

Closing the functional and Performance Gap
between SQL and NoSQL

 Zhen Hua Liu, Beda Hammerschmidt, Doug McMahon, Ying Lu, Hui Joe Chang

Oracle Corporation

500 Oracle Parkway

Redwood Shores, CA 94065, USA

{zhen.liu, beda.hammerschmidt, doug.mcmahon, ying.lu, hui.x.zhang}@oracle.com

ABSTRACT

Oracle release 12cR1 supports JSON data management that enables
users to store, index and query JSON data along with relational
data. The integration of the JSON data model into the RDBMS
allows a new paradigm of data management where data is storable,
indexable and queryable without upfront schema definition. We
call this new paradigm Flexible Schema Data Management
(FSDM). In this paper, we present enhancements to Oracle's JSON
data management in the upcoming 12cR2 release. We present
JSON DataGuide, an auto-computed dynamic soft schema for
JSON collections that closes the functional gap between the fixed-
schema SQL world and the schema-less NoSQL world. We
present a self-contained query friendly binary format for encoding
JSON (OSON) to close the query performance gap between
schema-encoded relational data and schema free JSON textual data.
The addition of these new features makes the Oracle RDBMS well
suited to both fixed-schema SQL and flexible-schema NoSQL use
cases, and allows users to freely mix the two paradigms in a single
data management system.

Categories and Subject Descriptors

H.2.4 [Database Management]: Systems – Relational databases,
transaction processing.

General Terms
Algorithms, Management, Performance, Design, Standardization,
Languages.

Keywords
JSON, SQL/JSON, Schema-less, Flexible Schema, NoSQL, XML,
SQL/XML.

1. INTRODUCTION

Using a ‘schema first, data later’ approach, RDBMS platforms are
very successful at managing well-structured relational data.
NoSQL systems [4] are challenging this with a ‘data first, schema
later or never’ paradigm. The fixed-schema paradigm of relational

data management, which demands a schema before data can be
stored and queried, is at odds with the NoSQL world where a
variety of data in continually changing forms is available from
diverse data sources. To address these challenges, the Oracle
12cR1 release supports JSON as a simple and practical example
of FSDM to unleash the power of schema-less data management
[21]. It is based on following three engineering principals
originating from ORDBMS [11, 13]:

• Storing JSON objects as aggregated, self-described entities
without shredding them into relational rows and columns.
That is, embracing the document-object storage model. This
resolves the “birth pain” usability problem of the schema-
rigid classical RDBMS SQL world [8].

• Indexing JSON using a schema-agnostic strategy to support
ad-hoc queries that search both schema and values together.
That is, extending inverted index technology to index both
data and schema together [18]. This resolves the problem of
requiring knowledge of the query workload before an index
can be defined in fixed-schema systems.

• Querying JSON using SQL as the inter-document query
language and SQL/JSON path language as the intra-
document query language [21]. This avoids the problem of
creating a brand-new set-query language, such as JSONiq
[12], to query JSON only.

These three principals have enabled FSDM [32] in RDBMS.
However, we don't think that the relational model and SQL are
out-dated [1] due to the demand for FSDM. The strength of the
relational model [5] is that it avoids imposing a single hierarchy to
manage data, and the strength of SQL is its ability to deliver
powerful data analytics with its set-based declarative query
language. These strengths motivate us to integrate FSDM
capabilities with the relational model and with SQL. Our key
insight is this: rather than integrate the two worlds by trying to
impose a fixed relational schema into which FSD would be
decomposed, we integrate them by dynamically projecting a
relational schema continuously derived from collections of FSD
instances. This logical dynamic schema allows users to view and
query FSD relationally. That is, a relational schema is not
constructed as a physical frame to fit the data but rather as a

logical lens to view the data. We don’t use schema to encode and
store data, so FSD physical storage is free from the need for
schema evolution.
To realize this vision, a relational view over JSON data can be
defined using the SQL/JSON query construct JSON_TABLE() as
a virtual function to derive relational rows from JSON data [21].
Once JSON relational views are defined, users can write queries
on top of the relational views to achieve compile time schema
check with the rich analytic power of SQL fully applied to JSON

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or
distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for components of this work owned by
others than ACM must be honored. Abstracting with credit is permitted. To copy
otherwise, or republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee. Request permissions from permissions@acm.org.
SIGMOD’16, June 26–July 1, 2016, San Francisco, California, USA.
Copyright is held by the owner/author(s). Publication rights licensed to ACM.
ACM 978-1-4503-3531-7/16/06…$15.00.
http://dx.doi.org/10.1145/2588555.2595628

227

data. To define such JSON_TABLE() views, users would need to
figure out the implied schema within a collection of JSON
instances so that they can write the SQL/JSON paths needed by
the JSON_TABLE() operator. For relational data, the problem of
deriving the relational schema from the data and then registering
the relational schema with the RDBMS is traditionally accepted
by the developers of the relational application. In FSDM, the
schema derivation problem is the responsibility of the underlying
DBMS. The “birth pain” [8] experienced by users in fixed-schema
systems is resolved by having an FSD enabled RDBMS that
automatically computes and maintains the implied schema for an

FSD collection and assists users in defining relational views to

allow SQL access to the data.
The computed schema must be dynamic: it must continually
evolve as instances are added to or changed within FSD
collections. For a JSON collection, the automatically computed
schema should include a derivation of all the hierarchical
structural paths that exist in that JSON collection, as well as the
data types and statistics of leaf scalar values. We call this
automatically-maintained schema the JSON DataGuide. We
support two forms of the JSON DataGuide: persistent and
transient. The persistent DataGuide is provided as a component of
a schema agnostic JSON search index [21]. The transient schema
is provided as a new SQL aggregate function over any JSON
collections that can be computed from SQL declaratively. The
concept of DataGuide has introduced a powerful new paradigm:
“write without schema, read with schema”. That is, users can store
data without providing a schema definition, but they can still
query the data as if a schema were defined and registered to the
system ahead of storing the data. This is the key value proposition
for the FSD enabled RDBMS.
The RDBMS uses relational schema information to encode data
for storage and to decode data for query. The row format is
optimized for fast query performance. To achieve query
performance and minimize the storage size, row data is not self-
describing; an external schema describing column meta-data is
necessary to interpret the columns within the data. An FSD
enabled RDBMS is not able to rely on column schema to encode
data. Therefore, it needs an efficient binary format to encode data
for fast query performance without relying on the existence of a
central schema for column meta-data. For JSON, we have
developed a binary format, called OSON (Oracle binary JSON
encoding), to meet these requirements. OSON is a self-contained,
compact representation of a tree of structures, arrays, and scalars.
It's designed to provide rapid navigation to elements of the tree to
resolve SQL/JSON path expressions. OSON bytes can be encoded
from JSON text [10], BSON [16] or AVRO [15], and may either
be stored persistently or loaded and used as structures in memory
by Oracle's in-memory database option[19] for fast SQL/JSON
query processing.

The main contributions of this paper are:

• To bridge the functional gap between the fixed-schema world

of SQL and the schema-less NoSQL world, we introduce the
concept of a DataGuide, a logical dynamic soft schema in
RDBMS. We describe a practical SQL based solution to
compute and maintain the DataGuide declaratively and
automatically for both persistent and transient JSON
collections so that they can be accessed relationally. The key
idea here is that in an FSD enabled RDBMS, schema is no
longer static meta-data but rather dynamically and
continuously derivable via SQL over FSD collections.

• To bridge the performance gap between fixed-schema

encoding of relational data and schema free JSON textual
data, we describe a self-contained, compact binary encoding
of JSON (OSON) which can be an order of magnitude faster
than textual JSON for supporting SQL/JSON queries. The
OSON format needs no central schema for column meta-data
but still gives column data access performance that is close to
a schema encoded row format.

• To bridge the conceptual gap between SQL and NoSQL

world, we practically integrate the idea of ‘Schema-less for

Write’ from NoSQL [4] world and ‘Schema-Rich for

declarative Query’ from SQL world [5] through
management of JSON data in a single RDBMS product
without the need of polyglot persistence [7] . ‘Schema-less
for write’ resolves the schema birth pain problem [8] and
continuous schema evolution problem associated with
classical RDBMS. ‘Schema rich for declarative query’
resolves the issue of developing code to discover data
schema and to procedurally query data associated with pure
NoSQL data stores. Figure 1 shows our architecture of
connecting SQL and NoSQL world on top of a single
RDBMS platform with SQL remains as declarative set query
language.

Figure 1 – Architecture connecting SQL and NoSQL World

Outline: Section 2 compares our work to related work. Section 3
describes the JSON DataGuide in detail. Section 4 describes the
OSON design in detail. Section 5 describes SQL/JSON
performance enhancements using OSON. Section 6 presents an
evaluation of performance. Section 7 discusses future work.
Section 8 concludes the paper with acknowledgements.

2. RELATED WORK

NoSQL vendors [4] have used JSON as a simple semi-structured
data format for the document object model. RDBMS vendors are
integrating support for JSON data with their SQL engines,
including IBM DB2 [29], Microsoft SQL Server [25], TeraData
[26], Vertica [27] and Oracle 12cR1 [21]. Another popular
approach is to add a level of abstraction over polyglot persistence
in middle-tier code. One example of this approach is Sinew [22].
However, Oracle 12cR2 takes this a step further. Recognizing

SQL – Declarative Set Query Language

Unified Relational Views on top of Virtual Schema

Schema-Rigid Data
non-self-contained
encoding using central
schema catalog

Flexible-Schema Data
self-contained OSON
like encoding without
central schema catalog

Physical Static Schema
as Table Structures
defined and maintained by
User

Logical Dynamic

Schema as DataGuide
derived and maintained
by System

Flexible Schema Data Enabled RDBMS

SQL World NoSQL World

228

that the lack of a schema presents a challenge in schema-less
NoSQL world, Oracle offers the JSON DataGuide, allowing users
to write queries over JSON collections with a de facto schema
continuously derived from the instance documents. Concept of
DataGuide was proposed by researchers in the LORE system [28].
Dynamic discovery and extraction of schema from a document
store was presented in [20]. However, both these prior efforts
dealt only with pure document store database, not in SQL based
RDBMS. Our unique contribution is to deeply integrate
DataGuide as a dynamic schema facility with existing SQL
mechanisms: view, virtual column, index and aggregation. Our
JSON DataGuide service provides automatic and customizable
generation of SQL/JSON JSON_TABLE() based relational views
for nested hierarchical documents, and virtual columns for
singleton scalar values. While the flexible table approach of
Vertica [40] is limited to singleton scalar fields from JSON
collection, our approach handles JSON array expansion gracefully
using the NESTED PATH- construct of JSON_TABLE(). That is,
the contents of JSON arrays are un-nested automatically and
become directly available to SQL queries as simple columns.
Unlike approach in Sinew [22], our JSON DataGuide is fully
integrated with the Oracle RDBMS kernel and the SQL language.
We provide support for both persistent and transient dynamic
schemas. The persistent JSON DataGuide is integrated as a
component of a schema agnostic JSON search index, ensuring that
both discovery and search of JSON structures are completely in
synch. Using a single index, users can discover JSON path
structures within a collection, as well as what documents within
the collection have particular path structures and values. The
transient JSON Dataguide is provided as a SQL aggregation
function. With this, computing an ad-hoc JSON DataGuide is
simple, flexible, and declarative, and can be accomplished in one
SQL statement!
There are number of popular binary encoding formats for
hierarchical data objects, among them BSON [16], AVRO [15],
and Protocol Buffers [14]. None of these is fast enough for all
query situations, because the serialization formats lack efficient
random field access, as discussed in Sinew[22]. Like Sinew [22],
OSON encoding supports efficient random field access. Unlike
Sinew [22], the OSON format is self-contained and doesn’t rely
on an external central catalog system to manage attribute ids. We
have found that depending on such an external system is
tantamount to maintaining a schema: exactly what users are trying
to avoid with these NoSQL stores. The OSON format supports
arbitrary SQL/JSON path navigation query efficiently. The self-
contained format makes OSON as portable as JSON text or BSON
binaries while still providing rapid random tree navigation; in
contrast, BSON and textual JSON must be accessed in a serial
fashion, with at best the ability to perform skip navigation.
Although tree-encoding for XML is done in DB2 XML storage
format [2], our OSON design is compact tree format: well-suited
both as a persistent format and as the basis for an in-memory
format. Our OSON and virtual column query access is tightly
integrated with Oracle in-memory database architecture [19]. To
the best of our knowledge, this is the first industrial paper that
provides comprehensive SQL solution for providing dynamic
schema support for JSON and in-memory query processing for
JSON and thus towards the direction of closing schema and
performance gap between SQL world and NoSQL world.
The comparison of OSON format and Dremel [24] representation
is discussed in section 7.

3. JSON DataGuide

3.1 JSON DataGuide Conceptual Description

JSON is a language-neutral representation of data structures and
scalar types common across different programming languages.
The JSON data model is hierarchical and can be regarded as
consisting of three types of nodes arranged in a node tree. The
three node types are JSON objects, JSON arrays, and JSON
scalars. JSON objects are structures consisting of key/value pairs
with string keys and node values. JSON arrays are ordered lists of
node values. JSON objects and JSON arrays are both considered
container nodes. JSON scalars are always leaf values and may be
strings, numbers, booleans, or null. A JSON document can be
parsed and constructed as a JSON DOM tree using the JSON data
model. SQL/JSON path language semantics [21] are based on the
JSON DOM model.
A JSON DataGuide for a single JSON document instance is
computed by extracting the container node skeleton of the JSON
DOM tree. Leaf scalar values are replaced by data type and
length. A JSON DataGuide for a collection of JSON documents is
simply a merge of the instance DataGuides across all documents
in the collection. The merge union process removes duplicate tree
paths if they have the same tree node type for each step in the
path. Paths having different tree node types at any step are
considered different. Leaf scalar data information is merged by
replacing conflicting data types with a more general type, and
using the maximum length.
As an example of path merge, in one JSON document, path
‘$.a.b’ with node “b” is a scalar tree node type, while in another
JSON document, path ‘$.a.b’ with node “b” is an object node
type. The merged JSON DataGuide keeps both paths: ‘$.a.b’ as a
scalar node type and as an object node type, respectively. As an
example of merging scalar nodes, in one JSON document, path
‘$.a.b’ is a number, while in another JSON document, path ‘$.a.b’
is a string. The resulting JSON DataGuide keeps one structural
path ‘$.a.b’ as scalar tree node type with string as leaf data type.
The JSON collection is stored in a column with an ‘IS JSON’
check constraint created. For such a persistent JSON column, we
support a persistent JSON DataGuide that is incrementally
maintained as new JSON documents are inserted into the
collection.

3.2 Persistent JSON DataGuide Maintenance
3.2.1 DataGuide Evolution with DML
Consider a JSON column JDOC of a table PO storing the
following purchaseOrder JSON documents. There is a nested
detail hierarchy “items” under the master “purchaseorder” in
each document.

DID JDOC

1 {"purchaseOrder":{"id" : 1, "podate" : "2014-09-08",

"items" :

[{"name":"phone" , "price" : 100, "quantity" : 2},

 {"name":"ipad", "price" : 350.86, "quantity" : 3}]}}

2 {"purchaseOrder":{"id" : 2, "podate" : "2015-03-04",

"items" :

[{"name":"table" , "price" : 52.78, "quantity" : 2},

 {"name":"chair", "price" : 35.24, "quantity" : 4}]}}

Table 1 – JSON PurchaseOrder Collection

A persistent JSON DataGuide is maintained as a component of the
JSON search index. The JSON search index is a general purpose
schema agnostic index created on a JSON column by maintaining
an inverted index for every JSON field name and every leaf scalar

229

value (strings are tokenized into a set of keywords to support full-
text searches). The index allows ad-hoc SQL/JSON path query
predicates such as JSON_EXISTS(), JSON_TEXTCONTAINS(),
and JSON_VALUE() to be evaluated efficiently [21] over the
JSON collection. The JSON search index is the most natural
place to support JSON DataGuide maintenance because this index
is incrementally maintained when documents in the index JSON
column are added, removed, or replaced. To minimize the
overhead, the DataGuide maintenance is incorporated directly

into the processing of the IS JSON check constraint. In the
common case where a new JSON instance doesn’t result in any
new path structures or scalar node changes, the DataGuide
processing terminates without the need to call any persistent
DataGuide processing module.
The JSON search index internally stores the persistent JSON
DataGuide in a relational table $DG. Using the data from Table 1
as an example, the contents of the $DG table are shown in Table
2. The $DG table captures all the distinct paths in the JSON
document collection with its leaf type.
Path Type
$.purchaseOrder object
$.purchaseOrder.id number
$.purchaseOrder.podate string
$.purchaseOrder.items array
$.purchaseOrder.items.name array of string
$.purchaseOrder.items.price array of number
$.purchaseOrder.items.quantity array of number

Table 2 – JSON DataGuide Relational Format in $DG

To show how the DataGuide evolves in the face of new instances,
consider what happens when the document shown in Table 3 is
added to the collection. Note a new child object “parts” is added
below the existing “items” array – this causes the DataGuide to
grow deeper. A new top-level “foreign_id” field is also added.

DID JDOC

3 {"purhcaseOrder":{"id" : 2, "podate" : "2015-06-03",

 "foreign_id" : "CDEG35",

"items" :

[{"name":"TV" , "price" : 345.55, "quantity" : 1,

 "parts" : [

 {"partName" : "remoteCon", "partQuantity" : "1"},

 {"partName" : "antenna", "partQuantity" : "2"}

]

 },

 {"name":"PC", "price" : 546.78, "quantity" : 10,

 "parts" :

 [

 {"partName" : "mouse", "partQuantity" : "2"},

 {"partName" : "keyboard", "partQuantity" : "1"},

]

 }

]}}

Table 3 – introducing a new child hierarchy

JSON search index maintenance inserts 4 new rows into $DG (see
Table 4) to reflect the new path structures encountered for the
document shown in Table 3.

Path Type
$.purchaseOrder.items.parts array of array
$.purchaseOrder.items.parts.partName array of string
$.purchaseOrder.items.parts.partQuantity array of string
$.purchaseOrder.foreign_id string

Table 4 – four new rows added into $DG

Now consider what happens when the document show in Table 5
is added to the collection. A new hierarchy “discount_items” is

added as a sibling of existing node “items” – this causes the
DataGuide to grow wider.

DID JDOC

4 {"purchaseOrder":{"id" : 98, "podate" : "2015-07-04",

"items" :

[{"name":"CD" , "price" : 5.55, "quantity" : 10,

 },

 {"name":"DVD", "price" : 6.78, "quantity" : 20,

 }

],

"discount_items":

 [

 {"dis_itemName" : "CPH", "dis_itemPrice" : 105.52,

"dis_itemQuanitty":2,

 "dis_parts" :

 [

 {"dis_partName" : "phonejack", "dis_partQuantity" : 3},

 {"dis_partName" : "plug", "dis_partQuantity" : 2},

]

 },

 {"dis_itemName" : "Printer", "dis_itemPrice" : 121.33,

 "dis_itemQuanitty":9,

 "dis_parts" :

 [

 {"dis_partName" : "toner", "dis_partQuantity" : 5},

 {"dis_partName" : "paper", "dis_partQuantity" : 20},

]

 }

]

}}

Table 5 - introducing a new sibling hierarchy

JSON search index maintenance inserts 7 new rows into $DG (see
Table 6) to reflect the new path structures encountered for the
document shown in Table 5.
Path Type
$.purchaseOrder. discount_items array of array
$.purchaseOrder. discount_items.dis_parts array of array
$.purchaseorder.
discount_items.dis_parts.dis_partName

array of string

$.purchaseOrder.
discount_items.dis_parts.dis_partQuantity

array of number

$.purchaseOrder.discount_items.dis_itemName array of string
$.purchaseOrder.discount_items.dis_itemPrice array of number
$.purchaseOrder.discount_items.dis_itemQuanitty array of number

Table 6 - seven new rows added into $DG

In addition to storing path and type information, the $DG table
also has columns that store statistical information for a path such
as frequency, minimum and maximum values, and number of null
values. These statistical columns are populated when the JSON
search index statistics are computed.

3.2.2 DataGuide Representation
The Persistent dataGuide can be presented in two forms: a flatten
form as what is stored in $DG table and a hierarchical form with
nested structures. Both forms are encoded as a JSON document
that can be returned as a CLOB by invoking a PL/SQL function
getDataGuide() from persistent indexing layer. In particular, this
function can aggregate the information from the $DG table into a
hierarchical format represented as a single JSON document. Users
can annotate the computed DataGuide by picking fields, re-
naming column names, changing the maximum length of data
types, etc., and then call CreateViewOnPath() with the annotated
DataGuide to generate customized relational views discussed in
section 3.3.2.

3.3 Virtual Relational Schema for JSON
To realize the benefit of ‘write without schema, read with
schema’, Oracle provides PL/SQL procedures to assist users in
projecting relational views and virtual columns of the data, driven

230

by information from the JSON DataGuide. The DataGuide is used
as a dynamic schema to automatically compose SQL/JSON
operators, making JSON data appear as if it were physically
shredded and stored in master detail relational tables.
3.3.1 Adding Virtual Columns (VC) using JSON_VALUE()
With JSON DataGuide computed, user can run a PL/SQL
procedure AddVC() to automatically add virtual columns to the
base table. Each virtual column is defined using JSON_VALUE()
to project a singleton scalar value out of the JSON document.
Using the JSON DataGuide presented in section 3.2 as a starting
point, Table 7 shows the definition of 3 virtual columns that are
added to PO table via AddVC() calls. These virtual columns can
be referenced in a query as if these fields in base JSON document
were physically shredded and stored in them.

VC Name VC
JCOL$id JSON_VALUE(JCOL,’$.purchaseOrder.id

returning number)

JCOL$podate JSON_VALUE(JCOL,’$.purchaseOrder.podate’

returning varchar(16))

JCOL$foreign_id JSON_VALUE(JCOL,’$.purchaseOrder.foreign_id

returning varchar(8))

Table 7 – JSON_VALUE() Virtual Columns

3.3.2 Creating De-normalized Master-Detail Views (DMDV)

using JSON_TABLE()
Virtual columns can only project singleton scalar values; that is,
values having a one-to-one relationship with document instances.
Often, however, scalar values relevant to queries are nested within
arrays and have a many-to-one relationship with document
instances. If shredded into relational tables, the most natural way
to view them is to form a left outer join of master record to detail
records so that fields from a master record are repeated for each
detail record. The outer join is used instead of an inner join to
ensure that master records are captured in the view even if there
are no matching detail records. In cases where there are more than
one sibling detail arrays to be joined for the same master record,
fields from the sibling records can be exposed using a union join.
A union join is equivalent to a full outer join with an impossible
condition, such as 0=1. By design, the default of the
JSON_TABLE() NESTED PATH clause is to un-nest JSON arrays
with left-outer join semantics for child hierarchies and do a union
join for sibling hierarchies. With JSON DataGuide computed, user
can run a PL/SQL procedure CreateViewOnPath() to
automatically create a JSON_TABLE() view. We call such views
as De-normalized Master Detail Views (DMDV) because the
output is the same as the output of a view over physically
decomposed master detail tables using the outer join and union
constructs that we just described. DMDV is structurally similar to
the wide table described in [30]. Table 8 shows the definition of a
DMDV generated by calling CreateViewOnPath(‘$’) . Users can
also generate a DMDV view for a particular path. For example,
users can generate a DMDV view for the items detail branch
alone by executing CreateViewOnPath(‘$.purchaseOrder.items’).
If JSON index statistics are collected, then frequency information
can be passed to CreateViewOnPath() to project fields only if they
occur more frequently than a given threshold value. In this way,
sparse and outlier fields can be eliminated as columns of the
DMDV.
CREATE VIEW PO_RV AS

SELECT PO.DID, JT.*

FROM PO, JSON_TABLE("JCOL" FORMAT JSON, '$'

COLUMNS

 "JCOL$id" number path '$.purchaseOrder.id',

 "JCOL$podate" varchar2(16) path '$.purchaseOrder.podate',

 "JCOL$foreign_id" varchar2(8) path '$.purchaseOrder.foreign_id',

 NESTED PATH '$.purchaseOrder.items[*]' /*NP1*/

 COLUMNS (

 "JCOL$name" varchar2(8) path '$.name',

 "JCOL$price" number path '$.price',

 "JCOL$quantity" number path '$.quantity'),

 NESTED PATH '$.parts[*]' /*NP2*/

 COLUMNS ("JCOL$partName" varchar2(16) path '$.partName',

 "JCOL$part Quantity" varchar2(1) path '$.partQuantity'),

 NESTED PATH '$.purhcaseorder.discount_items[*]' /*NP3*/

 COLUMNS (

 NESTED PATH '$.dis_parts[*]' /*NP4*/

 COLUMNS ("JCOL$dis_partName" varchar2(16) path '$.dis_partName',

 "JCOL$dis_partQuantity" number path '$.dis_partQuantity'),

 "JCOL$dis_itemName" varchar2(8) path '$.dis_itemName',

 "JCOL$dis_itemPrice" number path '$.dis_itemPrice',

 "JCOL$dis_itemQuanitty" number path '$.dis_itemQuanitty')) JT

/* NP1 & NP2 are left outer join, so do NP3 & NP4; NP1 & NP3 are union join */

Table 8 – JSON_TABLE() DMDV View

3.4 Transient JSON DataGuide Computation
Note, persistent JSON DataGuide is additive, it does not remove
paths for documents that are deleted. However, a JSON
DataGuide can be computed dynamically by executing a SQL
aggregation function JSON_DataGuideAgg() over the result of
any SQL query returning a set of JSON documents.
JSON_DATAGuideAgg() is implemented using user defined
aggregation framework from ORDBMS [11,13]. It computes and
returns JSON DataGuide as a single JSON document in either
flatten form or hierarchical form as discussed in section 3.2.2.
Table 9 shows SQL queries that compute transient JSON
DataGuide. Q1 computes the DataGuide by sampling 50% of
JSON documents in a JSON collection. Q2 computes the
DataGuide group by their insertion date. Q3 computes the
DataGuide for a filtered subset of JSON documents that have
JSON path ‘$.purchaseOrder.foreign_id’. Integrating JSON
DataGuide as a SQL aggregation function provides declarative
way to compute DataGuide for JSON collection that may not be
stored in Oracle. For example, Oracle external table can map file
system data as virtual relational table on top of which JSON
DataGuide can be computed and DMDV view can be created for
query. Oracle SQL/JSON query support can transparently read
from external virtual table and thus enables the In-Situ Query
processing over JSON collection.

Q1 Select json_dataguideagg(jcol) from po sample (50)

Q2 Select json_dataguideagg(jcol) from po

group by insertion_date

Q3 Select json_dataguideagg(jcol) from po

where json_exists(jcol, ‘$.purchaseOrder.foreign_id’)

Table 9 – Example queries computing JSON DataGuide

Transiently

4. JSON Binary Format: OSON

4.1 OSON Design Criteria

In the classic relational approach to data management, schema
information is separated from instance data, with the schema
being defined in a central dictionary and then used to encode data
instances for storage. In contrast, flexible storage models typically
store metadata together with data instances, such that instances
can be decoded and understood without the need to refer to a
central dictionary. Self-contained JSON document instances can
be more easily distributed, replicated, imported, exported, evolved,
without the need for costly synchronization. This property of self-
containment is the first design criteria for our binary JSON

format.
BSON [16] is self-contained and is readable without costly textual
parsing. The BSON format has a symmetric structure for nested
child containers. Because of this, child containers can be extracted

231

or inserted by simply copying byte ranges, a potentially big
advantage when doing projections. Because containers have
leading length words, a BSON decoder can skip unneeded child
containers without decoding all of their descendants. The cost of
nested symmetry is that the BSON format needs to store field
names at each object level, and must repeat them for elements
within arrays of objects. JSON path evaluations involving field
name searches require relatively expensive string comparisons. A
lesser problem is that field names are null terminated,
necessitating a byte scan for the end of the field name string
during searches. Finally, BSON, like JSON, is a stream format
potentially requiring that an entire instance be read to resolve a
JSON path, or, worse, to determine that it's not present in the
instance. Enabling readers to jump inexpensively to named fields
and array locations is our second design criteria.
JSON scalars can be numbers, strings, or Booleans. In binary
formats this set is commonly extended to include date, timestamp,
and raw data types. The SQL/JSON path language and SQL/JSON
operators such as JSON_TABLE() support type-aware operations,
such as type-based comparison semantics and arithmetic
expressions. In a binary format, scalars can be stored in a format
native to the database engine for maximum performance,
especially when values pass between the JSON and SQL worlds.
Encoding scalar values in the same binary format as our SQL

scalar columns is our third design criteria.

4.2 OSON Format: Three-Segment Architecture

The OSON format separates a JSON document into 3 segments: a
field-id-name dictionary segment, a tree node navigation segment
and a leaf scalar value segment with navigation segment
containing references to dictionary and value segment as shown in
Figure 2. This division is done to reflect the different loading and
access properties.

Figure 2 – OSON Format Architecture

4.2.1 Field-id-name-dictionary segment

Each unique field name within a JSON document is assigned an
integer field name identifier and is stored only once so that
multiple references to the same field name are replaced with its
field name identifier. Because the identifiers take just a few bytes,
the OSON encoding typically saves significant space when the
original document has a nested array of sub-objects, or encodes a
recursive hierarchical structure. The biggest benefit of assigning
identifiers is that they can facilitate rapid navigation to a child

field given by performing a binary search using integer

comparisons. OSON stores the field name identifiers for each
object in sorted order to support this type of access.
The field-id-name dictionary segment is responsible for providing
a fast dictionary mapping between a field name and a field name
identifier. The assignment of a field name identifier to a field
name is done arbitrary using a hash function. The OSON encoder
applies the hash function to each distinct field name referenced in
a JSON document and builds a hash table containing all such
mappings for the document. The hash table is compacted into a

hash-id-array. Each array entry stores the field name and the hash
id of the field name. The entire hash-id-array is sorted by the hash
ids. The ordinal position of an array entry containing a field name
is used as the field name identifier for that field name. To look up
a field name identifier given a field name, we first apply the hash
function to the field name to get its hash id. Then we perform a
binary search on the hash-id-array using the hash id to locate the
array entries having that hash id. Finally, we perform a field name
string match to resolve any possible hash collisions.
To avoid repeatedly calling the hash function on field names and
to avoid field name identifier lookup altogether, we have applied
the following optimizations to the SQL/JSON query compilation
and execution time.

• During the SQL query compilation phase, all SQL/JSON

paths are compiled. The same hash function is called on all
distinct field name references in all SQL/JSON paths so that
their corresponding hash ids are stored in the SQL execution
query plan.

• During SQL execution time, as the SQL/JSON path query is
applied to each OSON instance, we use the pre-computed
hash id and the field name that are stored in the execution
plan to find the field name identifier using the field-id-name
dictionary segment. This is done once for the OSON
instance; afterwards, all field name searches are efficiently
executed as binary searches using the instance-specific field
name identifier.

• Finally, when the SQL/JSON path query is applied to the
next OSON instance, the mapping determined on the
previous OSON instance is checked to see if it matches the
next instance. This single-row look-back is very effective on
collections of structurally homogeneous JSON document
instances, because the same field name identifiers are most
likely used repeatedly, and therefore the cost of field-id
resolution can often be skipped.

4.2.2 Tree-node Navigation Segment

The tree node navigation segment of OSON represents the JSON
document as a tree-like skeleton of nodes that supports navigation
from a parent node to its child nodes. There are 3 types of JSON
tree nodes: JSON object nodes, JSON array nodes, and JSON
scalar nodes. Each node is identified by its byte offset location
from the beginning of the tree-node navigation segment. The byte
offset is used as the tree node address and is stored in the child
array of the parent tree node to jump to the child tree node. Each
node has a common tree node header byte storing the type of the
node (Object, Array, Scalar), and property flags that vary
depending on the type of the node.
• For a JSON object node, the child array stores all of its

children’s field name identifiers and their corresponding tree
node addresses. The array is sorted by the field name
identifiers to support rapid navigation to the child node given
its field name.

• For a JSON array node, the child array stores all of its
children’s node addresses. The child in Nth array position is
accessed by taking the child node's offset from the Nth
position in the array.

• For a JSON scalar node, this records the data type of the
scalar value and an offset into the leaf-scalar-value segment
where the data bytes are located. JSON boolean and null
values are directly encoded as bit flags in the JSON scalar
node and therefore have no offset. For fixed length scalar
values, the length is inferred from the data type. For variable

1:po;2:id;
3:podate;4:items
…

Field-id-

name

Dictionary

Segment

1;2014-09-
08;phone;100;2;i
pad;350.86;3;....

Leaf-Scalar-

Val-Segment

Tree Navig Segment

232

length scalar values, bit flags are used to indicate if the
length is encoded using one, two, or four bytes.

4.2.3 Leaf-scalar-value segment

The leaf-scalar-value segment is comprised of all leaf values in a
JSON object instance. The bytes representing the values are
concatenated together to form this segment. Each leaf scalar value
is found by its byte offset from the beginning of the segment. The
byte offset is used as the leaf value address and is stored in the
JSON scalar node. For variable length data items, a length is
stored before its value. For fixed length data, no length is stored.
By default, OSON uses the Oracle binary number format to
encode JSON numbers, minimizing the cost of using these values
in SQL. JSON numbers can also be encoded using IEEE double-
precision format, or encoded as strings in a canonical format.

No binary format is optimally efficient in its support for queries
and updates. In designing OSON, we opted to maximize path
query efficiency, so partial update support is limited to changes of
existing leaf scalar values. However, we will work on enhancing
OSON format to make intelligent trade-off to be more update
friendly to handle future SQL/JSON partial object update
language requirement.

5. SQL/JSON Query Performance

Improvement

5.1 JSON DOM Path Engine using OSON based JSON

DOM implementation
To evaluate SQL/JSON operators on textual JSON documents, we
developed a JSON path engine that operates in a streaming
fashion, using a series of events produced by the JSON text
parser. These events allow evaluation of SQL/JSON operators
without the need to materialize JSON objects in memory as
document object model (DOM) instances. Generating the events
requires costly text parsing. Worse still, evaluation of more
complex operators requires the engine to memorize event
sequences, in effect partially or completely negating the benefit of
avoiding DOM construction. These operators include the
JSON_TABLE() virtual table [21] as well as complex
JSON_EXISTS predicates. In many cases it’s simpler and more
efficient to evaluate SQL/JSON operators on a DOM tree
instance. The OSON format allows DOM read operations directly
against the serialized instance, avoiding the need for a costly parse
and DOM construction. Each JSON DOM tree node address is an
offset within the tree-node-navigation segment of OSON, so
DOM read operations can jump directly to desired nodes using the
offsets in lieu of the machine pointer dereferences. This allowed
us to extend the path engine so that it is capable of operating
directly on DOM instances, without sacrificing efficiency, and
without the need for memorizing events.

The DOM version of the JSON path engine calls the following
interfaces to evaluate each step of a JSON path step and apply any
predicate expression underneath it:
• JsonDomGetNodeType(treeNodeAddress)

• JsonDomGetFieldValue(treeNodeAddress, fieldNameIdentifier)

• JsonDomGetArrayElement(treeNodeAddress, arrayIndexRange)

• JsonDomGetScalarInfo(treeNodeAddress)

For path steps that require finding a child node given the name of
a field, the path evaluator invokes JsonDomGetFieldValue(). The

OSON DOM implements this by performing a binary search for
the field name identifier over the child node array and then
returning the corresponding child node address. For wildcard field
steps, it simply returns the array containing all the child node
addresses.
For array index path steps, the path evaluator invokes
JsonDomGetArrayElement(). The OSON DOM implements this
by directly accessing the desired position in the array and
returning the child node.
In either case, the path engine then evaluates any predicate
expression for the current step using each returned child node
address as the context node. If the predicate evaluates to true, the
path engine can recursively evaluate the next path step by again
using the child node address as the context node.
The path engine invokes JsonDomGetScalarInfo() for each path
predicate expression that reads a scalar value and applies built-in
functions or range comparison operators as necessary. The OSON
DOM implements this by returning a pointer within the leaf-
scalar-value segment, computed using the offset from the node
table.
The JSON_TABLE virtual function is designed as a built-in SQL
iterator that supports the row source API [9], with
implementations of start(), fetchNextBatch(), and close(). For
each input document, a set of relational rows are computed by the
JSON table driver and returned in response to fetchNextBatch()
calls. The JSON table driver calls the DOM based path engine on
the SQL/JSON path expression used for row generation to yield a
set of tree node addresses. For each node, the path engine is called
to evaluate the column path expressions to compute column value.
If a NESTED PATH construct is used, the JSON table driver is
called recursively on each nested row path expression.

5.2 SQL/JSON query evaluation leveraging Oracle

Database in-memory Store Architecture

5.2.1 In-Memory Virtual column for JSON Scalar Value:
Oracle 12cR1 supports IMC to improve OLAP query performance
by loading rows in memory and organizing the information into
an optimized columnar format suitable for SIMD processing [19].
In 12cR2, IMC has been extended to support virtual column
expression as well. The JSON DataGuide can help users to
discover and define virtual columns using JSON_VALUE() to
extract singleton scalar values from JSON documents as discussed
in section 3.3.1. Then just as normal SQL columns, JSON virtual
columns can map directly to the in memory columnar format for
fast SQL in-memory predicate, aggregation, group by and
projection operations.

5.2.2 In-Memory OSON for any SQL/JSON query: For
columns which have IS JSON check constraints, we automatically
add a hidden virtual column defined using the OSON()
constructor. Because it’s a virtual column, the OSON bytes aren’t
stored on disk. However, when such a table is loaded in memory,
the OSON() constructor is implicitly invoked to encode the
textual JSON document column into OSON bytes which are then
loaded in memory. During query compile time, SQL/JSON
queries over the JSON textual column are transparently rewritten
to access the OSON virtual column instead. During query
execution, if an OSON binary is available in memory, it’s used in
lieu of the original textual JSON to evaluate the query more
efficiently.

233

6. Performance Evaluation

We perform the performance evaluation with following criteria.
• For JSON textual documents, we remove all the non-

significant white spaces so as to get the smallest possible
JSON representation; this minimizes I/O and memory
overhead and reduces the JSON text parsing overhead.

• We don’t create any indexes over JSON document
collections, and we configure enough memory so that the
collections are cached entirely in memory. This ensures that
any differences in SQL/JSON query processing efficiency
among the different encoding methods are attributable solely
to differences in their encoding formats.

• For all figures that show performance numbers, the y-axis
shows the execution time in a time unit. Please keep in mind
that the purpose of these experiments is not to demonstrate
the absolute performance numbers that can be achieved, but
rather comparing the performance ratio among different
approaches to evaluate the relative performance
characteristics of each approach.

Other than the NOBENCH[6] benchmark discussed in section 6.4,
all other performance experiments are conducted on PC running
Linux kernel 2.6.18 with a 2.53 GHz Intel Xeon CPU and 6GB of
main memory.

6.1 JSON, BSON, OSON Size Statistics
We use various JSON collections including customer use cases
and benchmark data from NOBENCH[6] and YCSB[31]. In our
experience, customer data sets consist mostly of small to medium
size JSON documents with a few large size JSON documents. The
medium size JSON document (5MB) is a message archive for
twitter postings. The large size JSON document (41.5MB) is from
sensor data recording. Table 10 shows the average byte size per
JSON document encoded using JSON, BSON and OSON formats
respectively. JSON text is UTF-8 encoded with non-significant
white space removed. All JSON documents are mainly ASCII
characters with 1 byte per character encoding so that JSON text
document is measured with its most optimal size. For small
documents, the JSON, BSON and OSON representations are of

similar size. For medium and large size documents, the BSON and

OSON representations are noticeably smaller than JSON. OSON

is much smaller, especially for large documents. This is because
large documents typically have repetitive sub-structures in
embedded arrays., The OSON encoding method has an advantage
over the other formats because it stores repeated field names just
once, in its field-id-name-dictionary segment.
Table 11 shows the average percentage of total space used by the
three segments of the OSON format. For small documents, the
field-id-name-dictionary segment typically occupies 40% of the
total encoded output. For medium to large JSON documents with
many structural repetitions, the relative size of field-id-name-
dictionary segment is a small fraction of the total. We designed
OSON to be self-contained in the same way as JSON text or
BSON binary because this avoids many scalability and
administrative problems that arise when a central mapping has to
be maintained. In our experience, managing, synchronizing,
merging, and evolving such a central dictionary is not scalable in
an agile distributed computing environment.

JSON Document

collection

Average JSON

Text Size per

document in

bytes

Average BSON

binary Size per

document in

bytes

Average OSON

binary Size per

document in

bytes

workOrder 933 1000 952

salesOrder 670 710 732
eventMessage 1924 2117 2113
purchaseOrder 1117 1214 1080
bookOrder 2107 2283 1863
LoanNotes 5146 5353 5710
Twitter Msg 2974 2824 2951
AcquisionDoc 5904 6360 5462
NOBENCHDoc 533 551 654
YCSBDoc 1145 1160 1213
TwitterMsgArchive 5.05M 3.3M 2.5M
SensorData 41.5M 37.4M 18.9M

Table 10 – Avg Size with JSON, BSON, OSON encoding

JSON Document

collection

Average Field-

id-name-dict Seg

Ratio

Average Tree-

Node Navigation

Seg Ratio

Average Leaf-

scalar-value Seg

Ratio

workOrder 34.55% 29.92% 35.52%
salesOrder 47.74% 25.94% 26.32%
eventMessage 41% 26.12% 32.65%
purchaseOrder 31.88% 26.89% 41.23%
bookOrder 43.09% 36.99% 19.91%
LoanNotes 62.68% 14.58% 12.29%
Twitter Msg 43.68% 17.61% 38.7%
AcquisionDoc 19.41% 23.51% 57.07%
NOBENCHDoc 40.56% 21.01% 38.44%
YCSBDoc 9.97% 5.6% 84.43%
TwitterMsgArchive 0.05% 42.71% 57.23%
SensorData 0.01% 80.77% 19.22%

Table 11 – OSON Three-Seg Size Statistics

6.2 JSON DataGuide Statistics
We compute a JSON DataGuide for various JSON collections,
generate and query DMDV views starting from the root path ‘$’.
Table 12 shows the JSON DataGuide statistics. Number of
Distinct Paths is the row count of $DG table: it counts all the
distinct JSON paths from the root to both intermediate and leaf
nodes. Number of columns in DMDV counts all the distinct
JSON paths from the root to leaf nodes only. It represents how
“wide” the full master-detail expansion of the JSON hierarchy of
the document collection is. DMDV-fan-out ratio, which is
computed as the number of rows in DMDV divided by the
number of documents in the JSON collection, represents how
“tall” the full master-detail expansion of the JSON hierarchy of
the document collection is. For medium to large JSON
documents, the large DMDV-fan-out ratio occurs because the
documents contain large arrays of repeated structures. Also note
for NOBENCH [6] data, there are 1000 sparse fields with 11
common fields.

JSON Document

collection

Number of

Distinct

Paths

DMDV –

number of

columns

DMDV-fan-

out ratio

workOrder 29 24 5.5
salesOrder 20 19 3.0
eventMessage 79 55 10
purchaseOrder 29 21 5.0
bookOrder 86 62 11.7
LoanNote 153 122 3.0
TwitterMsg 362 316 1.8
AcquisionDoc 88 73 28
NOBENCHDoc 1011 1000 2
YCSBDoc 10 10 1
TwitterMsgArchive 316 267 5405
SensorData 68 63 32100

Table 12 – JSON DataGuide Statistics

6.3 Performance Comparison of OLAP query between

JSON, BSON, OSON and relational storage methods

We used the purchaseOrder JSON collection. Table 1 shows a
simplified sample of documents from this collection. We stored

234

100,000 documents using four storage methods. Figure 4 shows
the storage size of each of these methods.

• JSON storage: storing JSON text in a varchar2(4000) JSON

column with total storage of 136MB
• BSON storage: storing BSON binaries in a raw(4000) JSON

column with total storage of 160MB
• OSON storage: storing OSON binaries in a raw(4000) JSON

column with total storage of 136MB.
• REL storage: decomposing each purchaseOrder document

relationally and storing the data in two relational tables:
purchase_master_tab which stores all the top-level
purchaseOrder scalar fields and lineitem_detail_tab which
stores all the lineitems fields. The lineitem_detail_tab is
linked with purchase_master_tab by a foreign key. Total
storage of both tables plus primary key and foreign key
indices is 112MB.

Table 13 shows the 9 OLAP queries for performance evaluation.
These 9 queries are from customer OLAP application queries
referencing two relational views po_mv and po_item_dmdv that
serves as an abstraction to hide the underlying physical data
storage models differences: schema-rigid relational storage (REL)
and schema-less self-contained storage (JSON,BSON,OSON).
po_mv view projects all the singleton scalar fields from the
purchaseOrder whereas po_item_dmdv projects all fields from the
purchaseOrder with master fields repeated for each detail field.
For REL storage, po_item_dmdv is defined as a join of
purchase_master_tab and lineitem_detail_tab representing de-
normalized master-detail records. For JSON, BSON, and OSON
storages, both po_mv and po_item_dmdv views are defined using
JSON_TABLE() over the base JSON column. Po_item_dmdv
requires one NESTED PATH to un-nest the item array in the
same way as the DMDV view definition shown in Table 8. The
views are dynamically computed during query processing time by
invoking the JSON text parser, BSON decoder, or OSON decoder
respectively. The WHERE predicates on the views are pushed
down as JSON_EXISTS() with JSON path predicates to be
filtered.
Q1, Q2 query only po_mv. Q3-Q9 queries query po_item_dmdv.
Figure 3 Y-axis shows the query execution time for each query for
each storage method. Query performance over OSON binary
storage is faster than BSON storage which in turn is faster than
JSON storage. BSON is marginally faster than JSON. For Q2, Q3,
Q4, Q5, Q6, OSON storage is 5 to 10 times faster than JSON
storage. Furthermore, OSON storage is on-par with REL storage
for all queries. For querying po_mv, OSON storage is similar to
REL storage to extract the top-level scalar fields. For querying
po_item_dmdv, OSON storage avoids the need for a join because
the master/detail information is de-normalized, whereas REL
storage needs to use a hash join to join the master and detail table.
Figure 4 shows the storage size comparison among JSON, BSON,
OSON and REL. BSON is marginally bigger than JSON and
OSON. JSON and OSON are of similar size, both of which are
about 21% bigger than REL storage. This is expected because
REL stores only data in the table rows, while storing schema in a
central relational dictionary, while all other formats are obliged to
store schema with each document. The 21% storage overhead is a
reasonable trade-off for having self-contained schema flexibility
store in exchange for centralized schema management system.
This performance experiment demonstrates that the OSON binary
encoding format for JSON bridges the performance gap between
schema-rigid relational row storage format and schema-less self-

contained text storage format. OSON is self-contained but is more
rapidly navigated than textual JSON. Its size is on par with JSON
text for small JSON documents and is typically much smaller than
JSON text for large JSON text documents because such
documents commonly have repeated structures. Therefore, OSON
is an ideal JSON document binary instance format to bridge the

performance gap between schema-based encoding and schema-

free encoding.

Q1 select count(*) from po_mv p where p.reference = ?

Q2 select costcenter, count(*) from po_mv group by costcenter

 order by 1
Q3 select costcenter, count(*) from po_item_dmdv

 where PARTNO = '97361551647' group by costcenter
Q4 select REFERENCE, INSTRUCTIONS,ITEMNO, PARTNO,

DESCRIPTION, QUANTITY,UNITPRICE from po_item_dmdv d

where REQUESTOR = ? and d.QUANTITY > ? And D.Unitprice > ?
Q5 select l.Reference, L.Itemno, L.Partno, L.Description from DMDV l

 where l.PARTNO in (?, ?, ?)
Q6 select Partno, Reference, Quantity, QUANTITY -

LAG(QUANTITY,1,QUANTITY) over (ORDER BY

SUBSTR(REFERENCE,INSTR(REFERENCE,'-') + 1)) as

DIFFERENCE from po_item_dmdv where Partno = ?

 order by SUBSTR(REFERENCE,INSTR(REFERENCE,'-') + 1) desc
Q7 select sum (quanTity * unitprice) from po_item_dmdv group by

costcenter order by 1
Q8 select REFERENCE, INSTRUCTIONS,ITEMNO, PARTNO,

DESCRIPTION, QUANTITY,UNITPRICE from po_item_dmdv

where quantity > ? and unitprice > ?
Q9 select REFERENCE, INSTRUCTIONS,ITEMNO, PARTNO,

DESCRIPTION, QUANTITY,UNITPRICE from po_item_dmdv

Table 13 – OLAP queries

6.4 Performance Evaluation of integration of JSON

with in-memory Store and Query Processing
We perform experiments to verify the orders of magnitude
performance improvement by integrating JSON/OSON processing
with Oracle 12.2 in-memory store. We show that it is feasible to
store JSON text on disk but load its equivalent OSON binary into
in-memory store so that all SQL/JSON queries can be evaluated
using OSON transparently. Furthermore, singleton scalar fields of
JSON document can be projected as columnar format and loaded
into in-memory columnar store (IMC) for genuine columnar
processing. We use NOBENCH benchmark [6] data and run all
queries Q1 to Q11. NOBENCH represents a genuine semi-
structured document collection with several common fields and
many sparse fields. The collection has more than 1000 sparse
fields so that it would exceed 1000 column limit imposed by
Oracle relational storage if relational de-composition of
NOBENCH data were attempted.
The experiment uses 64 million NOBENCH JSON text
documents stored in varchar(4000) column and runs 11
NOBENCH SQL/JSON queries. The experiment is conducted on
system using Intel Xeon with 16 CPU cores and 256GB DRAM
running Linux and Oracle 12.2 Server. The experiment runs in 3
modes.

TEXT-MODE: All JSON text documents are fully cached in
Oracle buffer cache and then run 11 queries over JSON text
stashed in buffer cache.
OSON-IMC-MODE: OSON bytes for all JSON text documents
are fully populated in IMC cache and then run 11 queries over
OSON bytes stashed in Oracle IMEC.
VC-IMC-MODE: Following 3 virtual columns (VC) are added
into the table:
JSON_VALUE(jobj,'$.str1')

JSON_VALUE(jobj, '$.num' RETURNING NUMBER)
JSON_VALUE(jobj, '$.dyn1' RETURNING NUMBER)

235

and load VC into IMC cache so that Q6,Q7,Q10,Q11
the above JSON_VALUE() functions can be processed using
columnar format of scalar result from JSON_VALUE()
Figure 5 shows that OSON-IMEC-MODE has significantly
improved performance compared with TEXT
demonstrates that OSON can be used as an efficient in
JSON binary format to transparently improve ad
query performance despite the JSON is stored on disk in textual
form. The advantage of using OSON as in memory format instead
of being a persistent on disk format is that we can continuously
improve binary encoding format for JSON without maintaining
backward compatibility with on-disk format. Similar to Oracle
IMC approach that avoids introducing new columnar storage,
we’ve learned a key insight, that is, decouple the storage format
from in-memory query friendly format. This insight is a principle
to support trend of No-DB style In Situ query p
where storage format is uncontrollable by database but any in
memory just-in-time data structure can be constructed and cached
for query processing.
Figure 6 shows that VC-IMEC-MODE has significantly improved
performance compared with OSON-IMEC-MODE for Q6, Q7,
Q10, Q11 where the JSON_VALUE() on three
‘$.str1’, ‘$.num’, ‘$.dyn1’ used in these queries have a
been cached in IMC cache so that predicates and projections on
JSON_VALUE() can leverage full performance
IMC architecture [19].
6.5 Performance Evaluation of document

JSON collection with enabled DataGuide maintenance

We use NOBENCH [6] data to measure the performance impact
of maintaining the DataGuide over newly inserted
documents. As discussed in section 3.2, we have integrated
DataGuide maintenance with the IS JSON check constraint
inserting JSON documents has minimal overhead
situation where no schema changes are discovered
an experiment where we insert 10,000 NOBENCH JSON
documents with identical structures. We repeated the experiment
three times, each time in a different operating mode.
In “no-json-constraint” mode, we do insertion without
JSON check constraint; this measures the base cost of
insertion.
In “json-constraint” mode, we do the same insertion on the table
with IS JSON check constraint enforced. This measures the base
cost of insertion with the additional cost of reading and parsing
the JSON data.
 In “json-constraint-dataguide” mode, we turn on JSON
DataGuide maintenance so that in addition to reading and parsing
the JSON data, we also perform JSON path structural
see if any schema changes need to be written to the $DG table of
the JSON search index. Since the documents are identical, no
writes to $DG are necessary after the first document is inserted, so
this measures the cost of validating the dataguide.
Figure 7 shows insertion time for the 3 modes. With IS JSON
check constraint enforced, we measured an overhead of
compared to not checking the constraint. With JSON DataGu
maintenance added, the overhead climbs to 17%. This means
for homogeneous JSON collections the overhead of th
DataGuide is 7.6% versus simply enforcing the IS JSON
constraint.
Our second experiment is to compare dataguide maintenance
overhead for a heterogeneous JSON document collection with a
homogeneous JSON document collection. In the experiment
labelled homo, we inserted 10,000 JSON documents with

so that Q6,Q7,Q10,Q11 which use
the above JSON_VALUE() functions can be processed using
columnar format of scalar result from JSON_VALUE().

MODE has significantly
improved performance compared with TEXT-MODE. This
demonstrates that OSON can be used as an efficient in-memory
JSON binary format to transparently improve ad-hoc SQL/JSON

tored on disk in textual
form. The advantage of using OSON as in memory format instead
of being a persistent on disk format is that we can continuously
improve binary encoding format for JSON without maintaining

Similar to Oracle
IMC approach that avoids introducing new columnar storage,

decouple the storage format

This insight is a principle
le In Situ query processing [23]

where storage format is uncontrollable by database but any in-
time data structure can be constructed and cached

MODE has significantly improved
MODE for Q6, Q7,

Q10, Q11 where the JSON_VALUE() on three singleton fields:
‘$.str1’, ‘$.num’, ‘$.dyn1’ used in these queries have already

C cache so that predicates and projections on
performance power of Oracle

document insertion into

DataGuide maintenance

We use NOBENCH [6] data to measure the performance impact
ver newly inserted JSON

. As discussed in section 3.2, we have integrated the
check constraint so that

has minimal overhead in the common
situation where no schema changes are discovered. We performed

experiment where we insert 10,000 NOBENCH JSON
. We repeated the experiment

three times, each time in a different operating mode.
mode, we do insertion without the IS

s measures the base cost of row

mode, we do the same insertion on the table
with IS JSON check constraint enforced. This measures the base

with the additional cost of reading and parsing

mode, we turn on JSON
reading and parsing

we also perform JSON path structural analysis to
see if any schema changes need to be written to the $DG table of

Since the documents are identical, no
writes to $DG are necessary after the first document is inserted, so
this measures the cost of validating the dataguide.

3 modes. With IS JSON
we measured an overhead of 9.4%

With JSON DataGuide
17%. This means that

the overhead of the
DataGuide is 7.6% versus simply enforcing the IS JSON

Our second experiment is to compare dataguide maintenance
overhead for a heterogeneous JSON document collection with a
homogeneous JSON document collection. In the experiment

, we inserted 10,000 JSON documents with

identical structures. In the experiment labelled
10,000 JSON documents with every document adding a unique
new field so that every insertion of a JSON document will cause a
new JSON path to be inserted into the $DG table. Figure 8 shows
that the heterogeneous collection incurred doubled the insertion
cost of the homogeneous collection.

Figure 3 – Query Time Comparison

REL storages

Figure 4 – Storage Size Comparison

REL

Figure 5 – NOBENCH 11Query Time

and OSON-IMC-MODE

Figure 6 – Q6,Q7,Q10,Q11 11Query Time

IMEC-MODE and VC-

6.6 Performance Evaluation of Transient DataGuide

Aggregation
We loaded 2 million NOBENCH [6]
collection to measure the performance
computation and compare it with the cost of
creation. We ran a JSON_DataGuideAgg()
query with different sample percentage as Q
shows the query execution time with sampling 25%, 50%, 75%,
99% of documents in the JSON collection. As expected,

identical structures. In the experiment labelled hetero, we inserted
10,000 JSON documents with every document adding a unique
new field so that every insertion of a JSON document will cause a

serted into the $DG table. Figure 8 shows
that the heterogeneous collection incurred doubled the insertion

Comparison: JSON, BSON, OSON,

REL storages

Comparison: JSON, BSON, OSON,

NOBENCH 11Query Time between TEXT-MODE

MODE

Q6,Q7,Q10,Q11 11Query Time between OSON-

-IMC-MODE

6.6 Performance Evaluation of Transient DataGuide

NOBENCH [6] JSON documents in a
to measure the performance of transient dataguide

the cost of persistent dataguide
JSON_DataGuideAgg() SQL aggregation

ntage as Q1 in Table 9. Figure 9
shows the query execution time with sampling 25%, 50%, 75%,
99% of documents in the JSON collection. As expected, the

236

execution time is linear with the number of sample
compare the dataguide query execution time from t
with the creation time for the JSON search index
a persistent dataguide over the collection. The persistent
dataguide takes 27% more time than the transient dataguide. This
is expected because both of them performed the same
computation processing over almost the same number of samples,
but the persistent dataguide did the additional work
the information to the $DG table.

7. Future Work

Current OSON format is self-contained and
resembling a row format without relying on central schema
registration and maintenance. We will work on OSON set
encoding resembling a columnar format, however,
on central schema definition and assuming homogenous instance

collection. This is different from the design of Dremel [24] which
is a columnar encoding of hierarchically nested
to a fixed homogenous hierarchical schema.
[24] schema allows optional fields in the schema, it assumes
object field of all object instances within a collection
fixed position and having the same datatype. For example, it
cannot support the case that in one object instance, field ‘name’ is
a string, in second object instance, field ‘name’ is an integer, in
third object instance, field ‘name’ is a nested object
object instance, field ‘name’ is an array. However, such
heterogeneous object instance collection is allowed in
collection. Therefore, we want our OSON set format to be able to
handle both homogeneous and heterogeneous JSON collections
for the in-memory columnar store. Set OSON encoding may
explore homogeneity for collection encoding if it can.
example, the common field-id-name dictionary segment
extracted from each OSON instance and merged into a single
dictionary in the in-memory store. This would
consumption and improve query performance because field name
to id mapping can be done once for the entire in-
Furthermore, the DMDV generated by JSON DataGuide
structurally similar to the wide table [30]. Having many NULL
columns and repeated master records per detail record, DMDV is
ideal for in-memory columnar dictionary encoding and query
processing. We will explore the design of encoding JSON
collection as columnar DMDV format and loaded
columnar store.
In summary, our vision is: On-disk OSON is instance encoded
and is self-contained and immune from schema birth and
evolution problem to support ‘Schema-less for write’
requirement. In-memory OSON is set encoded
Data-Guide and is non-self-contained to support
for declarative query’ SQL requirement.

Figure 7 – insertion Time among no-json-chcck, json

json-check with dataguide on

samples used. We then
from the 99% sample

the JSON search index, which computes
the collection. The persistent

dataguide takes 27% more time than the transient dataguide. This
of them performed the same dataguide

over almost the same number of samples,
additional work of persisting

contained and instance based
resembling a row format without relying on central schema

We will work on OSON set
encoding resembling a columnar format, however, without reply

homogenous instance

different from the design of Dremel [24] which
encoding of hierarchically nested data conforming

 Although Dremel
[24] schema allows optional fields in the schema, it assumes an

bject instances within a collection having a
having the same datatype. For example, it

cannot support the case that in one object instance, field ‘name’ is
a string, in second object instance, field ‘name’ is an integer, in

instance, field ‘name’ is a nested object, in fourth
. However, such

heterogeneous object instance collection is allowed in a JSON
e want our OSON set format to be able to

neous and heterogeneous JSON collections
Set OSON encoding may

explore homogeneity for collection encoding if it can. For
name dictionary segments can be

merged into a single
memory store. This would reduce memory

consumption and improve query performance because field name
-memory store.

he DMDV generated by JSON DataGuide is
structurally similar to the wide table [30]. Having many NULL
columns and repeated master records per detail record, DMDV is

memory columnar dictionary encoding and query
l explore the design of encoding JSON

format and loaded into in-memory

is instance encoded
contained and immune from schema birth and

less for write’ No-SQL
OSON is set encoded based on JSON

support ‘Schema-Rich

chcck, json-check,

on

Figure 8 – Insertion Time of Homogenous Versus

Heterogeneous Docs with enbled D

Figure 9 – Query Time for computing

DataGuide Aggregation

8. Conclusion

Without JSON DataGuide support, users who adopt a polyglot
persistence strategy [7] face two worlds: the relational world with
a powerful query language (SQL) but with a requirement to
carefully specify and manage schemas, and the NoSQL world
with more agile application development and f
but with limited query capabilities. OLTP applications can use a
NoSQL database to achieve fast document ingestion. However,
afterwards, a relational schema needs to be developed to allow the
data to be moved to an RDBMS for SQL analyti
JSON DataGuide and OSON binary format
us that the SQL and NoSQL worlds can be integrated, allowing
users to manage both relational data and flexible schema data in a
single database engine. The JSON DataGuide offers users
schema-GPS to write schema validated query: data schema goes
from being hidden inside application data access code to being
exposed via the familiar relational model well supported by many
tools. OSON format allows JSON to be queried with efficiency
that approaches that of schema-based relational tables. Loading
OSON implicitly in memory as generic JSON query friendly
format have transparently improved quer

9. Acknowledgements

We thank Vikas Arora, Asha Makur, Cetin Ozbutun, Mark Drake,
George Lumpkin, for SQL/JSON product direction and
development management support; Thank Prakashkumar
Thiagarajan, Alfonso Colunga, and Rahul Kadwe for
implementation; Thank Aurosish M
Allison Holloway, Jesse Kamp, Tirthankar
Mukherjee, Vineet Marwah for supporting in
column expressions; Thank Brian Chesebro
Indira Patil, Manoj Sahoo for performance
Dieter Gawlick for evangelizing the concept of flexible
data. Thank Oliver Kennedy, Boris Glavic for evangelizing future
work on derivation of Dataguide from data with uncertainty
provenance tracking.

of Homogenous Versus

enbled DataGuide

Query Time for computing Transient JSON

DataGuide Aggregation

users who adopt a polyglot
persistence strategy [7] face two worlds: the relational world with
a powerful query language (SQL) but with a requirement to
carefully specify and manage schemas, and the NoSQL world
with more agile application development and fast data ingestion,
but with limited query capabilities. OLTP applications can use a

database to achieve fast document ingestion. However,
afterwards, a relational schema needs to be developed to allow the
data to be moved to an RDBMS for SQL analytics. Adding the
JSON DataGuide and OSON binary format to the RDBMS shows
us that the SQL and NoSQL worlds can be integrated, allowing

ional data and flexible schema data in a
single database engine. The JSON DataGuide offers users a

to write schema validated query: data schema goes
from being hidden inside application data access code to being
exposed via the familiar relational model well supported by many
tools. OSON format allows JSON to be queried with efficiency

based relational tables. Loading
OSON implicitly in memory as generic JSON query friendly
format have transparently improved query performance.

Cetin Ozbutun, Mark Drake,
George Lumpkin, for SQL/JSON product direction and
development management support; Thank Prakashkumar

, and Rahul Kadwe for helping
; Thank Aurosish Mishra, Shasank Chavan,

, Tirthankar Lahiri, Niloy
for supporting in-memory virtual

Brian Chesebro, Srinivas Kareenhalli,
Indira Patil, Manoj Sahoo for performance experiment; Thank

for evangelizing the concept of flexible schema
liver Kennedy, Boris Glavic for evangelizing future

from data with uncertainty and

237

10. REFERENCES

[1] P. Atzeni, C.S. Jensen, G. Orsi, S. Ram, L. Tanca, R.
Torlone: The relational model is dead, SQL is dead, and I
don’t feel so good myself. SIGMOD Record, 42(2):64-68,
2013

[2] K. Beyer, R. Cochrane, V. Josifovski, J. Kleewein, G. Lapis,
G.M.Lohman, R.Lyle, F. Özcan, H. Pirahesh, N. Seemann,
T. C. Truong, B.V. Linden, B. Vickery, C. Zhang: System
RX: One Part Relational, One Part XML. SIGMOD
Conference 2005: 347-358

[3] R. Murthy, Z. H. Liu, M. Krishnaprasad, S. Chandrasekar, A.
Tran, E. Sedlar, D. Florescu, S. Kotsovolos, N. Agarwal, V.
Arora, V. Krishnamurthy: Towards an enterprise XML
architecture. SIGMOD Conference 2005: 953-957

[4] R. Cattell: Scalable SQL and NoSQL data stores. SIGMOD
Record, 39(4):12-27, 2010.

[5] Chen P.: The Enity-Relationship Model: Toward a Unified
View of Data. VLDB 1975: 173

[6] Chasseur, C; Li Y; Patel, J: Enabling JSON Document Stores
in Relational Systems . WebDB 2013

[7] Fowler, M; Pramod Sadalage, P: NoSQL databases and
Polyglot Persistence: http://martinfowler.com/articles/nosql-
intro

[8] Jagadish, H: Making Database Systems Usable. SIGMOD
2007 Keynotes

[9] G. Grafe, Query Evaluation Techniques for Large Databases,
in ACM Computing Surveys, 25(2):73–170, 1993.

[10] JSON: http://www.json.org/

[11] Z. H. Liu. "Object-Relational Features in Informix Internet
Foundation."Informix technical notes. 9.4(Q4 1999):77-95.

[12] JSONiq: http://www.jsoniq.org/

[13] Stonebraker,M;, Brown,P; Moore, D. Object-Relational
DBMSs, Second Edition Morgan Kaufmann 1998

[14] Protocol Buffers: http://code.google.com/p/protobuf/

[15] Avro http://avro.apache.org/docs/1.7.5/spec.html

[16] BSON http://bsonspec.org/

[17] Vertica Flex Table
https://my.vertica.com/docs/7.0.x/PDF/HP_Vertica_7.0.x_Fl
ex_Tables.pdf

[18] Z.H.Liu, Y. Lu, H.Chang: Efficient Support of XQuery Full
Text in SQL/XML Enabled RDBMS. ICDE 2014: 1132-
1143

[19] Lahiri, T. et al. Oracle Database In-Memory: A Dual Format
In-Memory Database. Proceedings of the 2015 ICDE. Pp.
1253-1258, 2015

[20] L. Wang, O. Hassanzadeh, S. Zhang, J. Shi: Schema
Management for Document Stores. PVLDB 8(9): 922-933
(2015)

[21] Z. H. Liu, B. Christoph Hammerschmidt, D. McMahon:
JSON data management: supporting schema-less
development in RDBMS. SIGMOD Conference 2014: 1247-
1258

[22] D. Tahara, T. Diamond, D. J. Abadi: Sinew: a SQL system
for multi-structured data. SIGMOD Conference 2014: 815-
826

[23] Y. Tian, I. Alagiannis, E. Liarou, A. Ailamaki, P. Michiardi,
M. Vukolic: DiNoDB: Efficient Large-Scale Raw Data
Analytics. Data4U@VLDB 2014: 1

[24] Dremel: Interactive Analysis of WebScale Datasets S.
Melnik, A. Gubarev, J. J. Long, G. Romer, S. Shivakumar,
M. Tolton, T.Vassilakis VLDB 2010

[25] http://blogs.msdn.com/b/jocapc/archive/2015/05/16/json-
support-in-sql-server-2016.aspx

[26] http://www.info.teradata.com/htmlpubs/DB_TTU_15_00/ind
ex.html#page/Teradata_JSON/B035_1150_015K/TeradataSu
pportJSON.html

[27] https://my.vertica.com/docs/7.0.x/PDF/HP_Vertica_7.0.x_Fl
ex_Tables.pdf

[28] R. Goldman, J. Widom: DataGuides: Enabling Query
Formulation and Optimization in Semistructured Databases.
VLDB 1997: 436-445

[29] http://www.ibm.com/developerworks/data/library/techarticle/
dm-1501sql-json-db2/index.html

[30] Y. Li, J. Patel:WideTable: An Accelerator for Analytical
Data Processing. PVLDB 7(10): 907-918 (2014)

[31] YCSB:https://github.com/brianfrankcooper/YCSB/wiki/Run
ning-a-Workload

[32] Z.H. Liu, D. Gawlick: Management of Flexible Schema Data
in RDBMSs - Opportunities and Limitations for NoSQL -.
CIDR 2015

238

