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ABSTRACT 

Oracle release 12cR1 supports JSON data management that enables 
users to store, index and query JSON data along with relational 
data. The integration of the JSON data model into the RDBMS 
allows a new paradigm of data management where data is storable, 
indexable and queryable without upfront schema definition. We 
call this new paradigm Flexible Schema Data Management 
(FSDM). In this paper, we present enhancements to Oracle's JSON 
data management in the upcoming 12cR2 release. We present 
JSON DataGuide, an auto-computed dynamic soft schema for 
JSON collections that closes the functional gap between the fixed-
schema SQL world and the schema-less NoSQL world.  We 
present a self-contained query friendly binary format for encoding 
JSON (OSON) to close the query performance gap between 
schema-encoded relational data and schema free JSON textual data. 
The addition of these new features makes the Oracle RDBMS well 
suited to both fixed-schema SQL and flexible-schema NoSQL use 
cases, and allows users to freely mix the two paradigms in a single 
data management system. 

Categories and Subject Descriptors 

H.2.4 [Database Management]: Systems – Relational databases, 
transaction processing. 

General Terms 
Algorithms, Management, Performance, Design, Standardization, 
Languages. 

Keywords 
JSON, SQL/JSON, Schema-less, Flexible Schema, NoSQL, XML, 
SQL/XML. 

1. INTRODUCTION 

Using a ‘schema first, data later’ approach, RDBMS platforms are 
very successful at managing well-structured relational data. 
NoSQL systems [4] are challenging this with a ‘data first, schema 
later or never’ paradigm. The fixed-schema paradigm of relational 

data management, which demands a schema before data can be 
stored and queried, is at odds with the NoSQL world where a 
variety of data in continually changing forms is available from 
diverse data sources. To address these challenges, the Oracle 
12cR1 release supports JSON as a simple and practical example 
of FSDM to unleash the power of schema-less data management 
[21]. It is based on following three engineering principals 
originating from ORDBMS [11, 13]: 

• Storing JSON objects as aggregated, self-described entities 
without shredding them into relational rows and columns. 
That is, embracing the document-object storage model. This 
resolves the “birth pain” usability problem of the schema-
rigid classical RDBMS SQL world [8].  

• Indexing JSON using a schema-agnostic strategy to support 
ad-hoc queries that search both schema and values together. 
That is, extending inverted index technology to index both 
data and schema together [18]. This resolves the problem of 
requiring knowledge of the query workload before an index 
can be defined in fixed-schema systems. 

• Querying JSON using SQL as the inter-document query 
language and SQL/JSON path language as the intra-
document query language [21]. This avoids the problem of 
creating a brand-new set-query language, such as JSONiq 
[12], to query JSON only. 

These three principals have enabled FSDM [32] in RDBMS. 
However, we don't think that the relational model and SQL are 
out-dated [1] due to the demand for FSDM. The strength of the 
relational model [5] is that it avoids imposing a single hierarchy to 
manage data, and the strength of SQL is its ability to deliver 
powerful data analytics with its set-based declarative query 
language. These strengths motivate us to integrate FSDM 
capabilities with the relational model and with SQL. Our key 
insight is this: rather than integrate the two worlds by trying to 
impose a fixed relational schema into which FSD would be 
decomposed, we integrate them by dynamically projecting a 
relational schema continuously derived from collections of FSD 
instances. This logical dynamic schema allows users to view and 
query FSD relationally. That is, a relational schema is not 
constructed as a physical frame to fit the data but rather as a 

logical lens to view the data. We don’t use schema to encode and 
store data, so FSD physical storage is free from the need for 
schema evolution. 
To realize this vision, a relational view over JSON data can be 
defined using the SQL/JSON query construct JSON_TABLE() as 
a virtual function to derive relational rows from JSON data [21]. 
Once JSON relational views are defined, users can write queries 
on top of the relational views to achieve compile time schema 
check with the rich analytic power of SQL fully applied to JSON 
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data. To define such JSON_TABLE() views, users would need to 
figure out the implied schema within a collection of JSON 
instances so that they can write the SQL/JSON paths needed by 
the JSON_TABLE() operator. For relational data, the problem of 
deriving the relational schema from the data and then registering 
the relational schema with the RDBMS is traditionally accepted 
by the developers of the relational application. In FSDM, the 
schema derivation problem is the responsibility of the underlying 
DBMS. The “birth pain” [8] experienced by users in fixed-schema 
systems is resolved by having an FSD enabled RDBMS that 
automatically computes and maintains the implied schema for an 

FSD collection and assists users in defining relational views to 

allow SQL access to the data.  
The computed schema must be dynamic: it must continually 
evolve as instances are added to or changed within FSD 
collections. For a JSON collection, the automatically computed 
schema should include a derivation of all the hierarchical 
structural paths that exist in that JSON collection, as well as the 
data types and statistics of leaf scalar values.  We call this 
automatically-maintained schema the JSON DataGuide. We 
support two forms of the JSON DataGuide: persistent and 
transient. The persistent DataGuide is provided as a component of 
a schema agnostic JSON search index [21]. The transient schema 
is provided as a new SQL aggregate function over any JSON 
collections that can be computed from SQL declaratively. The 
concept of DataGuide has introduced a powerful new paradigm: 
“write without schema, read with schema”. That is, users can store 
data without providing a schema definition, but they can still 
query the data as if a schema were defined and registered to the 
system ahead of storing the data. This is the key value proposition 
for the FSD enabled RDBMS. 
The RDBMS uses relational schema information to encode data 
for storage and to decode data for query. The row format is 
optimized for fast query performance. To achieve query 
performance and minimize the storage size, row data is not self-
describing; an external schema describing column meta-data is 
necessary to interpret the columns within the data. An FSD 
enabled RDBMS is not able to rely on column schema to encode 
data. Therefore, it needs an efficient binary format to encode data 
for fast query performance without relying on the existence of a 
central schema for column meta-data. For JSON, we have 
developed a binary format, called OSON (Oracle binary JSON 
encoding), to meet these requirements. OSON is a self-contained, 
compact representation of a tree of structures, arrays, and scalars. 
It's designed to provide rapid navigation to elements of the tree to 
resolve SQL/JSON path expressions. OSON bytes can be encoded 
from JSON text [10], BSON [16] or AVRO [15], and may either 
be stored persistently or loaded and used as structures in memory 
by Oracle's in-memory database option[19] for fast SQL/JSON 
query processing. 
 
The main contributions of this paper are:  
 
• To bridge the functional gap between the fixed-schema world 

of SQL and the schema-less NoSQL world, we introduce the 
concept of a DataGuide, a logical dynamic soft schema in 
RDBMS. We describe a practical SQL based solution to 
compute and maintain the DataGuide declaratively and 
automatically for both persistent and transient JSON 
collections so that they can be accessed relationally. The key 
idea here is that in an FSD enabled RDBMS, schema is no 
longer static meta-data but rather dynamically and 
continuously derivable via SQL over FSD collections. 

 
• To bridge the performance gap between fixed-schema 

encoding of relational data and schema free JSON textual 
data, we describe a self-contained, compact binary encoding 
of JSON (OSON) which can be an order of magnitude faster 
than textual JSON for supporting SQL/JSON queries. The 
OSON format needs no central schema for column meta-data 
but still gives column data access performance that is close to 
a schema encoded row format. 

 
• To bridge the conceptual gap between SQL and NoSQL 

world, we practically integrate the idea of ‘Schema-less for 

Write’ from NoSQL [4] world and ‘Schema-Rich for 

declarative Query’ from SQL world [5] through 
management of JSON data in a single RDBMS product 
without the need of polyglot persistence [7] . ‘Schema-less 
for write’ resolves the schema birth pain problem [8] and 
continuous schema evolution problem associated with 
classical RDBMS. ‘Schema rich for declarative query’ 
resolves the issue of developing code to discover data 
schema and to procedurally query data associated with pure 
NoSQL data stores. Figure 1 shows our architecture of 
connecting SQL and NoSQL world on top of a single 
RDBMS platform with SQL remains as declarative set query 
language. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 1 – Architecture connecting SQL and NoSQL World 

Outline: Section 2 compares our work to related work. Section 3 
describes the JSON DataGuide in detail. Section 4 describes the 
OSON design in detail. Section 5 describes SQL/JSON 
performance enhancements using OSON. Section 6 presents an 
evaluation of performance. Section 7 discusses future work. 
Section 8 concludes the paper with acknowledgements. 

2. RELATED WORK 

NoSQL vendors [4] have used JSON as a simple semi-structured 
data format for the document object model. RDBMS vendors are 
integrating support for JSON data with their SQL engines, 
including IBM DB2 [29], Microsoft SQL Server [25], TeraData 
[26], Vertica [27] and Oracle 12cR1 [21]. Another popular 
approach is to add a level of abstraction over polyglot persistence 
in middle-tier code. One example of this approach is Sinew [22].  
However, Oracle 12cR2 takes this a step further.  Recognizing 

SQL – Declarative Set Query Language 

Unified Relational Views on top of Virtual Schema 

Schema-Rigid Data 
non-self-contained 
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that the lack of a schema presents a challenge in schema-less 
NoSQL world, Oracle offers the JSON DataGuide, allowing users 
to write queries over JSON collections with a de facto schema 
continuously derived from the instance documents. Concept of 
DataGuide was proposed by researchers in the LORE system [28]. 
Dynamic discovery and extraction of schema from a document 
store was presented in [20]. However, both these prior efforts 
dealt only with pure document store database, not in SQL based 
RDBMS. Our unique contribution is to deeply integrate 
DataGuide as a dynamic schema facility with existing SQL 
mechanisms: view, virtual column, index and aggregation. Our 
JSON DataGuide service provides automatic and customizable 
generation of SQL/JSON JSON_TABLE() based relational views 
for nested hierarchical documents, and virtual columns for 
singleton scalar values.  While the flexible table approach of 
Vertica [40] is limited to singleton scalar fields from JSON 
collection, our approach handles JSON array expansion gracefully 
using the NESTED PATH- construct of JSON_TABLE(). That is, 
the contents of JSON arrays are un-nested automatically and 
become directly available to SQL queries as simple columns.  
Unlike approach in Sinew [22], our JSON DataGuide is fully 
integrated with the Oracle RDBMS kernel and the SQL language. 
We provide support for both persistent and transient dynamic 
schemas. The persistent JSON DataGuide is integrated as a 
component of a schema agnostic JSON search index, ensuring that 
both discovery and search of JSON structures are completely in 
synch. Using a single index, users can discover JSON path 
structures within a collection, as well as what documents within 
the collection have particular path structures and values. The 
transient JSON Dataguide is provided as a SQL aggregation 
function. With this, computing an ad-hoc JSON DataGuide is 
simple, flexible, and declarative, and can be accomplished in one 
SQL statement! 
There are number of popular binary encoding formats for 
hierarchical data objects, among them BSON [16], AVRO [15], 
and Protocol Buffers [14]. None of these is fast enough for all 
query situations, because the serialization formats lack efficient 
random field access, as discussed in Sinew[22]. Like Sinew [22], 
OSON encoding supports efficient random field access. Unlike 
Sinew [22], the OSON format is self-contained and doesn’t rely 
on an external central catalog system to manage attribute ids. We 
have found that depending on such an external system is 
tantamount to maintaining a schema: exactly what users are trying 
to avoid with these NoSQL stores. The OSON format supports 
arbitrary SQL/JSON path navigation query efficiently. The self-
contained format makes OSON as portable as JSON text or BSON 
binaries while still providing rapid random tree navigation; in 
contrast, BSON and textual JSON must be accessed in a serial 
fashion, with at best the ability to perform skip navigation. 
Although tree-encoding for XML is done in DB2 XML storage 
format [2], our OSON design is compact tree format: well-suited 
both as a persistent format and as the basis for an in-memory 
format. Our OSON and virtual column query access is tightly 
integrated with Oracle in-memory database architecture [19]. To 
the best of our knowledge, this is the first industrial paper that 
provides comprehensive SQL solution for providing dynamic 
schema support for JSON and in-memory query processing for 
JSON and thus towards the direction of closing schema and 
performance gap between SQL world and NoSQL world.  
The comparison of OSON format and Dremel [24] representation 
is discussed in section 7. 

3. JSON DataGuide 

3.1 JSON DataGuide Conceptual Description 

JSON is a language-neutral representation of data structures and 
scalar types common across different programming languages. 
The JSON data model is hierarchical and can be regarded as 
consisting of three types of nodes arranged in a node tree. The 
three node types are JSON objects, JSON arrays, and JSON 
scalars. JSON objects are structures consisting of key/value pairs 
with string keys and node values. JSON arrays are ordered lists of 
node values. JSON objects and JSON arrays are both considered 
container nodes. JSON scalars are always leaf values and may be 
strings, numbers, booleans, or null. A JSON document can be 
parsed and constructed as a JSON DOM tree using the JSON data 
model. SQL/JSON path language semantics [21] are based on the 
JSON DOM model. 
A JSON DataGuide for a single JSON document instance is 
computed by extracting the container node skeleton of the JSON 
DOM tree. Leaf scalar values are replaced by data type and 
length. A JSON DataGuide for a collection of JSON documents is 
simply a merge of the instance DataGuides across all documents 
in the collection. The merge union process removes duplicate tree 
paths if they have the same tree node type for each step in the 
path. Paths having different tree node types at any step are 
considered different. Leaf scalar data information is merged by 
replacing conflicting data types with a more general type, and 
using the maximum length. 
As an example of path merge, in one JSON document, path 
‘$.a.b’ with node “b” is a scalar tree node type, while in another 
JSON document, path ‘$.a.b’ with node “b” is an object node 
type. The merged JSON DataGuide keeps both paths: ‘$.a.b’ as a 
scalar node type and as an object node type, respectively. As an 
example of merging scalar nodes, in one JSON document, path 
‘$.a.b’ is a number, while in another JSON document, path ‘$.a.b’ 
is a string. The resulting JSON DataGuide keeps one structural 
path ‘$.a.b’ as scalar tree node type with string as leaf data type.  
The JSON collection is stored in a column with an ‘IS JSON’ 
check constraint created. For such a persistent JSON column, we 
support a persistent JSON DataGuide that is incrementally 
maintained as new JSON documents are inserted into the 
collection.  
 
3.2 Persistent JSON DataGuide Maintenance 
3.2.1 DataGuide Evolution with DML 
Consider a JSON column JDOC of a table PO storing the 
following purchaseOrder JSON documents. There is a nested 
detail hierarchy “items” under the master “purchaseorder” in 
each document. 
 
DID JDOC 

1 {"purchaseOrder":{"id" : 1, "podate" : "2014-09-08", 

"items" :  

[ {"name":"phone" , "price" : 100, "quantity" : 2},  

  {"name":"ipad", "price" : 350.86, "quantity" : 3}]}} 

2 {"purchaseOrder":{"id" : 2, "podate" : "2015-03-04", 

"items" :  

[ {"name":"table" , "price" : 52.78, "quantity" : 2},  

  {"name":"chair", "price" : 35.24, "quantity" : 4}]}} 

Table 1 – JSON PurchaseOrder Collection 

A persistent JSON DataGuide is maintained as a component of the 
JSON search index. The JSON search index is a general purpose 
schema agnostic index created on a JSON column by maintaining 
an inverted index for every JSON field name and every leaf scalar 
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value (strings are tokenized into a set of keywords to support full-
text searches). The index allows ad-hoc SQL/JSON path query 
predicates such as JSON_EXISTS(), JSON_TEXTCONTAINS(), 
and JSON_VALUE() to be evaluated efficiently [21] over the 
JSON collection.  The JSON search index is the most natural 
place to support JSON DataGuide maintenance because this index 
is incrementally maintained when documents in the index JSON 
column are added, removed, or replaced. To minimize the 
overhead, the DataGuide maintenance is incorporated directly 

into the processing of the IS JSON check constraint. In the 
common case where a new JSON instance doesn’t result in any 
new path structures or scalar node changes, the DataGuide 
processing terminates without the need to call any persistent 
DataGuide processing module. 
The JSON search index internally stores the persistent JSON 
DataGuide in a relational table $DG. Using the data from Table 1 
as an example, the contents of the $DG table are shown in Table 
2. The $DG table captures all the distinct paths in the JSON 
document collection with its leaf type.  
Path Type 
$.purchaseOrder object 
$.purchaseOrder.id number 
$.purchaseOrder.podate string 
$.purchaseOrder.items array 
$.purchaseOrder.items.name array of string 
$.purchaseOrder.items.price array of number 
$.purchaseOrder.items.quantity array of number 

 
Table 2 – JSON DataGuide Relational Format in $DG 

To show how the DataGuide evolves in the face of new instances, 
consider what happens when the document shown in Table 3 is 
added to the collection. Note a new child object “parts” is added 
below the existing “items” array – this causes the DataGuide to 
grow deeper. A new top-level “foreign_id” field is also added. 
  
DID JDOC 

3 {"purhcaseOrder":{"id" : 2, "podate" : "2015-06-03", 

 "foreign_id" : "CDEG35", 

"items" :  

[ {"name":"TV" , "price" : 345.55, "quantity" : 1, 

  "parts" : [ 

              {"partName" : "remoteCon", "partQuantity" : "1"}, 

              {"partName" : "antenna", "partQuantity" : "2"} 

            ] 

 },  

 {"name":"PC", "price" : 546.78, "quantity" : 10, 

  "parts" : 

    [ 

         {"partName" : "mouse", "partQuantity" : "2"}, 

         {"partName" : "keyboard", "partQuantity" : "1"}, 

    ] 

  } 

]}} 

Table 3 – introducing a new child hierarchy 

JSON search index maintenance inserts 4 new rows into $DG (see 
Table 4) to reflect the new path structures encountered for the 
document shown in Table 3. 
 
Path Type 
$.purchaseOrder.items.parts array of array 
$.purchaseOrder.items.parts.partName array of string 
$.purchaseOrder.items.parts.partQuantity array of string 
$.purchaseOrder.foreign_id string 

Table 4 – four new rows added into $DG 

Now consider what happens when the document show in Table 5 
is added to the collection. A new hierarchy “discount_items” is 

added as a sibling of existing node “items” – this causes the 
DataGuide to grow wider.  
 
DID JDOC 

4 {"purchaseOrder":{"id" : 98, "podate" : "2015-07-04", 

"items" :  

[ {"name":"CD" , "price" : 5.55, "quantity" : 10, 

 },  

 {"name":"DVD", "price" : 6.78, "quantity" : 20, 

  } 

], 

"discount_items": 

         [  

          {"dis_itemName" : "CPH", "dis_itemPrice" : 105.52, 

"dis_itemQuanitty":2,  

            "dis_parts" : 

              [ 

                {"dis_partName" : "phonejack", "dis_partQuantity" : 3}, 

                {"dis_partName" : "plug", "dis_partQuantity" : 2}, 

              ] 

          }, 

          {"dis_itemName" : "Printer", "dis_itemPrice" : 121.33,  

           "dis_itemQuanitty":9, 

           "dis_parts" : 

              [ 

                {"dis_partName" : "toner", "dis_partQuantity" : 5}, 

                {"dis_partName" : "paper", "dis_partQuantity" : 20}, 

              ] 

          } 

         ] 

}} 

Table 5 - introducing a new sibling hierarchy 

JSON search index maintenance inserts 7 new rows into $DG (see 
Table 6) to reflect the new path structures encountered for the 
document shown in Table 5. 
Path Type 
$.purchaseOrder. discount_items array of array 
$.purchaseOrder. discount_items.dis_parts array of array 
$.purchaseorder. 
discount_items.dis_parts.dis_partName 

array of string 

$.purchaseOrder. 
discount_items.dis_parts.dis_partQuantity 

array of number 

$.purchaseOrder.discount_items.dis_itemName array of string 
$.purchaseOrder.discount_items.dis_itemPrice array of number 
$.purchaseOrder.discount_items.dis_itemQuanitty array of number 

Table 6 - seven new rows added into $DG 

In addition to storing path and type information, the $DG table 
also has columns that store statistical information for a path such 
as frequency, minimum and maximum values, and number of null 
values. These statistical columns are populated when the JSON 
search index statistics are computed. 
 
3.2.2 DataGuide Representation 
The Persistent dataGuide can be presented in two forms: a flatten 
form as what is stored in $DG table and a hierarchical form with 
nested structures. Both forms are encoded as a JSON document 
that can be returned as a CLOB by invoking a PL/SQL function 
getDataGuide() from persistent indexing layer. In particular, this 
function can aggregate the information from the $DG table into a 
hierarchical format represented as a single JSON document. Users 
can annotate the computed DataGuide by picking fields, re-
naming column names, changing the maximum length of data 
types, etc., and then call CreateViewOnPath() with the annotated  
DataGuide to generate customized relational views discussed in 
section 3.3.2. 
 
3.3 Virtual Relational Schema for JSON 
To realize the benefit of ‘write without schema, read with 
schema’, Oracle provides PL/SQL procedures to assist users in 
projecting relational views and virtual columns of the data, driven 
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by information from the JSON DataGuide. The DataGuide is used 
as a dynamic schema to automatically compose SQL/JSON 
operators, making JSON data appear as if it were physically 
shredded and stored in master detail relational tables.  
3.3.1 Adding Virtual Columns (VC) using JSON_VALUE() 
With JSON DataGuide computed, user can run a PL/SQL 
procedure AddVC() to automatically add virtual columns to the 
base table. Each virtual column is defined using JSON_VALUE() 
to project a singleton scalar value out of the JSON document. 
Using the JSON DataGuide presented in section 3.2 as a starting 
point, Table 7 shows the definition of 3 virtual columns that are 
added to PO table via AddVC() calls. These virtual columns can 
be referenced in a query as if these fields in base JSON document 
were physically shredded and stored in them. 
 
VC Name VC  
JCOL$id JSON_VALUE(JCOL,’$.purchaseOrder.id 

returning number) 

JCOL$podate JSON_VALUE(JCOL,’$.purchaseOrder.podate’ 

returning varchar(16)) 

JCOL$foreign_id JSON_VALUE(JCOL,’$.purchaseOrder.foreign_id 

returning varchar(8)) 

Table 7 – JSON_VALUE() Virtual Columns 

3.3.2 Creating De-normalized Master-Detail Views (DMDV) 

using JSON_TABLE() 
Virtual columns can only project singleton scalar values; that is, 
values having a one-to-one relationship with document instances. 
Often, however, scalar values relevant to queries are nested within 
arrays and have a many-to-one relationship with document 
instances. If shredded into relational tables, the most natural way 
to view them is to form a left outer join of master record to detail 
records so that fields from a master record are repeated for each 
detail record. The outer join is used instead of an inner join to 
ensure that master records are captured in the view even if there 
are no matching detail records. In cases where there are more than 
one sibling detail arrays to be joined for the same master record, 
fields from the sibling records can be exposed using a union join. 
A union join is equivalent to a full outer join with an impossible 
condition, such as 0=1. By design, the default of the 
JSON_TABLE() NESTED PATH clause is to un-nest JSON arrays 
with left-outer join semantics for child hierarchies and do a union 
join for sibling hierarchies. With JSON DataGuide computed, user 
can run a PL/SQL procedure CreateViewOnPath() to 
automatically create a JSON_TABLE() view. We call such views 
as De-normalized Master Detail Views (DMDV) because the 
output is the same as the output of a view over physically 
decomposed master detail tables using the outer join and union 
constructs that we just described. DMDV is structurally similar to 
the wide table described in [30]. Table 8 shows the definition of a 
DMDV generated by calling CreateViewOnPath(‘$’) . Users can 
also generate a DMDV view for a particular path. For example, 
users can generate a DMDV view for the items detail branch 
alone by executing CreateViewOnPath(‘$.purchaseOrder.items’). 
If JSON index statistics are collected, then frequency information 
can be passed to CreateViewOnPath() to project fields only if they 
occur more frequently than a given threshold value. In this way, 
sparse and outlier fields can be eliminated as columns of the 
DMDV. 
CREATE VIEW PO_RV AS  

SELECT PO.DID, JT.* 

FROM PO, JSON_TABLE("JCOL" FORMAT JSON, '$'  

COLUMNS  

 "JCOL$id" number path '$.purchaseOrder.id',  

 "JCOL$podate" varchar2(16) path '$.purchaseOrder.podate', 

 "JCOL$foreign_id" varchar2(8) path '$.purchaseOrder.foreign_id',  

 NESTED PATH '$.purchaseOrder.items[*]' /*NP1*/ 

  COLUMNS ( 

   "JCOL$name" varchar2(8) path '$.name',  

   "JCOL$price" number path '$.price',  

   "JCOL$quantity" number path '$.quantity'), 

   NESTED PATH '$.parts[*]'  /*NP2*/ 

     COLUMNS ("JCOL$partName" varchar2(16) path '$.partName', 

                         "JCOL$part Quantity" varchar2(1) path '$.partQuantity'), 

  NESTED PATH '$.purhcaseorder.discount_items[*]'  /*NP3*/ 

    COLUMNS (  

      NESTED PATH '$.dis_parts[*]'  /*NP4*/ 

        COLUMNS ("JCOL$dis_partName" varchar2(16) path '$.dis_partName', 

                            "JCOL$dis_partQuantity" number path '$.dis_partQuantity'), 

                            "JCOL$dis_itemName" varchar2(8) path '$.dis_itemName', 

                           "JCOL$dis_itemPrice" number path '$.dis_itemPrice', 

                           "JCOL$dis_itemQuanitty" number path '$.dis_itemQuanitty') ) JT 

/* NP1 & NP2 are left outer join, so do NP3 & NP4; NP1 & NP3 are union join */ 

Table 8 – JSON_TABLE() DMDV View 

3.4 Transient JSON DataGuide Computation 
Note, persistent JSON DataGuide is additive, it does not remove 
paths for documents that are deleted. However, a JSON 
DataGuide can be computed dynamically by executing a SQL 
aggregation function JSON_DataGuideAgg() over the result of 
any SQL query returning a set of JSON documents.  
JSON_DATAGuideAgg() is implemented using user defined 
aggregation framework from ORDBMS [11,13]. It computes and 
returns JSON DataGuide as a single JSON document in either 
flatten form or hierarchical form as discussed in section 3.2.2. 
Table 9 shows SQL queries that compute transient JSON 
DataGuide. Q1 computes the DataGuide by sampling 50% of 
JSON documents in a JSON collection. Q2 computes the 
DataGuide group by their insertion date. Q3 computes the 
DataGuide for a filtered subset of JSON documents that have 
JSON path ‘$.purchaseOrder.foreign_id’. Integrating JSON 
DataGuide as a SQL aggregation function provides declarative 
way to compute DataGuide for JSON collection that may not be 
stored in Oracle. For example, Oracle external table can map file 
system data as virtual relational table on top of which JSON 
DataGuide can be computed and DMDV view can be created for 
query. Oracle SQL/JSON query support can transparently read 
from external virtual table and thus enables the In-Situ Query 
processing over JSON collection. 

 
Q1 Select json_dataguideagg(jcol) from po sample (50) 

Q2 Select json_dataguideagg(jcol) from po  

group by insertion_date  

Q3 Select json_dataguideagg(jcol) from po  

where json_exists(jcol, ‘$.purchaseOrder.foreign_id’) 

Table 9 – Example queries computing JSON DataGuide 

Transiently 

4.  JSON Binary Format: OSON 

4.1  OSON Design Criteria  

In the classic relational approach to data management, schema 
information is separated from instance data, with the schema 
being defined in a central dictionary and then used to encode data 
instances for storage. In contrast, flexible storage models typically 
store metadata together with data instances, such that instances 
can be decoded and understood without the need to refer to a 
central dictionary. Self-contained JSON document instances can 
be more easily distributed, replicated, imported, exported, evolved, 
without the need for costly synchronization.  This property of self-
containment is the first design criteria for our binary  JSON 

format. 
BSON [16] is self-contained and is readable without costly textual 
parsing. The BSON format has a symmetric structure for nested 
child containers. Because of this, child containers can be extracted 
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or inserted by simply copying byte ranges, a potentially big 
advantage when doing projections. Because containers have 
leading length words, a BSON decoder can skip unneeded child 
containers without decoding all of their descendants. The cost of 
nested symmetry is that the BSON format needs to store field 
names at each object level, and must repeat them for elements 
within arrays of objects. JSON path evaluations involving field 
name searches require relatively expensive string comparisons. A 
lesser problem is that field names are null terminated, 
necessitating a byte scan for the end of the field name string 
during searches. Finally, BSON, like JSON, is a stream format 
potentially requiring that an entire instance be read to resolve a 
JSON path, or, worse, to determine that it's not present in the 
instance. Enabling readers to jump inexpensively to named fields 
and array locations is our second design criteria. 
JSON scalars can be numbers, strings, or Booleans. In binary 
formats this set is commonly extended to include date, timestamp, 
and raw data types. The SQL/JSON path language and SQL/JSON 
operators such as JSON_TABLE() support type-aware operations, 
such as type-based comparison semantics and arithmetic 
expressions. In a binary format, scalars can be stored in a format 
native to the database engine for maximum performance, 
especially when values pass between the JSON and SQL worlds. 
Encoding scalar values in the same binary format as our SQL 

scalar columns is our third design criteria. 

4.2  OSON Format: Three-Segment Architecture 

The OSON format separates a JSON document into 3 segments: a 
field-id-name dictionary segment, a tree node navigation segment 
and a leaf scalar value segment with navigation segment 
containing references to dictionary and value segment as shown in 
Figure 2. This division is done to reflect the different loading and 
access properties.  
 
 
 
 
 
 
 
 
 

Figure 2 – OSON Format Architecture 

4.2.1 Field-id-name-dictionary segment 

Each unique field name within a JSON document is assigned an 
integer field name identifier and is stored only once so that 
multiple references to the same field name are replaced with its 
field name identifier. Because the identifiers take just a few bytes, 
the OSON encoding typically saves significant space when the 
original document has a nested array of sub-objects, or encodes a 
recursive hierarchical structure. The biggest benefit of assigning 
identifiers is that they can facilitate rapid navigation to a child 

field given by performing a binary search using integer 

comparisons. OSON stores the field name identifiers for each 
object in sorted order to support this type of access.  
The field-id-name dictionary segment is responsible for providing 
a fast dictionary mapping between a field name and a field name 
identifier. The assignment of a field name identifier to a field 
name is done arbitrary using a hash function. The OSON encoder 
applies the hash function to each distinct field name referenced in 
a JSON document and builds a hash table containing all such 
mappings for the document. The hash table is compacted into a 

hash-id-array. Each array entry stores the field name and the hash 
id of the field name. The entire hash-id-array is sorted by the hash 
ids. The ordinal position of an array entry containing a field name 
is used as the field name identifier for that field name. To look up 
a field name identifier given a field name, we first apply the hash 
function to the field name to get its hash id. Then we perform a 
binary search on the hash-id-array using the hash id to locate the 
array entries having that hash id. Finally, we perform a field name 
string match to resolve any possible hash collisions.   
To avoid repeatedly calling the hash function on field names and 
to avoid field name identifier lookup altogether, we have applied 
the following optimizations to the SQL/JSON query compilation 
and execution time. 
 
• During the SQL query compilation phase, all SQL/JSON 

paths are compiled. The same hash function is called on all 
distinct field name references in all SQL/JSON paths so that 
their corresponding hash ids are stored in the SQL execution 
query plan.  

• During SQL execution time, as the SQL/JSON path query is 
applied to each OSON instance, we use the pre-computed 
hash id and the field name that are stored in the execution 
plan to find the field name identifier using the field-id-name 
dictionary segment. This is done once for the OSON 
instance; afterwards, all field name searches are efficiently 
executed as binary searches using the instance-specific field 
name identifier.  

• Finally, when the SQL/JSON path query is applied to the 
next OSON instance, the mapping determined on the 
previous OSON instance is checked to see if it matches the 
next instance. This single-row look-back is very effective on 
collections of structurally homogeneous JSON document 
instances, because the same field name identifiers are most 
likely used repeatedly, and therefore the cost of field-id 
resolution can often be skipped. 

 
4.2.2 Tree-node Navigation Segment 

The tree node navigation segment of OSON represents the JSON 
document as a tree-like skeleton of nodes that supports navigation 
from a parent node to its child nodes. There are 3 types of JSON 
tree nodes: JSON object nodes, JSON array nodes, and JSON 
scalar nodes. Each node is identified by its byte offset location 
from the beginning of the tree-node navigation segment. The byte 
offset is used as the tree node address and is stored in the child 
array of the parent tree node to jump to the child tree node.   Each 
node has a common tree node header byte storing the type of the 
node (Object, Array, Scalar), and property flags that vary 
depending on the type of the node.  
• For a JSON object node, the child array stores all of its 

children’s field name identifiers and their corresponding tree 
node addresses. The array is sorted by the field name 
identifiers to support rapid navigation to the child node given 
its field name. 

• For a JSON array node, the child array stores all of its 
children’s node addresses. The child in Nth array position is 
accessed by taking the child node's offset from the Nth 
position in the array. 

• For a JSON scalar node, this records the data type of the 
scalar value and an offset into the leaf-scalar-value segment 
where the data bytes are located.  JSON boolean and null 
values are directly encoded as bit flags in the JSON scalar 
node and therefore have no offset. For fixed length scalar 
values, the length is inferred from the data type. For variable 

1:po;2:id; 
3:podate;4:items
… 

Field-id-

name 

Dictionary 

Segment 

1;2014-09-
08;phone;100;2;i
pad;350.86;3;.... 

Leaf-Scalar-

Val-Segment 

Tree Navig Segment 
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length scalar values, bit flags are used to indicate if the 
length is encoded using one, two, or four bytes. 

 
4.2.3 Leaf-scalar-value segment 

The leaf-scalar-value segment is comprised of all leaf values in a 
JSON object instance. The bytes representing the values are 
concatenated together to form this segment. Each leaf scalar value 
is found by its byte offset from the beginning of the segment. The 
byte offset is used as the leaf value address and is stored in the 
JSON scalar node. For variable length data items, a length is 
stored before its value. For fixed length data, no length is stored. 
By default, OSON uses the Oracle binary number format to 
encode JSON numbers, minimizing the cost of using these values 
in SQL. JSON numbers can also be encoded using IEEE double-
precision format, or encoded as strings in a canonical format. 
 
No binary format is optimally efficient in its support for queries 
and updates. In designing OSON, we opted to maximize path 
query efficiency, so partial update support is limited to changes of 
existing leaf scalar values. However, we will work on enhancing 
OSON format to make intelligent trade-off to be more update 
friendly to handle future SQL/JSON partial object update 
language requirement. 
 

5. SQL/JSON Query Performance 

Improvement 

 
5.1  JSON DOM Path Engine using OSON based JSON 

DOM implementation 
To evaluate SQL/JSON operators on textual JSON documents, we 
developed a JSON path engine that operates in a streaming 
fashion, using a series of events produced by the JSON text 
parser. These events allow evaluation of SQL/JSON operators 
without the need to materialize JSON objects in memory as 
document object model (DOM) instances. Generating the events 
requires costly text parsing. Worse still, evaluation of more 
complex operators requires the engine to memorize event 
sequences, in effect partially or completely negating the benefit of 
avoiding DOM construction. These operators include the 
JSON_TABLE() virtual table [21] as well as complex 
JSON_EXISTS predicates. In many cases it’s simpler and more 
efficient to evaluate SQL/JSON operators on a DOM tree 
instance. The OSON format allows DOM read operations directly 
against the serialized instance, avoiding the need for a costly parse 
and DOM construction. Each JSON DOM tree node address is an 
offset within the tree-node-navigation segment of OSON, so 
DOM read operations can jump directly to desired nodes using the 
offsets in lieu of the machine pointer dereferences. This allowed 
us to extend the path engine so that it is capable of operating 
directly on DOM instances, without sacrificing efficiency, and 
without the need for memorizing events. 
 
The DOM version of the JSON path engine calls the following 
interfaces to evaluate each step of a JSON path step and apply any 
predicate expression underneath it: 
• JsonDomGetNodeType(treeNodeAddress) 

• JsonDomGetFieldValue(treeNodeAddress, fieldNameIdentifier) 

• JsonDomGetArrayElement(treeNodeAddress, arrayIndexRange) 

• JsonDomGetScalarInfo(treeNodeAddress) 

 
For path steps that require finding a child node given the name of 
a field, the path evaluator invokes JsonDomGetFieldValue(). The 

OSON DOM implements this by performing a binary search for 
the field name identifier over the child node array and then 
returning the corresponding child node address. For wildcard field 
steps, it simply returns the array containing all the child node 
addresses.  
For array index path steps, the path evaluator invokes 
JsonDomGetArrayElement(). The OSON DOM implements this 
by directly accessing the desired position in the array and 
returning the child node. 
In either case, the path engine then evaluates any predicate 
expression for the current step using each returned child node 
address as the context node. If the predicate evaluates to true, the 
path engine can recursively evaluate the next path step by again 
using the child node address as the context node. 
The path engine invokes JsonDomGetScalarInfo() for each path 
predicate expression that reads a scalar value and applies built-in 
functions or range comparison operators as necessary. The OSON 
DOM implements this by returning a pointer within the leaf-
scalar-value segment, computed using the offset from the node 
table. 
The JSON_TABLE virtual function is designed as a built-in SQL 
iterator that supports the row source API [9], with 
implementations of start(), fetchNextBatch(), and close(). For 
each input document, a set of relational rows are computed by the 
JSON table driver and returned in response to  fetchNextBatch() 
calls.  The JSON table driver calls the DOM based path engine on 
the SQL/JSON path expression used for row generation to yield a 
set of tree node addresses. For each node, the path engine is called 
to evaluate the column path expressions to compute column value. 
If a NESTED PATH construct is used, the JSON table driver is 
called recursively on each nested row path expression.  

5.2  SQL/JSON query evaluation leveraging Oracle 

Database in-memory Store Architecture 

5.2.1 In-Memory Virtual column for JSON Scalar Value: 
Oracle 12cR1 supports IMC to improve OLAP query performance 
by loading rows in memory and organizing the information into 
an optimized columnar format suitable for SIMD processing [19]. 
In 12cR2, IMC has been extended to support virtual column 
expression as well. The JSON DataGuide can help users to 
discover and define virtual columns using JSON_VALUE() to  
extract singleton scalar values from JSON documents as discussed 
in section 3.3.1. Then just as normal SQL columns, JSON virtual 
columns can map directly to the in memory columnar format for 
fast SQL in-memory predicate, aggregation, group by and 
projection operations. 
 
5.2.2 In-Memory OSON for any SQL/JSON query: For 
columns which have IS JSON check constraints, we automatically 
add a hidden virtual column defined using the OSON() 
constructor. Because it’s a virtual column, the OSON bytes aren’t 
stored on disk. However, when such a table is loaded in memory, 
the OSON() constructor is implicitly invoked to encode the 
textual JSON document column into OSON bytes which are then 
loaded in memory. During query compile time, SQL/JSON 
queries over the JSON textual column are transparently rewritten 
to access the OSON virtual column instead. During query 
execution, if an OSON binary is available in memory, it’s used in 
lieu of the original textual JSON to evaluate the query more 
efficiently.  
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6.  Performance Evaluation 

We perform the performance evaluation with following criteria.  
• For JSON textual documents, we remove all the non-

significant white spaces so as to get the smallest possible 
JSON representation; this minimizes I/O and memory 
overhead and reduces the JSON text parsing overhead.  

• We don’t create any indexes over JSON document 
collections, and we configure enough memory so that the 
collections are cached entirely in memory. This ensures that 
any differences in SQL/JSON query processing efficiency 
among the different encoding methods are attributable solely 
to differences in their encoding formats.  

• For all figures that show performance numbers, the y-axis 
shows the execution time in a time unit. Please keep in mind 
that the purpose of these experiments is not to demonstrate 
the absolute performance numbers that can be achieved, but 
rather comparing the performance ratio among different 
approaches to evaluate the relative performance 
characteristics of each approach.  

Other than the NOBENCH[6] benchmark discussed in section 6.4, 
all other performance experiments are conducted on PC running 
Linux kernel 2.6.18 with a 2.53 GHz Intel Xeon CPU and 6GB of 
main memory. 

 
6.1 JSON, BSON, OSON Size Statistics 
We use various JSON collections including customer use cases 
and benchmark data from NOBENCH[6] and YCSB[31]. In our 
experience, customer data sets consist mostly of small to medium 
size JSON documents with a few large size JSON documents. The 
medium size JSON document (5MB) is a message archive for 
twitter postings. The large size JSON document (41.5MB) is from 
sensor data recording. Table 10 shows the average byte size per 
JSON document encoded using JSON, BSON and OSON formats 
respectively. JSON text is UTF-8 encoded with non-significant 
white space removed. All JSON documents are mainly ASCII 
characters with 1 byte per character encoding so that JSON text 
document is measured with its most optimal size. For small 
documents, the JSON, BSON and OSON representations are of 

similar size. For medium and large size documents, the BSON and 

OSON representations are noticeably smaller than JSON.  OSON 

is much smaller, especially for large documents. This is because 
large documents typically have repetitive sub-structures in 
embedded arrays., The OSON encoding method has an advantage 
over the other formats because it stores repeated field names just 
once, in its field-id-name-dictionary segment.   
Table 11 shows the average percentage of total space used by the 
three segments of the OSON format. For small documents, the 
field-id-name-dictionary segment typically occupies 40% of the 
total encoded output. For medium to large JSON documents with 
many structural repetitions, the relative size of field-id-name-
dictionary segment is a small fraction of the total. We designed 
OSON to be self-contained in the same way as JSON text or 
BSON binary because this avoids many scalability and 
administrative problems that arise when a central mapping has to 
be maintained. In our experience, managing, synchronizing, 
merging, and evolving such a central dictionary is not scalable in 
an agile distributed computing environment. 
 
JSON Document 

collection 

Average JSON 

Text Size per 

document in 

bytes 

Average BSON 

binary Size per 

document in 

bytes 

Average OSON 

binary Size per 

document in 

bytes 

workOrder 933 1000 952 

salesOrder 670 710 732 
eventMessage 1924 2117 2113 
purchaseOrder 1117 1214 1080 
bookOrder 2107 2283 1863 
LoanNotes 5146 5353 5710 
Twitter Msg 2974 2824 2951 
AcquisionDoc 5904 6360 5462 
NOBENCHDoc 533 551 654 
YCSBDoc 1145 1160 1213 
TwitterMsgArchive 5.05M 3.3M 2.5M 
SensorData 41.5M 37.4M 18.9M 

Table 10 – Avg Size with JSON, BSON, OSON encoding 

JSON Document 

collection 

Average Field-

id-name-dict Seg 

Ratio 

Average Tree-

Node Navigation 

Seg Ratio 

Average Leaf-

scalar-value Seg 

Ratio 

workOrder 34.55% 29.92% 35.52% 
salesOrder 47.74% 25.94% 26.32% 
eventMessage 41% 26.12% 32.65% 
purchaseOrder 31.88% 26.89% 41.23% 
bookOrder 43.09% 36.99% 19.91% 
LoanNotes 62.68% 14.58% 12.29% 
Twitter Msg 43.68% 17.61% 38.7% 
AcquisionDoc 19.41% 23.51% 57.07% 
NOBENCHDoc 40.56% 21.01% 38.44% 
YCSBDoc 9.97% 5.6% 84.43% 
TwitterMsgArchive 0.05% 42.71% 57.23% 
SensorData 0.01% 80.77% 19.22% 

Table 11 – OSON Three-Seg Size Statistics 

6.2 JSON DataGuide Statistics 
We compute a JSON DataGuide for various JSON collections, 
generate and query DMDV views starting from the root path ‘$’.  
Table 12 shows the JSON DataGuide statistics. Number of 
Distinct Paths is the row count of $DG table: it counts all the 
distinct JSON paths from the root to both intermediate and leaf 
nodes.  Number of columns in DMDV counts all the distinct 
JSON paths from the root to leaf nodes only. It represents how 
“wide” the full master-detail expansion of the JSON hierarchy of 
the document collection is. DMDV-fan-out ratio, which is 
computed as the number of rows in DMDV divided by the 
number of documents in the JSON collection, represents how 
“tall” the full master-detail expansion of the JSON hierarchy of 
the document collection is. For medium to large JSON 
documents, the large DMDV-fan-out ratio occurs because the 
documents contain large arrays of repeated structures. Also note 
for NOBENCH [6] data, there are 1000 sparse fields with 11 
common fields. 
 
JSON Document 

collection 

Number of 

Distinct 

Paths  

DMDV – 

number of 

columns 

DMDV-fan-

out ratio 

workOrder 29 24 5.5 
salesOrder 20 19 3.0 
eventMessage 79 55 10 
purchaseOrder 29 21 5.0 
bookOrder 86 62 11.7 
LoanNote 153 122 3.0 
TwitterMsg 362 316 1.8 
AcquisionDoc 88 73 28 
NOBENCHDoc 1011 1000 2 
YCSBDoc 10 10 1 
TwitterMsgArchive 316 267 5405 
SensorData 68 63 32100 

Table 12 – JSON DataGuide Statistics 

6.3 Performance Comparison of OLAP query between 

JSON, BSON, OSON and relational storage methods 

 
We used the purchaseOrder JSON collection. Table 1 shows a 
simplified sample of documents from this collection. We stored 
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100,000 documents using four storage methods. Figure 4 shows 
the storage size of each of these methods. 
 
• JSON storage: storing JSON text in a varchar2(4000) JSON 

column  with total storage of 136MB 
• BSON storage: storing BSON binaries in a raw(4000)  JSON 

column with total storage of 160MB 
• OSON storage: storing OSON binaries in a raw(4000) JSON 

column  with total storage of 136MB. 
• REL storage: decomposing each purchaseOrder document 

relationally and storing the data in two relational tables: 
purchase_master_tab which stores all the top-level 
purchaseOrder scalar fields and lineitem_detail_tab which 
stores all the lineitems fields. The lineitem_detail_tab is  
linked with purchase_master_tab by a foreign key. Total 
storage of both tables plus primary key and foreign key 
indices is 112MB. 
 

Table 13 shows the 9 OLAP queries for performance evaluation. 
These 9 queries are from customer OLAP application queries 
referencing two relational views po_mv and po_item_dmdv that 
serves as an abstraction to hide the underlying physical data 
storage models differences: schema-rigid relational storage (REL) 
and schema-less self-contained storage (JSON,BSON,OSON). 
po_mv view projects all the singleton scalar fields from the 
purchaseOrder whereas po_item_dmdv projects all fields from the 
purchaseOrder with master fields repeated for each detail field. 
For REL storage, po_item_dmdv is defined as a join of 
purchase_master_tab and lineitem_detail_tab representing de-
normalized master-detail records.   For JSON, BSON, and OSON 
storages, both po_mv and po_item_dmdv views are defined using 
JSON_TABLE() over the base JSON column. Po_item_dmdv 
requires one NESTED PATH to un-nest the item array in the 
same way as the DMDV view definition shown in Table 8. The 
views are dynamically computed during query processing time by 
invoking the JSON text parser, BSON decoder, or OSON decoder 
respectively. The WHERE predicates on the views are pushed 
down as JSON_EXISTS() with JSON path predicates to be 
filtered. 
Q1, Q2 query only po_mv. Q3-Q9 queries query po_item_dmdv. 
Figure 3 Y-axis shows the query execution time for each query for 
each storage method. Query performance over OSON binary 
storage is faster than BSON storage which in turn is faster than 
JSON storage. BSON is marginally faster than JSON. For Q2, Q3, 
Q4, Q5, Q6, OSON storage is 5 to 10 times faster than JSON 
storage. Furthermore, OSON storage is on-par with REL storage 
for all queries. For querying po_mv, OSON storage is similar to 
REL storage to extract the top-level scalar fields. For querying 
po_item_dmdv, OSON storage avoids the need for a join because 
the master/detail information is de-normalized, whereas REL 
storage needs to use a hash join to join the master and detail table. 
Figure 4 shows the storage size comparison among JSON, BSON, 
OSON and REL. BSON is marginally bigger than JSON and 
OSON. JSON and OSON are of similar size, both of which are 
about 21% bigger than REL storage. This is expected because 
REL stores only data in the table rows, while storing schema in a 
central relational dictionary, while all other formats are obliged to 
store schema with each document.  The 21% storage overhead is a 
reasonable trade-off for having self-contained schema flexibility 
store in exchange for centralized schema management system. 
This performance experiment demonstrates that the OSON binary 
encoding format for JSON bridges the performance gap between 
schema-rigid relational row storage format and schema-less self-

contained text storage format. OSON is self-contained but is more 
rapidly navigated than textual JSON. Its size is on par with JSON 
text for small JSON documents and is typically much smaller than 
JSON text for large JSON text documents because such 
documents commonly have repeated structures. Therefore, OSON 
is an ideal JSON document binary instance format to bridge the 

performance gap between schema-based encoding and schema-

free encoding. 
 

Q1 select count(*) from po_mv p where p.reference = ? 

Q2 select costcenter, count(*) from po_mv group by costcenter  

  order by 1 
Q3 select costcenter, count(*) from po_item_dmdv  

 where PARTNO = '97361551647' group by costcenter 
Q4 select REFERENCE, INSTRUCTIONS,ITEMNO, PARTNO, 

DESCRIPTION, QUANTITY,UNITPRICE from po_item_dmdv d  

where REQUESTOR = ? and d.QUANTITY  > ? And D.Unitprice > ? 
Q5 select l.Reference, L.Itemno, L.Partno, L.Description  from   DMDV l  

  where  l.PARTNO in (?, ?, ?) 
Q6 select Partno, Reference, Quantity, QUANTITY - 

LAG(QUANTITY,1,QUANTITY) over (ORDER BY 

SUBSTR(REFERENCE,INSTR(REFERENCE,'-') + 1)) as 

DIFFERENCE from po_item_dmdv where Partno = ? 

 order by  SUBSTR(REFERENCE,INSTR(REFERENCE,'-') + 1) desc 
Q7 select sum (quanTity * unitprice) from po_item_dmdv  group by 

costcenter order by 1 
Q8 select REFERENCE, INSTRUCTIONS,ITEMNO, PARTNO, 

DESCRIPTION, QUANTITY,UNITPRICE  from po_item_dmdv 

where quantity > ? and unitprice > ? 
Q9 select REFERENCE, INSTRUCTIONS,ITEMNO, PARTNO, 

DESCRIPTION, QUANTITY,UNITPRICE from po_item_dmdv 

Table 13 – OLAP queries 

6.4 Performance Evaluation of integration of JSON 

with in-memory Store and Query Processing 
We perform experiments to verify the orders of magnitude 
performance improvement by integrating JSON/OSON processing 
with Oracle 12.2 in-memory store. We show that it is feasible to 
store JSON text on disk but load its equivalent OSON binary into 
in-memory store so that all SQL/JSON queries can be evaluated 
using OSON transparently. Furthermore, singleton scalar fields of 
JSON document can be projected as columnar format and loaded 
into in-memory columnar store (IMC) for genuine columnar 
processing. We use NOBENCH benchmark [6] data and run all 
queries Q1 to Q11. NOBENCH represents a genuine semi-
structured document collection with several common fields and 
many sparse fields. The collection has more than 1000 sparse 
fields so that it would exceed 1000 column limit imposed by 
Oracle relational storage if relational de-composition of 
NOBENCH data were attempted.  
The experiment uses 64 million NOBENCH JSON text 
documents stored in varchar(4000) column and runs 11 
NOBENCH  SQL/JSON queries. The experiment is conducted on 
system using Intel Xeon with 16 CPU cores and 256GB DRAM 
running Linux and Oracle 12.2 Server. The experiment runs in 3 
modes.  
 
TEXT-MODE: All JSON text documents are fully cached in 
Oracle buffer cache and then run 11 queries over JSON text 
stashed in buffer cache.  
OSON-IMC-MODE: OSON bytes for all JSON text documents 
are fully populated in IMC cache and then run 11 queries over 
OSON bytes stashed in Oracle IMEC.  
VC-IMC-MODE: Following 3 virtual columns (VC) are added 
into the table: 
JSON_VALUE(jobj,'$.str1' ) 

JSON_VALUE(jobj, '$.num' RETURNING NUMBER)  
JSON_VALUE(jobj,           '$.dyn1' RETURNING NUMBER)  
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and load VC into IMC cache so that Q6,Q7,Q10,Q11 
the above JSON_VALUE() functions can be processed using 
columnar format of scalar result from JSON_VALUE()
Figure 5 shows that OSON-IMEC-MODE has significantly 
improved performance compared with TEXT
demonstrates that OSON can be used as an efficient in
JSON binary format to transparently improve ad
query performance despite the JSON is stored on disk in textual 
form. The advantage of using OSON as in memory format instead 
of being a persistent on disk format is that we can continuously 
improve binary encoding format for JSON without maintaining 
backward compatibility with on-disk format. Similar to Oracle 
IMC approach that avoids introducing new columnar storage, 
we’ve learned a key insight, that is, decouple the storage format 
from in-memory query friendly format. This insight is a principle 
to support trend of No-DB style In Situ query p
where storage format is uncontrollable by database but any in
memory just-in-time data structure can be constructed and cached 
for query processing. 
Figure 6 shows that VC-IMEC-MODE has significantly improved 
performance compared with OSON-IMEC-MODE for Q6, Q7, 
Q10, Q11 where the JSON_VALUE() on three 
‘$.str1’, ‘$.num’, ‘$.dyn1’  used in these queries have a
been cached in IMC cache so that predicates and projections on 
JSON_VALUE() can leverage full performance 
IMC architecture [19].  
6.5 Performance Evaluation of document

JSON collection with enabled DataGuide maintenance 
 
We use NOBENCH [6] data to measure the performance impact 
of maintaining the DataGuide over newly inserted
documents.  As discussed in section 3.2, we have integrated 
DataGuide maintenance with the IS JSON check constraint 
inserting JSON documents has minimal overhead
situation where no schema changes are discovered
an experiment where we insert 10,000 NOBENCH JSON 
documents with identical structures. We repeated the experiment 
three times, each time in a different operating mode.
In “no-json-constraint” mode, we do insertion without
JSON check constraint; this measures the base cost of 
insertion.  
In “json-constraint” mode, we do the same insertion on the table 
with IS JSON check constraint enforced. This measures the base 
cost of insertion with the additional cost of reading and parsing 
the JSON data. 
 In “json-constraint-dataguide” mode, we turn on JSON 
DataGuide maintenance so that in addition to reading and parsing 
the JSON data, we also perform JSON path structural 
see if any schema changes need to be written to the $DG table of 
the JSON search index. Since the documents are identical, no 
writes to $DG are necessary after the first document is inserted, so 
this measures the cost of validating the dataguide.
Figure 7 shows insertion time for the 3 modes. With IS JSON 
check constraint enforced, we measured an overhead of
compared to not checking the constraint. With JSON DataGu
maintenance added, the overhead climbs to 17%. This means
for homogeneous JSON collections the overhead of th
DataGuide is 7.6% versus simply enforcing the IS JSON 
constraint. 
Our second experiment is to compare dataguide maintenance 
overhead for a heterogeneous JSON document collection with a 
homogeneous JSON document collection. In the experiment 
labelled homo, we inserted 10,000 JSON documents with 

so that Q6,Q7,Q10,Q11 which use 
the above JSON_VALUE() functions can be processed using 
columnar format of scalar result from JSON_VALUE(). 

MODE has significantly 
improved performance compared with TEXT-MODE. This 
demonstrates that OSON can be used as an efficient in-memory 
JSON binary format to transparently improve ad-hoc SQL/JSON 

tored on disk in textual 
form. The advantage of using OSON as in memory format instead 
of being a persistent on disk format is that we can continuously 
improve binary encoding format for JSON without maintaining 

Similar to Oracle 
IMC approach that avoids introducing new columnar storage, 

decouple the storage format 

This insight is a principle 
le In Situ query processing [23] 

where storage format is uncontrollable by database but any in-
time data structure can be constructed and cached 

MODE has significantly improved 
MODE for Q6, Q7, 

Q10, Q11 where the JSON_VALUE() on three singleton fields: 
‘$.str1’, ‘$.num’, ‘$.dyn1’  used in these queries have already 

C cache so that predicates and projections on 
performance power of Oracle 

document insertion into 

DataGuide maintenance  

We use NOBENCH [6] data to measure the performance impact 
ver newly inserted JSON 

.  As discussed in section 3.2, we have integrated the 
check constraint so that 

has minimal overhead in the common 
situation where no schema changes are discovered. We performed 

experiment where we insert 10,000 NOBENCH JSON 
. We repeated the experiment 

three times, each time in a different operating mode. 
mode, we do insertion without the IS 

s measures the base cost of row 

mode, we do the same insertion on the table 
with IS JSON check constraint enforced. This measures the base 

with the additional cost of reading and parsing 

mode, we turn on JSON 
reading and parsing 

we also perform JSON path structural analysis to 
see if any schema changes need to be written to the $DG table of 

Since the documents are identical, no 
writes to $DG are necessary after the first document is inserted, so 
this measures the cost of validating the dataguide. 

3 modes. With IS JSON 
we measured an overhead of 9.4% 

With JSON DataGuide 
17%. This means that 

the overhead of the 
DataGuide is 7.6% versus simply enforcing the IS JSON 

Our second experiment is to compare dataguide maintenance 
overhead for a heterogeneous JSON document collection with a 
homogeneous JSON document collection. In the experiment 

, we inserted 10,000 JSON documents with 

identical structures. In the experiment labelled 
10,000 JSON documents with every document adding a unique 
new field so that every insertion of a JSON document will cause a 
new JSON path to be inserted into the $DG table. Figure 8 shows 
that the heterogeneous collection incurred doubled the insertion 
cost of the homogeneous collection. 

Figure 3 – Query Time Comparison

REL storages

Figure 4 – Storage Size Comparison

REL 

 

Figure 5 – NOBENCH 11Query Time

and OSON-IMC-MODE

Figure 6 – Q6,Q7,Q10,Q11 11Query Time

IMEC-MODE and VC-

6.6 Performance Evaluation of Transient DataGuide 

Aggregation  
We loaded 2 million NOBENCH [6] 
collection to measure the performance 
computation and compare it with the cost of 
creation. We ran a JSON_DataGuideAgg() 
query with different sample percentage as Q
shows the query execution time with sampling 25%, 50%, 75%, 
99% of documents in the JSON collection. As expected,

identical structures. In the experiment labelled hetero, we inserted 
10,000 JSON documents with every document adding a unique 
new field so that every insertion of a JSON document will cause a 

serted into the $DG table. Figure 8 shows 
that the heterogeneous collection incurred doubled the insertion 
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Q6,Q7,Q10,Q11 11Query Time between OSON-
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6.6 Performance Evaluation of Transient DataGuide 

NOBENCH [6] JSON documents in a 
to measure the performance of transient dataguide 

the cost of persistent dataguide 
JSON_DataGuideAgg() SQL aggregation 

ntage as Q1 in Table 9. Figure 9 
shows the query execution time with sampling 25%, 50%, 75%, 
99% of documents in the JSON collection. As expected, the 
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execution time is linear with the number of sample
compare the dataguide query execution time from t
with the creation time for the JSON search index
a persistent  dataguide over the collection. The persistent 
dataguide takes 27% more time than the transient dataguide. This 
is expected because both of them performed the same 
computation processing over almost the same number of samples, 
but the persistent dataguide did the additional work 
the information to the $DG table. 

7. Future Work  

Current OSON format is self-contained and 
resembling a row format without relying on central schema 
registration and maintenance. We will work on OSON set 
encoding resembling a columnar format, however, 
on central schema definition and assuming homogenous instance 

collection. This is different from the design of Dremel [24] which 
is a columnar encoding of hierarchically nested 
to a fixed homogenous hierarchical schema. 
[24] schema allows optional fields in the schema, it assumes 
object field of all object instances within a collection 
fixed position and having the same datatype. For example, it 
cannot support the case that in one object instance, field ‘name’ is 
a string, in second object instance, field ‘name’ is an integer, in 
third object instance, field ‘name’ is a nested object
object instance, field ‘name’ is an array. However, such 
heterogeneous object instance collection is allowed in 
collection.  Therefore, we want our OSON set format to be able to 
handle both homogeneous and heterogeneous JSON collections
for the in-memory columnar store. Set OSON encoding may 
explore homogeneity for collection encoding if it can. 
example, the common field-id-name dictionary segment
extracted from each OSON instance and merged into a single 
dictionary in the in-memory store. This would
consumption and improve query performance because field name 
to id mapping can be done once for the entire in-
Furthermore, the DMDV generated by JSON DataGuide 
structurally similar to the wide table [30]. Having many NULL 
columns and repeated master records per detail record, DMDV is 
ideal for in-memory columnar dictionary encoding and query 
processing. We will explore the design of encoding JSON 
collection as columnar DMDV format and loaded
columnar store. 
In summary, our vision is:  On-disk OSON is instance encoded 
and is self-contained and immune from schema birth and 
evolution problem to support ‘Schema-less for write’
requirement. In-memory OSON is set encoded
Data-Guide and is non-self-contained to support
for declarative query’ SQL requirement. 
 

Figure 7 – insertion Time among no-json-chcck, json

json-check with dataguide on

samples used. We then 
from the 99% sample 

the JSON search index, which computes 
the collection. The persistent 

dataguide takes 27% more time than the transient dataguide. This 
of them performed the same dataguide 

over almost the same number of samples, 
additional work of persisting 

contained and instance based 
resembling a row format without relying on central schema 

We will work on OSON set 
encoding resembling a columnar format, however, without reply 

homogenous instance 

different from the design of Dremel [24] which 
encoding of hierarchically nested data conforming 

 Although Dremel 
[24] schema allows optional fields in the schema, it assumes an 

bject instances within a collection having a 
having the same datatype. For example, it 

cannot support the case that in one object instance, field ‘name’ is 
a string, in second object instance, field ‘name’ is an integer, in 

instance, field ‘name’ is a nested object, in fourth 
. However, such 

heterogeneous object instance collection is allowed in a JSON 
e want our OSON set format to be able to 

neous and heterogeneous JSON collections 
Set OSON encoding may 

explore homogeneity for collection encoding if it can. For 
name dictionary segments can be 

merged into a single 
memory store. This would reduce memory 

consumption and improve query performance because field name 
-memory store.  

he DMDV generated by JSON DataGuide is 
structurally similar to the wide table [30]. Having many NULL 
columns and repeated master records per detail record, DMDV is 

memory columnar dictionary encoding and query 
l explore the design of encoding JSON 

format and loaded into in-memory 

is instance encoded 
contained and immune from schema birth and 

less for write’ No-SQL 
OSON is set encoded based on JSON 

support ‘Schema-Rich 
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Heterogeneous Docs with enbled D

 

Figure 9 – Query Time for computing 

DataGuide Aggregation

8. Conclusion  

Without JSON DataGuide support, users who adopt a polyglot 
persistence strategy [7] face two worlds: the relational world with 
a powerful query language (SQL) but with a requirement to 
carefully specify and manage schemas, and the NoSQL world 
with more agile application development and f
but with limited query capabilities. OLTP applications can use a 
NoSQL database to achieve fast document ingestion. However,
afterwards, a relational schema needs to be developed to allow the 
data to be moved to an RDBMS for SQL analyti
JSON DataGuide and OSON binary format
us that the SQL and NoSQL worlds can be integrated, allowing 
users to manage both relational data and flexible schema data in a 
single database engine. The JSON DataGuide offers users 
schema-GPS to write schema validated query: data schema goes 
from being hidden inside application data access code to being 
exposed via the familiar relational model well supported by many 
tools. OSON format allows JSON to be queried with efficiency 
that approaches that of schema-based relational tables. Loading 
OSON implicitly in memory as generic JSON query friendly 
format have transparently improved quer
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