed pseudo
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code of this algorithm are depicted in procedure Pivot_Selection
of Figure 3.

Procedure Pivot_Selection {
Input: an li × ni gene feature matrix Mi (containing ni feature vectors)

and an integer d
Output: d pivots piv1, piv2, ..., and pivd in SPIV with the minimum cost Ti

(1) global_cost = +∞; SPIV = ∅
(2) for a = 1 to global_iter
(3) randomly select d pivots from ni feature vectors and form a pivot set PIV
(4) evaluate the cost function Ti w.r.t. PIV and let local_cost = Ti

(5) for b = 1 to swap_iter
(6) select a random pivot pivr ∈ PIV
(7) randomly choose a non-pivot Xt ∈ (Mi − PIV )
(8) PIV new = PIV − {pivr} + {Xt}
(9) evaluate the cost function Tnew

i w.r.t. PIV new

(10) if Tnew
i < local_cost

(11) local_cost = Tnew
i

(12) PIV = PIV new

(13) if local_cost < global_cost
(14) SPIV = PIV
(15) global_cost = local_cost
(16) return SPIV

}

Figure 3: Algorithm for Pivot Selection.

The Complexity Analysis. Algorithm Pivot_Selection in Figure
3 contains a nested loop, that is, an outer loop (i.e., global_iter
iterations in lines 2-15) and an inner loop (i.e., swap_iter itera-
tions in lines 5-12). Specifically, in lines 4 and 9, the complexity
of evaluating the cost function Ti (or Tnew

i ) w.r.t. a pivot set PIV
(or PIV new) is given by O(li · d

2). Moreover, the complexity
of line 3 is O(d), and the remaining lines have O(1) time costs.
Therefore, the total time complexity of the algorithm is given by
O(global_iter · (d+ li · d

2 + swap_iter · li · d
2)).

Discussions on the pivot selection. Figure 3 aims to minimize the
cost Ti, or equivalently maximize the pruning power, of our IM-
GRN query processing algorithm. From the biological perspective,
these selected pivots can represent a group (cluster) of genes in the
GRN graph, which might be useful for clustering genes in GRNs.
However, this is out of the scope of this paper. We would like to
leave this interesting topic on identifying the biological perspective
of pivots as our future works.

5. IM-GRN QUERY PROCESSING

5.1 The Index Construction
Indices on gene feature matrices. In this subsection, we will il-
lustrate how to build indices for gene feature matrices, Mi, in the
database D.

Multidimensional index. Specifically, for each vector Xs from
matrix Mi, we can convert it into a (2d + 1)-dimensional point
ĝi,s = (xs[1], ys[1];xs[2], ys[2]; ...;xs[d], ys[d]; gs), which con-
sists of 2d-dimensional embedded vector (as mentioned in Sec-
tion 4) and 1D gene name/ID, where xs[r] = dist(Xs, pivr),
ys[r] = E(dist(XR

s , pivr)), and gs is the gene name/ID of the
s-th gene in matrix Mi (represented by an integer). The intuition
that we include gs as one dimension is that, we want to group those
genes with the same gene names/IDs (from distinct matrices or data
sources) together in the index, in order to reduce the search cost.

For each embedded point gi,s, we maintain a bit vector, Vf (gs),
of size B, into which the gene feature ID, gs, is hashed. That is, the
Hf (gs)-th position in the bit vector Vf (gs) is set to 1 (while others
are set to 0), where Hf (·) is a hashing function. Moreover, we keep
another bit vector Vd(i), which encodes the data source ID, i, with
respect to matrix Mi, using another hash function Hd(·).

To build an index over the embedded vectors, we insert each
(2d + 1)-dimensional point gi,s into a multidimensional index. In
this paper, we use the R∗-tree index [1], denoted as I. For interme-
diate nodes E in the index I, each entry Ek contains a minimum

bounding rectangle (MBR) that minimally bounds data points un-
der Ek. In particular, Ek is in the form:

Ek = (E−
kx[1], E

+
kx[1];E

−
ky[1], E

+
ky[1];

E−
kx[2], E

+
kx[2];E

−
ky[2], E

+
ky[2];

...;
E−

kx[d], E
+
kx[d];E

−
ky[d], E

+
ky[d];

E−
k [2d+ 1], E+

k [2d+ 1]),
where E−

kx[r] = min∀gi,s∈Ek
xs[r], E

+
kx[r] = max∀gi,s∈Ek

xs[r],

E−
ky[r] = min∀gi,s∈Ek

ys[r], E
+
ky[r] = max∀gi,s∈Ek

ys[r], E
−
k [2d+

1] = min∀gi,s∈Ek
gs, and E+

k [2d+ 1] = max∀gi,s∈Ek
gs.

Furthermore, each entry Ek is also associated with a gene fea-
ture ID bit vector, Vf (Ek), of size B, where Vf (Ek) is a bit-OR
of all bit vectors, Vf (gs), for gene IDs gs under entry Ek, that
is, Vf (Ek)[r] =

∨
∀gi,s∈Ek

Vf (gs)[r] (1 ≤ r ≤ B). Similar-

ly, we can also obtain data source ID bit vector Vd(Ek), where
Vd(Ek)[r] =

∨
∀gi,s∈Ek

Vd(i)[r] (1 ≤ r ≤ B).

Inverted bit-vector file. In order to facilitate the IM-GRN query
processing, we also maintain an inverted bit-vector file, IF , which
can help determine possible data source IDs (e.g., i) for each given
gene name gs. Specifically, in the inverted bit-vector file IF , each
entry corresponds to a gene name gs. For all matrices Mi that
contain gene name gs, we hash their corresponding data source IDs,
i, into a bit vector, IF [gs], of size B. In other words, we have:
IF [gs] =

∨
∃gi,s∈Mi

Vd(gs).

The index pruning. With the multidimensional tree index I, we
can apply the pivot-based pruning (as mentioned in Section 4.2) to
filter out false alarms on the level of tree nodes (instead of genes).

Assume that Ea and Eb are two intermediate tree nodes, that
may potentially contain genesXs and Xt (connecting with an edge).
We have the following lemma to prune, Ek, of the tree index I.

LEMMA 6. (Index Pruning) Given two node entries Ea and

Eb from index I, entry Eb can be safely pruned, if there exists one

dimension w, such that:

E+
by[w] ≤

d
max
r=1

{γ · E−
bx[r]− γ · E+

ax[r]− γ · E+
ax[w]}, (10)

where E+
by[w] = max∀Xt∈Eb

E(dist(XR
t , pivw)), E

−
bx[r] =min∀Xt∈Eb

dist(Xt, pivr), E
+
ax[r] = max∀Xs∈Ea dist(Xs, pivr), and E+

ax[w] =
max∀Xs∈Ea dist(Xs, pivw).

PROOF. Please refer to the detailed proof in Appendix F.

Intuitively, as illustrated in Figure 2, with respect to any embed-
ded point xs in Ea, if node entry Eb is completely in the pruning
region (i.e., PPR), then node Eb can be safely pruned. Note that,
the condition that Eb is in PPR is equivalent to that top-left point,
(E−

bx[r], E
+
by[w]), is below line L1 (∀xs ∈ Ea), which is exactly

given by Inequality (10).

5.2 The IM-GRN Algorithm
In this subsection, we illustrate the IM-GRN query processing

algorithm, namely IM-GRN_Processing, in Figure 4, which re-
trieves the matching (inferred) GRNs that are similar to an inferred
query graph Q with high confidences, by using multidimensional
index I and inverted file IF .

Specifically, given the query gene feature matrix MQ, we can
first perform the edge inference pruning method (in Lemma 3), and
then obtain an exact query graph Q in which edges, qes,t, have ex-
istence probabilities, qes,t.p, greater than edge inference threshold
γ (line 1). Next, we will start from one gene gs with the high-
est degree in Q, and identify its neighbor set NS(gs) in Q (line
2). Intuitively, the vertex with the highest degree can achieve high-
er pruning power. Then, we can generate bit vectors qVf (s) and
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Procedure IM-GRN_Processing {
Input: a gene feature database D, a query gene feature matrix MQ, an R∗-tree

index I over embedded points from matrices Mi in D, an inverted bit-
vector file, IF , an edge inference threshold γ, and a probabilistic threshold α

Output: IM-GRN query answers A
(1) compute the query GRN graph Q from matrix MQ using edge inference and

graph existence pruning methods // Lemma 3 in Section 3.2

(2) obtain a gene (vertex), gs, from GRN Q with the highest degree,
as well as its neighbor gene name set NS(gs) in Q

(3) generate bit vectors qVf (s) and qVf (t) for query gene name gs and its
neighbors in NS(gs), respectively

(4) let qVd(s) = IF [gs] and qVd(t) = O
(5) for each gene name gt ∈ NT (gs)
(6) qVd(t) = qVd(t) ∨ IF [gt]
(7) Scand = ∅;
(8) initialize an empty priority queue Q
(9) for each entry Ea ∈ root(I)
(10) for each entry Eb ∈ root(I)
(11) if qVf (s) ∧ Vf (Ea) 6= 0 and qVf (t) ∧ Vf (Eb) 6= 0

and qVd(s) ∧ Vd(Ea) ∧ qVd(t) ∧ Vd(Eb) 6= 0
(12) if Ea and Eb cannot be pruned by the index pruning // Lemma 6

(13) insert (height(I) − 1, Ea, Eb)
(14) while Q is not empty
(15) (key,Es, Et) = de-queue(Q)
(16) if Es (or Et) is a leaf node
(17) for each gene gi,s ∈ Es

(18) for each gene gi′,t ∈ Et

(19) if qVf (s) ∧ Vf (gs) 6= 0 and qVf (t) ∧ Vf (gt) 6= 0
and qVd(s) ∧ Vd(i) ∧ qVd(t) ∧ Vd(i

′) 6= 0 and i = i′

(20) if (gi,s, gi′,t) pair cannot be pruned by pivot-based

pruning and edge inference pruning

(21) add gene pair (gi,s, gi′,t) to Scand

(22) else // Es is an intermediate node

(23) for each child cs ∈ Es

(24) for each child ct ∈ Et

(25) if qVf (s) ∧ Vf (cs) 6= 0 and qVf (t) ∧ Vf (ct) 6= 0
and qVd(s) ∧ Vd(cs) ∧ qVd(t) ∧ Vd(ct) 6= 0

(26) if (cs, ct) cannot be pruned by the index pruning in Lemma 6
(27) insert (key − 1, cs, ct) into Q
(28) apply graph existence pruning on edges of Gi in Scand

(29) refine the remaining candidate GRNs Gi inferred from Gi ∈ Scand

(30) return actual IM-GRN query answers
}

Figure 4: Algorithm for IM-GRN Query Answering.

qVf (t) for gene names gs and its neighbors gt ∈ NS(gs), respec-
tively (line 3). Similarly, we also initialize bit vectors qVd(s) and
qVd(t) for possible query data source IDs, via inverted bit vector
file IF (lines 4-6).

To traverse index I, we use an initially empty priority queue, Q
(line 8). Each element in Q is in the form (key, Es, Et), where
key indicates the priority of element in the queue (smaller key has
higher priority), and Es and Et are index nodes that may contain
two interacting genes gi,s and gi,t, respectively. Here, we use the
level of the node Es (or Et) as key, which can traverse the tree
index in a depth-first manner.

First, we consider pairwise entries Ea and Eb in the root, root(I),
of the index I. If Ea (Eb) contains common gene names with the
query gene names gs (gt ∈ NS(gs)) (i.e., qVf (s) ∧ Vf (gs) 6= 0
and qVf (t) ∧ Vf (gt) 6= 0), Ea and Eb have common data source
IDs (i.e., qVd(s)∧Vd(Ea)∧ qVd(t)∧Vd(Eb) 6= 0), and this node
pair cannot be pruned by the index pruning (Lemma 6), then we
insert elements (height(I) − 1, Ea, Eb) into the queue Q, where
height(I) is the height of the root (lines 9-13).

Each time we pop out an element (key,Es, Et) with the mini-
mum key, key, from queue Q (lines 14-15). When entry Es is a
leaf node, we consider each pair of embedded points gi,s from Es

and gi′,t from Et (lines 16-18). If they do not have the same gene
names or data source IDs as the query graph (verified by bit-AND
operations over bit vectors), then we can safely prune this pair (line
19). Otherwise, we apply pivot-based pruning (in Section 4.2) and
edge inference pruning (in Lemma 3) to filter out false alarm of the
gene pair (gi,s, gi′,t) (line 20). In the case that we cannot prune
this pair, we add the gene pair (gi,s, gi′,t) to a candidate set Scand

(line 21).

Parameters Settings

γ 0.2, 0.3, 0.5, 0.8, 0.9

α 0.2, 0.3, 0.5, 0.8, 0.9

d 1, 2, 3, 4

nQ 2, 3, 5, 8, 10

[nmin, nmax] [10, 20], [20, 50], [50, 100], [100, 200], [200, 300]

N 10K, 20K, 30K, 40K, 50K, 100K

Table 2: The experimental settings.

When the index entry Es (or Et) is an intermediate node, we also
check each child entry cs in Es and child ct in Et (lines 22-27). In
particular, for each pair of child entries, (cs, ct), we check whether
they have the same gene names and data source IDs as the query
graph Q (line 25). If the answer is yes and the child pair cannot
be further pruned by the index pruning method (given in Lemma
6), we need to add element (key − 1, cs, ct) to queue Q for later
checking, where (key− 1) is the level of nodes cs and ct (line 26).

The index traversal terminates when the queue Q becomes emp-
ty (line 14). After that, we can obtain a number of candidate pairs
in set Scand that might correspond to subgraphs (of Gi) matching
with Q with high confidences. We will then apply the graph exis-
tence pruning (in Lemma 5) to rule out false alarms. Finally, we
refine candidate matrices Mi in Scand by inferring their subgraph-
s G of Gi from Mi and checking the two matching conditions in
Definition 4 (line 29), and return actual IM-GRN answers after the
refinement (line 30).
The Complexity Analysis. Algorithm IM-GRN_Processing in
Figure 4 first infers the query GRN graph Q from query gene fea-
ture matrix MQ (line 1), which has the O(lQ ·n2

Q) time complexity.
Moreover, for lines 2-6, we construct synopses, w.r.t. query genes
(and their neighbors) in the query graph Q, with a O(nQ) time
complexity. Moreover, lines 7-27 traverse the index via a queue Q.
Given any two index nodes Ea and Eb (or Es and Et), the algo-
rithm performs the pairwise checking for all entries in nodes (lines
9-10, 17-18, and 23-24) with the O(F 2) cost, where F is the av-
erage fanout of index nodes. Therefore, given N li × ni matrices,
the average number of leaf nodes is given by N·ni

F
, and the height

of the tree index is ⌈logF
(
N·ni

F

)
⌉. As a result, the total number

of index nodes is given by O(N·ni

F
). Due to the pairwise check-

ing on each node level, the time complexity of the index traversal
(lines 8-27) is given by O(N2 · n2

i ) in the worst case (i.e., with-
out any pruning). Nevertheless, from our experimental results, the
CPU time of traversing the index is quite efficient on average (e.g.,
less than 0.07 second in Figure 7(a)), which indicates the effec-
tiveness of our (index) pruning methods. Furthermore, the cost of
applying graph existence pruning and candidate refinement is giv-
en by O(|Scand| · n

2
Q) (line 28), where |Scand| is the number of

candidates after pruning. Finally, the remaining candidates are re-
fined by performing the isomorphism checking and the probability
calculation in Eq. (3).

6. EXPERIMENTAL EVALUATION

6.1 Experimental Settings
Real/synthetic data sets. In our experiments, we tested both re-
al and synthetic data for gene feature databases. Specifically, for
real data, we used three real gene feature data sets [22], E.coli,
S.aureus, and S.cerevisiae, which include gene microarrays (ma-
trices) and the network structure from organisms. Specifically, E.coli
contains a gene feature matrix with 4,511 genes (columns) and
805 observations/samples (rows) for each gene; S.aureus has a
160 × 2810 gene feature matrix, and; S.cerevisiae contains a
536 × 5950 matrix. As a gold standard structure [22], we know
the ground truth of the actual GRN graphs for these real data set-
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s (e.g., the actual GRN for E.coli has 2,066 edges), which will be
used for our experimental evaluation on the inference accuracy. We
also randomly extract a combination of N small li × ni matrices
(which can be considered as sets of patient samples from distinct
data sources) from these 3 real data sets for the efficiency test.

For synthetic data, we applied the classic GRN data generator in
the biological literature [22], and produced N synthetic li×ni gene
feature matrices Mi for gene feature databases D. In particular, we
generate each li ×ni matrix Mi (for random li ∈ [lmin, lmax] and
ni ∈ [nmin, nmax]), based on a linear model: Mi = Mi ·Bi+Ei,
where Bi is an ni × ni adjacency matrix that specifies a GRN
graph structure (i.e., each element is either non-zero or zero to in-
dicate with or without edge, respectively), and Ei is an li×ni error
matrix. For error matrix Ei, each element is a random noise drawn
from the Gaussian distribution N (0, 0.01). For adjacency matrix
Bi, we first initialize it to a zero matrix, and then set each elemen-
t in Bi to a random nonzero value e with probability

ni·deg(G)
ni·(ni−1)

,

where deg(G) (set to 1 by default) is the average (expected) in-
degree of each vertex in GRN. Here, the nonzero value e in Bi

follows a variant of the Uniform or Gaussian (i.e., N (1, 0.01)) dis-
tribution over two ranges [−1,−0.5] and [0.5, 1]. Particularly, for
the Gaussian distribution of e, we first produce a random value, e′,
following the normal distribution N (1, 0.01), and then let e be e-
qual to e′ if e′ ≤ 1 (otherwise, let e = e′ − 2). Given matrices
Ei and Bi, we can generate a synthetic gene feature matrix Mi by:
Mi = Ei · (I −Bi)

−1, where I is an ni × ni diagonal matrix.
This way, with different Uniform and Gaussian distributions of

element e ∈ Bi (in the linear model), we can obtain two types of
synthetic data sets, denoted as Uni and Gau.

In order to evaluate the IM-GRN query performance, we ran-
domly extract 20 query gene feature matrices, MQ, from matrices
Mi in database D. That is, for each query matrix MQ, we first
select a random matrix Mi ∈ D, and then extract nQ gene fea-
ture vectors (columns) from Mi to form an lQ × nQ query gene
feature matrix MQ (note: during the extraction, we choose genes
from matrix MQ, such that their corresponding query GRN graph,
Q, is connected), where lQ has the same number of rows as that of
matrix Mi (i.e., li) in D, and nQ is set to 5 by default.
Evaluation measures. Following the bioinformatics literature [22],
we measure the accuracy of our IM-GRN inference approach by the
receiver operating characteristic (ROC) curve, where x-axis of the
curve is the false positive rate (FPR), and y-axis is the true posi-

tive rate (TPR) (a.k.a. recall). Here, TPR is given by the number
of actual edges in the inferred GRNs divided by the total number
of actual edges in GRNs, and FPR is defined as the percentage of
incorrectly inferred edges. Intuitively, high TPR (recall ratio) and
low FPR indicate good accuracy of the inference measure.

Regarding the query efficiency, we will report the performance
of our proposed IM-GRN query processing approaches, in terms
of the CPU time, the I/O cost, and the number of candidates. In
particular, the CPU time is the time cost of retrieving candidates of
IM-GRN query answers; the I/O cost is the number of page access-
es during the IM-GRN query answering; the number of candidates
is given by the number of the candidate genes after the index traver-
sal and applying the pruning methods.
Competitors. Regarding the inference accuracy, in this paper, we
will compare our IM-GRN inference approach (given in Definition
2) with the one (denoted as Correlation) that uses absolute Pear-
son’s correlation coefficients (a.k.a. relevance networks [4]).

To the best of our knowledge, no prior works studied the IM-
GRN problem that conducts the subgraph matching over online in-
ferred GRNs (via an ad-hoc inference threshold) from gene feature
matrices. A baseline method, Baseline, is to offline pre-compute
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Figure 5: Effectiveness and efficiency of Correlation vs. IM-GRN

inference over real data sets, E.coli, with and without noises N (0, 0.3).

and store existence probabilities of all possible edges between pair-
wise vertices in GRNs. Then, for an IM-GRN query, Baseline on-
line computes all GRN graphs Gi w.r.t. an ad-hoc inference thresh-
old γ, and for each Gi, conduct the subgraph matching between Gi

and a query GRN graph Q. Clearly, this baseline method needs to
materialize N complete graphs offline, which is space-inefficient
for the storage and time-inefficient for scanning pre-computed data
during online IM-GRN query processing. In contrast, our proposed
IM-GRN query answering algorithm utilizes effective pruning s-
trategies that can significantly reduce the IM-GRN search space,
and thus outperform the baseline method by orders of magnitude.
Parameter settings. Table 2 depicts the parameter settings in our
experiments, where the default values of parameters are in bold
font. For each set of experiments, we will vary one parameter at
a time, while other parameters are set to their default values. All
our experiments are conducted on a PC with Intel Core(TM)2 Duo
3.5GHz CPU with 32G memory.

6.2 Effectiveness of the IM-GRN Inference
In the first set of experiments, we report the effectiveness of

our IM-GRN inference approach (denoted as IM−GRN ), com-
pared with Correlation (which uses the absolute Pearson’s cor-
relation coefficients to infer GRNs), over real data sets, E.coli,
S.aureus, and S.cerevisiae. In order to test the robustness of
our proposed IM-GRN inference approach over noisy data, we al-
so use noisy real data sets, E.coli + noise, S.aureus + noise,
and S.cerevisiae + noise in which we added Gaussian noises,
N (0, 0.3), to each element of matrices.

Figure 5(a) shows the receiver operating characteristic (ROC)
of our IM−GRN inference approach over E.coli and E.coli +
noise data sets, compared with Correlation, where points (FPR,
TPR) are plotted with respect to different inference thresholds γ
from 0 to 1 (with an increment of 0.01), and ni = 200. Intuitive-
ly, high TPR and low FPR values indicate good accuracy of the
inference approach. In the figure, for either E.coli or E.coli +
noise, the ROC curve of our IM-GRN approach is above that of
Correlation in most cases, which indicates that IM−GRN is
more effective than Correlation for the GRN inference. More-
over, our IM−GRN approach over E.coli with and without nois-
es has similar ROC curves, which confirms the robustness of our
IM−GRN inference approach against noises. Please also refer to
similar ROC curves of IM−GRN and Correlation for the other
two real data sets, S.aureus and S.cerevisiae, in Appendix G.

In addition, we also compare our IM−GRN inference approach
with another inference measure, partial correlation, denoted as
pCorr. Similar experimental results are given in Appendix H.

Figure 5(b) illustrates the efficiency of the two inference ap-
proaches on E.coli data sets with different graph sizes ni = |V (Gi)|
from 100 to 500. In this figure, our IM−GRN inference approach
requires higher time cost than Correlation. This is reasonable, s-
ince our IM−GRN inference measure (given in Eq. (1)) needs to
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Figure 6: IM-GRN vs. Baseline over real/synthetic data sets.
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Figure 7: IM-GRN query performance vs. the ad-hoc inference threshold γ.
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Figure 8: IM-GRN query performance vs. the probabilistic threshold α.
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Figure 9: IM-GRN query performance vs. the number of pivots d (or the dimensionality, (2d+ 1), of the index).

compute the Pearson’s correlation coefficients for multiple random-
ized vectors XR

t , whereas Correlation only needs to calculate the
coefficient once.

From the experiments above, compared with Correlation, our
IM−GRN inference approach trades the efficiency for the infer-
ence accuracy. Due to high time cost of IM−GRN inference, it
is not efficient to infer/materialize all GRNs during the IM-GRN
search, which inspires us to propose encoding/pruning techniques.
In the next subsection, we will exactly test the efficiency of our
proposed IM-GRN query processing approaches.

6.3 Efficiency of IM-GRN Query Answering

IM-GRN vs. Baseline over real/synthetic data sets. First, we
compare the efficiency of our proposed IM-GRN approach with
that of the baseline method, Baseline, over real/synthetic data set-
s, Real, Uni, and Gau. For real data set, Real, we use a combi-
nation of 3 real-life data, S.aureus, E.coli, and S.cerevisiae,
which contains N matrices (N/3 matrices from each type of da-
ta). Taking E.coli as an example, we randomly extract N

3
li × ni

matrices from the original 4, 511× 805 E.coli matrix, where oth-

er parameters are set to their default values (the same as synthetic
data). In Figures 6(a) and 6(b), we can see that our IM-GRN ap-
proach over both real and synthetic data sets can achieve low CPU
time (below 0.16 second) and I/O cost (around 100 page accesses),
which outperforms the baseline method by 2-3 orders of magni-
tude. Moreover, as shown in Figure 6(c), the number of the re-
maining candidates after pruning in our IM-GRN approach is only
around 3∼ 4, which is much smaller than that of Baseline. Thus,
the experimental results confirm the effectiveness of our proposed
pruning methods, and efficiency of our IM-GRN query answering
approach, compared with the Baseline method.

To clearly illustrate the performance trends, in subsequent exper-
iments, we will only report the efficiency of our IM-GRN approach
on synthetic data, Uni and Gau, by varying different parameters.

The IM-GRN performance vs. the ad-hoc inference threshold,

γ. We next show the effect of the ad-hoc inference threshold γ
on the IM-GRN query performance, by varying γ from 0.2 to 0.9,
where other parameters are set to their default values. When the
user-specified inference threshold γ increases, the number of po-
tential candidate genes that may match with query genes in the
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Figure 10: IM-GRN query performance vs. the number, nQ, of genes in query gene feature matrix MQ.
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Figure 11: IM-GRN query performance vs. the range, [nmin, nmax], of the number ni of genes per matrix.
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Figure 12: IM-GRN query performance vs. the total number, N , of gene feature matrices.

query graph Q decreases (as shown in Figure 7(c)). Thus, as il-
lustrated in Figures 7(a) and Figure 7(b), for larger γ value, it re-
quires less time and I/O costs to process fewer candidates during
the IM-GRN query answering over the index.

For both Uni and Gau synthetic data sets, with different γ val-
ues, the CPU times are low, that is, around 0.04 ∼ 0.07 second.
Moreover, the number of page accesses (i.e., I/O cost) is about 110
∼ 134. Furthermore, only 3 ∼ 4 remaining candidates for refine-
ment are left after the pruning, which indicates high pruning power
of our proposed pruning and indexing strategies.

The IM-GRN performance vs. the probabilistic threshold, α.

Figure 8 presents the query performance of our proposed IM-GRN
approach for different given probabilistic thresholds α, where α =
0.2, 0.3, 0.5, 0.8, 0.9, and default values are used for other param-
eters. As given by Definition 4, larger α threshold will filter out
more probabilistic subgraphs G with low appearance probabilities.
Therefore, when the probabilistic threshold α becomes larger, more
subgraph candidates can be quickly ruled out by our pruning meth-
ods, which thus leads to fewer CPU times (as given in Figure 8(a)).
In Figure 8(b), the I/O cost during the index traversal is not very
sensitive to different α values, and remains low (around 116 ∼
134). Moreover, as illustrated in Figure 8(c), after the pruning,
the number of remaining candidates is also low, that is 3.5 ∼ 3.9,
which shows the good pruning ability of our IM-GRN approach.

The IM-GRN performance vs. the number of pivots, d. Figure
9 shows the effect of the number, d, of the used pivots for embed-
ding/indexing on the IM-GRN query performance, where d varies
from 1 to 4, and other parameters are set to their default values.
Note that, with the number of pivots d, the dimensionality of em-
bedded points in the index is given by (2d + 1). From figures,
we can see that, when d becomes larger, the CPU time and the I/O

cost also increase. This is due to the problem of the “dimension-
ality curse” [2, 18, 21], that is, the query performance degrades
dramatically for high dimensionality. This can be confirmed by the
increase of time and I/O costs in Figures 9(a) and 9(b), respective-
ly. Due to the same query set over indexes of different reduced
dimensions, the number of candidates remains the same.

Nonetheless, for both data sets Uni and Gau, the CPU time
is low (i.e., between 0.017 and 0.1 second) for different reduced
dimensions. The I/O cost is around 68 ∼ 240. Furthermore, the
number of the remaining candidates is also small (i.e., 3.55∼ 3.9).

The IM-GRN performance vs. the number of query genes, nQ.

Figure 10 reports the experimental results of our IM-GRN query
processing approach over Uni and Gau synthetic data sets, by
varying the number of genes, nQ, in the query GRN graph from
2 to 10, where other parameters are set to default values. As shown
in Figures 10(a) and 10(b), when nQ becomes larger, both CPU
time and I/O cost first decrease, and then increase. This is reason-
able, since more (i.e., larger nQ) query genes can filter out more
candidates (which reduces the computation and I/O costs), but in-
troduce higher costs of processing more query genes through the
index. Thus, these two factors influence the CPU time and I/O cost
at the same, and lead to “U” curves. Similarly, as illustrated in Fig-
ure 10(c), the number of matching gene candidates first decreases
(for higher pruning power, with larger nQ), and then increases (due
to more candidate genes matching with more nQ query genes).

Similar to previous results, the CPU time is low (i.e., around
0.03 ∼ 0.1 second), the I/O cost is 116 ∼ 225, and the number of
candidates is between 2 and 8. This indicates the effectiveness of
our proposed pruning strategies, and the efficiency of the IM-GRN
query answering approach.
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Figure 13: The time cost of the index construction.

The IM-GRN performance vs. the range of the number of genes

per matrix, [nmin, nmax]. Figure 11 varies the range, [nmin, nmax],
for the number, ni, of genes (columns) in matrix Mi from [10, 20]
to [200, 300], and illustrates the IM-GRN query performance over
Uni and Gau data sets, where default values for other parameters
are used. From figures, with the increase of the range for ni, the
CPU time and the I/O cost both increase. This is because more
genes (i.e., larger ni) are involved in each matrix, which result-
s in more gene candidates that may match with the query genes.
Nonetheless, the CPU time is low (i.e., 0.003 ∼ 0.71 second), and
the I/O cost is around 37 ∼ 604. Furthermore, the number of can-
didates is small (i.e., between 3.5 and 4.7). This indicates the s-
calability of our proposed IM-GRN approach, against parameter
[nmin, nmax].

The IM-GRN performance vs. the number of gene feature ma-

trices, N . Figure 12 tests the scalability of our proposed IM-GRN
query processing approach, by changing the number, N , of gene
feature matrices in database D from 10K to 100K, where other
parameters are assigned with default values. When the size, N , of
database D becomes larger, both time and I/O costs are smoothly
increasing over Uni and Gau data sets. Nevertheless, as depicted
in Figures 12(a) and 12(b), the CPU time remains low (i.e., 0.006
∼ 0.72 second), and the I/O cost is about 48 ∼ 595, which indi-
cates the good scalability of our IM-GRN approach against large
number of matrices, N , in the database.

As illustrated in Figure 12(c), the number of the remaining candi-
dates is only around 3∼ 4, which implies that our pruning methods
can achieve high pruning power against large database size N .

The index construction time. Finally, we also report the index
construction time over Uni and Gau data sets in Figure 13, with
respect to different ranges of gene (column) numbers per matrix,
[nmin, nmax], and different numbers of matrices, N , in the database
D. From figures, we can see that, when the values within the range
[nmin, nmax] become larger or the number of matrices N increas-
es, we need to insert more transformed points (from gene feature
vectors) into the R∗-tree index, which thus leads to higher index
construction time.

7. RELATED WORK
In this section, we overview previous works on biological net-

work inference and probabilistic graph databases.

Biological network inference. Previous works on the GRN infer-
ence can be classified into two categories, the learning-based [26,
9] and scoring-based [4, 23] methods. Specifically, the learning-
based approaches learn GRN graph structures via Bayesian net-

work [26] or L1 regularized linear regression (Lasso) [9]. The
scoring-based approaches infer edges via scores between any two
gene features, such as Correlation [4] or Mutual Information [23,
3]. These two types of inferences have their own disadvantages.
For example, the learning-based approaches, like Bayesian network

or Lasso methods, need to tune parameters, and require high com-
putation costs over samples. On the other hand, the scoring-based
approaches are fast to calculate the regulatory score, however, not
so robust, in the presence of small sample sizes and noisy sam-
ples. In contrast, in this work, we proposed a robust probabilistic
measure, that is, the probability that two gene feature vectors are
correlated with each other, based on vector randomization.

Probabilistic graph databases. In real-world applications such as
biological data analysis [13], Semantic Web [19], social network-
s [11], workflow graphs [28], and transportation system [15, 20],
many application data can be inherently modeled by probabilis-
tic graphs. The uncertainties in probabilistic graphs can usually
be classified into two categories, vertex/edge label uncertainty and
edge existence uncertainty.

For the vertex/edge label uncertainty, prior works studied prob-
abilistic graphs, in which each vertex or edge has multiple possi-
ble labels with existence probabilities. For example, road network-
s [15, 20] can be modeled by probabilistic graphs with uncertain
traffic conditions (i.e., velocity samples associated with probabili-
ties). Regarding edge existence uncertainty in probabilistic graphs,
prior works [16, 24, 27] modeled probabilistic graphs that contain
edges associated with existence probabilities. In this paper, our
GRN graph model falls into this category.

However, in contrast to prior works, GRNs are not offline mate-
rialized as a static graph database, but, instead, online inferred (via
different ad-hoc inference thresholds γ) from gene feature matri-
ces (i.e., microarray data). Thus, our IM-GRN problem needs to
infer ad-hoc GRNs online, and meanwhile efficiently retrieve IM-
GRN query answers, which has not been studied before. Further-
more, since gene feature matrices are of different sizes, we have to
design novel approaches to embed matrices of distinct sizes, and
propose indexing or query processing algorithms specific for IM-
GRN. Therefore, previous techniques on static probabilistic graph
databases cannot be directly used for online inferred GRNs.

8. CONCLUSIONS
In this paper, we study an important problem, namely IM-GRN,

for ad-hocly inferring and matching GRN graphs. To efficient-
ly and effectively answer IM-GRN queries, we model GRNs by
probabilistic graphs, and propose effective reduction and pruning
methods to greatly filter out GRN false alarms. Moreover, we
design novel cost-model-based embedding/indexing mechanisms
which can facilitate IM-GRN query answering without material-
izing all GRNs, and present an efficient IM-GRN query procedure.
Extensive experiments have demonstrated the efficiency and effec-
tiveness of our IM-GRN approach on real and synthetic GRN data.

As a future work, we would like to develop a real prototype sys-
tem, which integrates our proposed technologies (e.g., probabilistic
GRN graph model, embedding, pruning, indexing, and algorithms).
In particular, the system organizes gene feature data from various
data sources (e.g., public biological databases and experimental da-
ta from institutions) and provides users with an interface to conduct
ad-hoc IM-GRN queries over gene feature databases. Users can
specify as the input those samples of gene features or a query GRN
graph Q (e.g., a cancer biomarker, a representative GRN pattern in
a disease cluster, or experimental data from a newly emerging and
unclassified disease), and the system will use our proposed tech-
nologies to quickly return the matching GRNs inferred from gene
feature databases as the output.
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A. Discussions on a Class of Problems General-
ized from IM-GRN and Their Applications/Solutions.

Our IM-GRN problem can be generalized to a general class of
problems, which are related to queries over ad-hocly inferred graph-
s, where graph structures (or graph edges) are not deterministic, but
are ad-hocly inferred from contents of vertices or other relevant da-
ta sources. This class of problems has the applications in social
network analysis, near-duplicate video detection, and so on.

For example, in the case of social networks, the influences of one
person to another with respect to specific ad-hoc keywords/topics
(e.g., of a given advertisement type) can be ad-hocly inferred by
their profiles, friendship, interactions (e.g., tweets and retweets),
similarity of their posted messages, and so on, Thus, the entire in-
fluence networks in social networks cannot be materialized offline
(against ad-hoc online keywords/topics) in advance, and a num-
ber of query types (e.g., pattern matching) over such an ad-hocly
inferred influence networks are important and worthy to study in
social media.

Similarly, in real applications like video copyright-violation de-
tection, it is important to perform the near-duplicate video retrieval
over multimedia databases, where near-duplicate videos may be
modified, scaled, and/or rotated from the original videos. In par-
ticular, each keyframe of videos may contain features such as color
histograms, texture, and some local interest points (or keypoints
corresponding to some objects). One interesting direction is to
model each potentially duplicate video by a graph, in which ver-
tices are keyframes in the video, and edges indicate the similarity
between two keyframes inferred from image features (i.e., based
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Figure 14: ROC curves of Correlation vs. IM-GRN inference over real data sets, S.aureus and S.cerevisiae, with and without noises N (0, 0.3).

on color histograms, textures, interest points, and so on). Given
a query video (with copyright) and an ad-hoc similarity threshold
(i.e., an inferred query graph), we can conduct an ad-hoc search
over video databases (online inferred graphs) to identify near-duplicate
videos.

To tackle this general class of problems, we need to design spe-
cific techniques (e.g., embedding, pruning, indexing, and query
processing algorithms). In particular, similar to IM-GRN, with re-
spect to edge existence measures between two vertices, we need to
devise effective pruning methods to reduce the search space. For
example, with partial correlation or mutual information, we can
devise specific pruning conditions for them. The rationale behind
the pruning is similar, that is, we want to quickly discard those
false alarms of edges ei,j with low existence probabilities (< γ).
One possible direction is to start from definitions of probabilities
(defined w.r.t. partial correlations or mutual information), and de-
rive a lower bound of the edge existence probability ei,j .p. If
this lower bound is smaller than γ, then this edge ei,j does not
exist in the GRN graph. Next, with the pruning conditions, we
can further derive space-efficient synopses to embed the matrix da-
ta at vertices (e.g., via pivots) for indexing and query answering.
We would like to leave topics of designing accurate and efficient
techniques/algorithms over ad-hoc probabilistic graphs for specific
measures or inference approaches (e.g., partial correlation, mutual
information, Fisher’s transform, or Student’s t-test) as our future
work.

B. Proof of Lemma 1.

PROOF. From [10], the relationship between Pearson’s correla-
tion coefficient and Euclidean distance between two standardized
vectors can be given as follows:

dist(Xs, Xt) =
√

2 · li · (1− cor(Xs, Xt)), (11)

where cor(·, ·) is the Pearson’s correlation coefficient.
We can rewrite Eq. (11) as:

r(Xs, Xt) = |cor(Xs, Xt)| =

∣∣∣∣1−
dist2(Xs, Xt)

2 · li

∣∣∣∣ . (12)

By substituting Eq. (12) into Eq. (1), we can obtain:

es,t.p = Pr{r(Xs, Xt) > r(Xs, X
R
t )} (13)

= Pr

{∣∣∣∣1−
dist2(Xs, Xt)

2 · li

∣∣∣∣
2

>

∣∣∣∣1−
dist2(Xs, X

R
t )

2 · li

∣∣∣∣
2
}

= Pr

{(
2−

dist2(Xs, Xt) + dist2(Xs, X
R
t )

2 · li

)

·
dist2(Xs, X

R
t )− dist2(Xs, Xt)

2 · li
> 0

}

Note that, in Eq. (13), since Xs and Xt are standardized unit
vectors, we have: dist2(Xs, Xt) =

∑li
k=1(Xs[k]−Xt[k])

2 ≤ 4.

Similarly, we have dist2(Xs, X
R
t ) ≤ 4. Moreover, since li ≥ 2,

the first term within Pr{·} is positive, Eq. (13) can be rewritten as:

es,t.p = Pr{r(Xs, Xt) > r(Xs, X
R
t )}

= Pr{dist2(Xs, X
R
t ) > dist2(Xs, Xt)}

= Pr{dist(Xs, X
R
t ) > dist(Xs, Xt)},

which is exactly equivalent to Eq. (4). Hence, the lemma holds.

C. Proof of Lemma 3.

PROOF. From the lemma assumption, we have ub_P (es,t) ≤ γ.
Moreover, since ub_P (es,t) is an upper bound of the edge exis-
tence probability es,t.p (i.e., es,t.p ≤ ub_P (es,t)), we can apply
the inequality transition, and obtain es,t.p ≤ γ. According to Def-
inition 2, edge es,t exists, only if es,t.p > γ holds. Hence, we can
conclude that edge es,t does not exist in the inferred GRN graph
Gi.

D. Proof of Lemma 4.

PROOF. Based on the Markov’s inequality, since dist(Xs, Xt)
is a positive value, we have:

es,t.p = Pr{Z > dist(Xs, Xt)} ≤
E(Z)

dist(Xs, Xt)
.

Thus,
E(Z)

dist(Xs,Xt)
is an upper bound of probability es,t.p. Hence,

the lemma holds.

E. Proof of Lemma 5.

PROOF. Since UB_Pr{G} is an upper bound of probability
Pr{G}, we have Pr{G} ≤ UB_Pr{G}. From the lemma as-
sumption that UB_Pr{G} ≤ α, we can apply the inequality tran-
sition and obtain Pr{G} ≤ α. Based on Definition 4, since the
subgraph G of GRN Gi has low appearance probability Pr{G}
(i.e., less than or equal to α), G cannot be our IM-GRN query an-
swers.

F. Proof of Lemma 6.

PROOF. From Inequality (9), we have the condition of prun-
ing gene Xt that: yt[w] ≤ γ · xt[r] − (γ · xs[r] + γ · xs[w]).
Our goal is to prove that, if Inequality (9) holds for any two genes
Xs and Xt under nodes Ea and Eb, respectively, then node Eb

can be safely pruned (since any gene Xt under Eb can be pruned
due to Xs ∈ Ea. Therefore, we can derive Inequality (10) from
Inequality (9), by overestimating LHS and underestimating RHS
of Inequality (9). That is, in Inequality (9), we replace yt[w] (=
E(dist(XR

t , pivw))) with E+
by[w] and xt[r] (= dist(Xt, pivr))

with E−
bx[r], for a group of points in node Eb, and relax xs[w] (or

xs[r]) with E+
ax[w] (or E+

ax[r]), which exactly corresponds to In-
equality (10).
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G. Experimental Results on ROC Curves Over
Real Data Sets, S.aureus and S.cerevisiae.

In Figure 14, we report the ROC curves of IM−GRN and Correlation
over real data sets, S.aureus and S.cerevisiae, with and with-
out noises (Gaussian noises N (0, 0.3)). Similar to the results of
E.coli, our IM−GRN approach has the ROC curve above that
of Correlation in most cases for both data sets (with or with-
out noises), which indicates the effectiveness and robustness of our
IM−GRN inference approach.

H. Experimental Results on ROC Curves of IM−GRN

vs. Partial Correlation Over Real Data Set, E.coli.

We compare our IM−GRN inference approach with partial cor-

relation2, denoted as pCorr, over real data set E.coli and E.coli+
noise, in terms of the ROC curve. The experimental results are re-
ported in Figure 15. Similarly, our IM-GRN inference approach
can achieve high TPR and low FPR, compared with pCorr.
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Figure 15: ROC curves of pCorr vs. IM-GRN inference over real

data set, E.coli, with and without noises N (0, 0.3).

2
https://en.wikipedia.org/wiki/Partial_correlation
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