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ABSTRACT
Wall Street’s trading engines are complex database applica-
tions written for time series databases like kdb+ that uses the
query language Q to perform real-time analysis. Extending
the models to include other data sources, e.g., historic data,
is critical for backtesting and compliance. However, Q ap-
plications cannot run directly on SQL databases. Therefore,
financial institutions face the dilemma of either maintaining
two separate application stacks, one written in Q and the
other in SQL, which means increased IT cost and increased
risk, or migrating all Q applications to SQL, which results
in losing the inherent competitive advantage on Q real-time
processing. Neither solution is desirable as both alternatives
are costly, disruptive, and suboptimal.
In this paper we present Hyper-Q, a data virtualization plat-
form that overcomes the chasm. Hyper-Q enables Q applica-
tions to run natively on PostgreSQL-compatible databases
by translating queries and results on the fly. We outline the
basic concepts, detail specific difficulties, and demonstrate
the viability of the approach with a case study.

1. INTRODUCTION
The financial services industry has long been a pioneer

in data processing. Real-time databases and special pur-
pose query languages have fundamentally transformed trad-
ing desks in the past twenty years. Today’s trading engines
are elaborate database applications that implement complex
mathematical models in the form of queries. The advent of
Big Data technology over the past years presents a signifi-
cant opportunity not only to integrate new data sources but
also to extend existing models to incorporate substantial
amounts of historical data.

Unfortunately, the mismatch between data models and
query languages makes this kind of data integration a dif-
ficult undertaking and institutions so far faced the choice
of either (1) committing to one specific solution as a com-
promise and migrate their entire application ecosystem to
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that technology or (2) maintaining multiple copies of the
application stack, one for each technology, e.g., one for in-
memory, one for SQL databases, one for archival NoSQL
systems. Either choice is associated with high implementa-
tion cost. Either choice may also result in suboptimal oper-
ational performance or, in the case of multiple stacks, high
maintenance cost of an inherently error-prone process. The
underlying problem has been referred to as the Holy Grail of
historical data processing [5] by practitioners in this space: a
unified solution will have significant financial implications as
it allows trading applications to take advantage of additional
data and thus outperform competitors, but also avoids the
penalty of high maintenance cost.

In this paper we present a unique solution that avoids
the aforementioned compromise but rather keeps the appli-
cation layer intact while enabling the use of real-time and
archival database systems side by side. Building on the ba-
sic concept of Adaptive Data Virtualization (ADV) [1], we
present Hyper-Q, an actual implementation of a platform
that abstracts the backend database and translates queries
and data exchange on the fly. The use-case we present in this
paper shows how applications originally written for real-time
systems using the programming language Q can seamlessly
access SQL databases, as Hyper-Q provides a full-featured Q
interface on top of an MPP database or a NoSQL system.

During the development of Hyper-Q we had to master a
number of hard challenges including the mapping of different
data types, reconciliation of different semantics around op-
erators and functions, as well as operational challenges like
emulation of management or authentication mechanisms.

Note that at this stage of our project we address the chal-
lenge of accessing data from native applications using em-
ulated APIs. We rely on the assumption that all relevant
data is loaded into the underlying systems independently.
In practice, we found transferring the data to be much less
of a problem. We consider adding tools that perform data
movement and the mapping of schemas in the future; we ex-
pect that development to be greatly simplified by Hyper-Q’s
capabilities.

The remainder of this paper is organized as follows: In
Section 2 we provide background on the technologies we
leverage in our work. Section 3 gives an architectural deep-
dive of Hyper-Q. Section 4 is a discussion of implementation
details. We present a case-study on an actual deployment
of Hyper-Q in Section 5. Our experimental evaluation is in
Section 6. We discuss related work in Section 7. Finally,
Section 8 summarizes the paper with concluding remarks.
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2. BACKGROUND
In this section, we briefly survey background needed for

the developments in the rest of this paper. First, in Sec-
tion 2.1, we present the approaches adopted by the industry
for supporting real-time and historical analytics. Then, we
give an overview in Section 2.2 on the kdb+ system and its
Q language, which provide the main motivating application
of our framework.

2.1 Real-time and Historical Analytics
In this section, we give background on the building blocks

and problems associated with integrating real-time and his-
torical data analytics in financial services.

Financial services utilize specialized environments and
proprietary algorithms to perform stock trading at large
scale. Stock trading is a highly competitive business. Enti-
ties that have the fastest access to information and the most
sophisticated trading algorithms are at an advantage.

Market data is the time-series data produced by an entity
like a stock exchange. For specification and samples, we re-
fer the reader to the New York Stock Exchange Trades and
Quotes (NYSE’s TAQ) dataset [17]. Market data is used
in real-time to make time-sensitive decisions about trading
equities and is also used for historical data applications like
predictive modeling, e.g., projecting pricing trends, calcu-
lating market risk and backtesting of trading strategies.

Real-time databases have held a strong presence in capital
markets for two main reasons; low-latency query processing
and query language expressiveness. Query response times
must be sub-second and systems achieve this by utilizing
columnar data organization, in-memory query processing,
and avoiding the typical RDBMs bottlenecks such as locking
and synchronization overheads. Expressiveness and terse-
ness of the query language to perform time-series analytics
was also a major advantage over early RDBMs systems.

Recently, retention and analysis of data beyond short hori-
zons have become increasingly important and a competitive
differentiator within the financial services industry. Organi-
zations are confronted with finding a way of continuing to
do the analysis their business run on today within the tight
SLAs as well as extend that analysis to include larger time
windows of data.

The approaches that are typically adopted to run both
real-time and historical analytics in financial services are
the following: (1) scaling real-time databases, (2) migration
to a scale-out analytical database, or (3) using a hybrid of
real-time and analytical databases. We highlight the main
limitations of these different approaches.

Scaling Real-time Databases. Adding more real-time
database servers could allow analytical financial services to
scale to some extent. However, this approach can be pro-
hibitively expensive because of multiple reasons:

1. Cost: The hardware costs associated with expanding
real-time systems can easily exceed the cost of conven-
tional RDBMS technology on commodity hardware.

2. Compute Power: Most real-time databases are single
machine and sometimes even single CPU. The slow-
down of Moore’s law against ever increasing data vol-
umes means that the compute power in these systems
could not catch up with workloads as data volumes
increase.

3. Tools: Real-time database systems are built for a very
different use case than analytics on historical data.
They often lack the compliance, management utilities,
and tools required by enterprises when storing mas-
sive volumes of historical data, which RDBMS vendors
have taken 20-30 years to perfect.

Migration to Analytical Databases. Analytical databases,
such as Massively Parallel Processing (MPP) databases, are
effective at scaling to very large data sizes. Migrating real-
time database applications/workloads to use an analytical
database can address the historical data challenge.

However, latency overhead in analytical databases, espe-
cially for short-running queries, is typically larger than the
traditional RDBMs overhead. This is mainly attributed to
the large system scale and the need to optimize and dis-
patch query fragments over a cluster of machines. Conse-
quently, analytical databases cannot typically meet the real-
time SLAs that financial applications needs. Furthermore,
migrating applications and workloads that are fine-tuned
over years from real-time database to analytical database
is an overwhelming undertaking. This process is known to
be error-prone and has no clear quality guarantees. In some
settings, database queries could be automatically generated
by libraries, packages, web services, etc. This makes chang-
ing the query language very difficult.

A Hybrid of Real-Time and Analytical Databases. Build-
ing a hybrid system that deploys both real-time and histor-
ical database comes with its own problems. Most organiza-
tions find it straightforward to handle the data schema and
loading of data between the two systems. Beyond that they
quickly run into many challenges that must be overcome:

1. Training costs and challenge of finding qualified per-
sonnel who are adept at writing financial analytic
algorithms in both the real-time database language,
typically vector oriented, as well as in the historical
database language, typically set oriented.

2. Once analytics are written for both systems, how does
an organization vet and prove that they give the same
or compatible results in both places. What configura-
tion management practices must they employ to ensure
that they stay compatible over time as minor modifi-
cations must be made?

3. Having to write analytics in both places slows down
the pace of innovation and ability for the organization
to continue to innovate and remain competitive.

An alternative solution would leverage investments in ex-
isting applications by keeping the real-time database appli-
cations, while allowing a choice of runtime execution en-
vironment. In this scenario, the application layer is kept
intact, while the underlying data processing layer is virtu-
alized such that the same query language can be used to
query both real-time and analytical databases. This paper
advocates for the viability and value of this novel solution.

2.2 kdb+
This section gives a high-level overview of the kdb+ system

and is primarily meant to highlight the challenges involved
in translating queries written in the query language Q into
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a relational language, such as SQL. A more complete docu-
mentation can be found at [14].

kdb+ is a columnar database specifically designed for real-
time analytics. Its premier application area is in-memory
query processing although it can operate over on-disk data.
The system lacks many of the features found in classical re-
lational database systems such as ACID transactions. Like
other special purpose database systems, kdb+ accomplishes
isolation through serialization, i.e., the main server loop ex-
ecutes a single request at a time. Concurrent requests are
queued to be executed serially. Atomicity, consistency and
durability are the application’s responsibility, if desired. For
historical reasons, kdb+ had no need for access control or so-
phisticated security mechanisms. Similarly, kdb+ does not
provide built in support for data replication. Disaster recov-
ery or high-availability are accomplished through external
tooling.

kdb+ is queried using Q, a highly domain-specific query
language. Q is distinguished by its terse syntax. It is rich in
idioms that are specifically tailored to the financial analytics
use case. The highly compressed syntax is often lauded for
eliminating room for error: a single line of Q may correspond
to an entire page of SQL, the correctness of which is usually
much harder to ascertain.

Q pre-dates most of the OLAP extensions found in re-
cent SQL standard which initially gave it a unique compet-
itive advantage over relational database languages. More
recently, the SQL standard has caught up and provides suf-
ficient language constructs to implement equivalent func-
tionality. Unlike relational databases, Q is not based on a
tabular calculus. Rather, Q is a list processing language
that supports, besides scalar data types, several compound
types such as dictionaries or tables, which are made up of
lists. Lists are, by definition, ordered, which in turn greatly
facilitates time series analysis in Q.

As a recent addition to the language, Q features several
SQL-like constructs even though their semantics often di-
verge from relational dialects in surprising ways. For exam-
ple, UPDATE operation in Q simply replaces columns in the
query output instead of changing any persisted state.

To illustrate the expressiveness of Q consider the following
example:

Example 1 A standard point-in-time query to
get the prevailing quote as of each trade:

aj[`Symbol`Time;
select Price from trades
where Date=SOMEDATE, Symbol in SYMLIST;
select Symbol, Time, Bid, Ask from quotes
where Date=SOMEDATE]

This query is one of the most commonly used queries by
financial market analysts [9]. It can be used to measure the
difference between the price at the time users decide to buy
and the price paid at actual execution, i.e. the fill message
reported by the broker. The as-of-join (aj) is a unique
built-in function in Q which natively supports time-series
queries. In this query, Symbol and Time are the columns to
join on, trades is a reference table and quotes is a table to
be looked up.

The performance of this query largely depends on the size
of the quotes table. If the data is small enough so that the
underlying database has one partition per date, this as-of-
join achieves very good performance. Instead of reading the

entire Symbol, Time, Bid, and Ask columns into memory to
perform the lookup, it can search through the memory map
of the quotes table. However, if the quotes table is large, and
there are multiple partitions per date, all partitions need to
be read into memory to perform the lookup since rows with
the same symbol could occur in multiple partitions. To work
around this, Q programmers often need to manually rewrite
the above query to do as-of-join on each partition and then
aggregate the result from each partition. The rewrite is very
complex and requires deep knowledge of the structure of the
underlying database [9].

kdb+ does not have a query optimizer. A query is executed
in reverse order of its components. Q programmers have to
determine join orders explicitly in their queries and have
to be aware of how individual operations such as a lookup-
join are executed. Mistakes in crafting the query may have
severe consequence for the performance of a query or even
crash the server process due to out-of-memory conditions.

In many ways, performance is achieved by exposing to
users how data is actually stored so that users can take ad-
vantages of this while constructing queries. For example, Q
allows marking a list as having all occurrences of a value oc-
curring in a sequential block. This allows the creation of a
lookup table from each distinct value to its first occurrence,
then all occurrences of that value can be found in one se-
quential read. As a consequence, Q programmers often need
to understand how underlying data is structured in order to
write optimal queries [7].

Due to considerable differences in query language and data
model, building a virtualized system allowing Q application
to run on top of a SQL database involves multiple challenges:

• Q applications communicate with kdb+ using specific
wire protocol which is usually very different from
the wire protocol of the underlying SQL database.
While SQL databases typically implement protocols
that stream individual rows, Q uses an object-based
protocol that communicates a query results as a single
message. In order to run Q applications seamlessly on
an SQL database, we need to convert the packets in
Q wire format to the underlying database wire format
and vice versa. This conversion includes the transfor-
mation of data types and values as well as the pivoting
of database rows into the object-based format that is
to be presented to the application.

• While SQL is based on set/bag semantics, in which
order of rows in a table is not defined, Q is based on
ordered-list semantics, in which ordering is the first
class citizen for all complex data structures, such as
tables and dictionaries. In particular, each Q table
has an implicit order column. Providing implicit or-
dering using SQL requires database schema changes
and imposes challenges on query generation.

• Q is column-oriented, i.e., it stores tables as columns
and can apply operations to entire column. In contrast
to Q, SQL is not column-oriented. Even in columnar
SQL databases, the support is mainly implemented in
the underlying storage and execution engines. There-
fore, query constructs that express column-wise oper-
ations cannot be easily specified in SQL.

• Q uses a two-valued logic in contrast to SQL’s three-
valued logic. Operations on null values have very dif-
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ferent semantics in Q and in SQL. For example, two
nulls compare as equal in Q, while the result is unde-
fined/unknown in SQL. Imposing these semantics on
SQL queries requires careful composition of query con-
structs to maintain correctness of the results.

• Unlike SQL which is statically typed, Q is dynamically
typed where the type of a variable is determined by its
value. Consider an expression x+y, if x and y are not
statically defined then their types are determined by
the values assigned to them at runtime. In particular,
if x and y are assigned scalar values then x and y have
scalar type; if x and y are assigned as lists then x
and y have list type. Translating a dynamic-typed
language to a static-typed language requires significant
amount of runtime support. If not done efficiently,
type inference may add a considerable overhead to the
query latency.

• Q expressions are evaluated strictly right-to-left with
no operator precedence, reflecting the implementation
of the underlying execution engine. This is consider-
ably different from expression evaluation using SQL.

Q programmers are often unwilling to switch to SQL and
its verboseness. A single line of Q code may be semantically
equivalent to a large snippet of SQL. It can be challeng-
ing to reason about the correctness of such transformation
by eyeballing. Manual migration of complex applications
quickly becomes infeasible. Additional challenges arise from
operational aspects such as using advanced authentication
mechanisms (e.g., Kerberos).

3. HYPER-Q PLATFORM
Hyper-Q bridges the gap between real time and histori-

cal data analytics by virtualizing the data processing layer.
Using Hyper-Q, applications and workloads written in the
Q language can run unchanged while using a PostgreSQL
(PG) compatible database for running data analytics.
Q to SQL translation is only one of the problems that

need to be addressed to enable such communication. Other
problems include (i) network communication, where queries
and results need to be parsed, transformed and packaged
according to the wire protocols of the two end systems, and
(ii) state management, where a variable may be defined and
reused across multiple queries.

The choice of translating Q queries into PG-compatible
SQL was driven by customer requirements. Many analytical
database systems are based on some version of PG. Exam-
ples include Greenplum [20], HAWQ [3], Vertica [2], Aster
Data [24] and Redshift [8]. Many of these systems main-
tain, to a large extent, PG-compatible query language, query
clients and communication protocols. This makes support-
ing PG query language (which closely follows SQL standard)
and PG communication protocol a plausible path to enable
many customers to run Q applications through Hyper-Q.

Figure 1 shows a high-level architectural diagram of the
Hyper-Q platform illustrating the interaction between a
Q application and a PG database.
Query Life Cycle. A connection request is sent from a Q ap-
plication to Hyper-Q. The connection message is encoded
according to the Q-Inter Process Communication (QIPC)
wire protocol. Once authenticated, the Q application uses
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Figure 1: The Hyper-Q platform

the Hyper-Q connection to send Q query messages to Hyper-
Q (Section 3.1). The Algebrizer component parses the in-
coming Q query and transforms it into an extensible rela-
tional algebra expression (Section 3.2). The Xformer com-
ponent then modifies the algebraic expression by applying
a series of transformations to guarantee correct query se-
mantics and optimize query performance (Section 3.3). The
end algebraic expression is then translated into one or more
SQL query messages encoded using the PG v3 wire proto-
col. The SQL queries are sent to PG database for processing.
Query results are translated back into the QIPC data format
before getting sent to the Q application. These operations
are managed by the Cross Compiler (XC) component (Sec-
tion 3.4). System-specific plugins are used for handling net-
work communication, parsing messages exchanged between
the Q application and the database, as well as generating
query messages.

Hyper-Q virtualizes access to different databases by adopt-
ing a plugin-based architecture and using version-aware sys-
tem components. For example, the Algebrizer component
triggers parsing rules based on the type and version of the
database system that client application is designed to work
with. Similarly, the Xformer component triggers transforma-
tions based on the type and version of the backend database
system. This flexibility allows Hyper-Q to support Q applica-
tions that were designed to run on top of specific versions of
the kdb+ system, as well as PG-based database systems that
have deviated in functionality or semantics from the core
PG database. Non-PG database systems can be supported
by adding a plugin to the platform that enables query and
result transformation as well as network protocol support
for the desired database system. In the next sections we de-
scribe the components of the Hyper-Q platform that enable
Q clients to work with a PG-compatible databases.
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3.1 Network Communication
kdb+ uses TCP/IP for inter-process communication. The

QIPC wire protocol describes message format, process
handshake, and data compression. Messages can be of
different types including connection open/close and syn-
chronous/asynchronous calls. PG uses its own message-
based protocol for communication between applications and
servers. The PG wire protocol is supported over TCP/IP as
well as Unix domain sockets.

The two previous protocols are widely different in terms
of message format and process handshakes. The network
packets transmitted from Q applications cannot be directly
parsed by PG servers. To enable such communication,
Hyper-Q acts as a bridge between the two protocols. Hyper-
Q takes over kdb+ server by listening to incoming messages
on the port used by the original kdb+ server. Q applications
run unchanged while, under the hood, their network packets
are routed to Hyper-Q instead of kdb+.

An incoming message to Hyper-Q includes a Q query. The
Endpoint component in Figure 1 is a kdb+-specific plugin
we implemented for handling the communication between
Q application and Hyper-Q. The Endpoint component parses
the incoming message, extracts the query text and passes it
to the Algebrizer component (cf. Section 3.2) for subsequent
processing.

Hyper-Q transforms incoming Q queries into semanti-
cally equivalent SQL queries, compatible with the backend
PG database. The Gateway component in Figure 1 is a PG-
specific plugin we implemented for handling the communi-
cation between Hyper-Q and PG database.

The Gateway component packs a SQL query into a PG for-
matted message and transmits it to PG database for pro-
cessing. After query execution is done, the query results are
transmitted back from PG server to Hyper-Q. Hyper-Q ex-
tracts the row sets from result messages and packs them into
messages with the same format that a Q application expects
(i.e., using the QIPC protocol). The formatted messages are
sent to the Endpoint component, which in turn forwards the
results back to the Q application.

Some of the previous operations could be performed us-
ing a database driver (e.g., ODBC/JDBC driver). However,
integrating a third party driver in our data pipeline adds
further complexity and comes with performance overhead.
Processing network traffic natively is key for high through-
put in Hyper-Q.

3.2 Algebrizer
The Algebrizer component translates a Q query into an

eXTended Relational Algebra (XTRA) expression. XTRA is
the internal query representation in Hyper-Q. It uses a gen-
eral and extensible algebra to capture the semantics of query
constructs, and make the generation of SQL queries a sys-
tematic and principled operation.

The Algebrizer operates in two steps. In the first step, the
Q query text is parsed into a Q abstract syntax tree AST.
In the second step, the AST is bound to an XTRA tree by
resolving all variable references through metadata lookup
and translating Q operators to semantically equivalent
XTRA tree nodes. We describe the parsing and the bind-
ing steps using the following example:

Example 2 Consider the following Q query,
which computes the so called as-of-join (aj) of
two tables trades and quotes. For each record

in trades, aj returns a matching value of Symbol
column in quotes. A match occurs based on an
implicit range condition on the Time column. If
no match is found, a null value is returned.

aj[`Symbol`Time; trades; quotes]

The algebrization result of Example 2 is shown in Figure 2.
We discuss how algebrization is done in the next sections.

3.2.1 Parsing
The parser converts Q query text to an AST. In contrast

to traditional relational query languages like SQL, the data
model of Q allows for stand-alone table, scalar, list, or dic-
tionary queries to be expressed in the query language. Vari-
ables are dynamically typed based on the values they are
bound to. Moreover, the query syntax does not restrict the
type of the result. To illustrate, consider the following Q lan-
guage examples:

x: 1
x: 1 2 3
x: select from trades

The first statement assigns a scalar value 1 to variable
x. The second statement redefines x to be a list, while the
third statement redefines x again to be a table expression.
The type of x depends on the value it is bound to. Global
variables are stored in kdb+ server’s memory, and they can
be redefined and used from different Q query clients.

The Q query x+y could be interpreted as arithmetic addi-
tion of two scalars or a pairwise addition of list elements. It
could also raise an error if x and y are two lists of different
length.

The previous query semantics are different from SQL,
where a query clause restricts the type of expressions that
can appear in some context. For example, the SQL FROM

clause restricts the following expression to be a table ex-
pression.

Dynamic typing in Q can yield a complicated parser design
since we need to inspect a large number of possible parse
trees. In Hyper-Q, determining a variable type may require
a round trip to the PG database for metadata lookup. For
example, when a Q query refers a variable x, the parser
may need to know if x is a table in the PG database. Due
to these considerations, we have decided to design a light-
weight parser in Hyper-Q whose only role is to create an
abstract representation of the query in memory, and delegate
the type inference and verification to the binder component
(cf. Section 3.2.2).

The parser constructs an AST, consisting of the following
main elements:

• literals: constant expressions such as integers (e.g., 1i)
and symbols (e.g., `GOOG).

• variables: expressions that reference a named entity
(e.g., trades).

• monadic and dyadic operators: operations on one or
two arguments, respectively.

• join operators: different types of Q joins such as the
aj operator in Example 2.
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q_asof_join
(Symbol,1Time)

q_var
(trades)

q_var
(quotes)

Abstract1Syntax1Tree1

FIRST_VALUE, (Time,),OVER,(partition_spec,ROWS,
BETWEEN, 1,FOLLOWING,AND,1,FOLLOWING),AS,PREV, ,

FIRST_VALUE, (Time,),OVER,(partition_spec,,ROWS,
BETWEEN, 1,PRECEDING,AND,1,PRECEDING),AS,NEXT,,

ROW_NUMBER(), OVER,(partition_spec),AS,ROW_ID

window_spec

partition_spec
PARTITION,BY,Symbol,ORDER,BY,Time,DESC,, ordcol,DESC

join_pred
L.Symbol IS,NOT,DISTINCT, FROM,R.Symbol AND
(L.Time,=,R.Time,OR,
((PREV,IS,NULL,OR,L.Time,>,PREV),AND,
(NEXT,IS,NULL,OR,L.Time,<,NEXT1),AND,L.Time,>,R.Time)

XTRA1tree1

xtra_sort
(ordcol)

xtra_left_join
(join_pred)

xtra_select
(ROW_ID=1)

xtra_window
(window_spec)

xtra_get
(trades)

xtra_get
(quotes)

Figure 2: Algebrization of query in Example 2

• variable assignments: expressions of the form
var:expression.

The AST for Example 2 is shown in Figure 2. The parser
does not attempt to decide on the types of the variable ref-
erences trades, and quotes since in the general case, they
may be expressions of any type.

3.2.2 Binding
After parsing is done, the binder performs semantic anal-

ysis of the resulting AST and binds it to XTRA, the inter-
nal query representation in Hyper-Q. Binding Q queries into
XTRA expressions is based on the fact that, although Q and
SQL data models are different, the vast majority of Q oper-
ators can be mapped to corresponding (but sometimes more
complicated) relational algebra expressions. Hyper-Q pro-
vides an extensible framework to build and compose such
mapping rules to achieve the largest possible coverage of the
Q language. The framework also allows using more sophisti-
cated methods, such as UDFs in SQL databases, to capture
the Q language constructs that cannot be directly mapped
to relational algebra expressions.

Binding is a recursive operation that is done in a bottom-
up fashion, where for each Q operator in the AST, the binder
processes the operator’s inputs, derives and checks input
properties, and then maps the operator to its corresponding
XTRA representation in the following way:

• Literals get bound to scalar const operators
xtra_const, where the Q type of the literal is
mapped to Hyper-Q’s type system. For example, int
types get mapped to equivalent integer types, symbol
type gets mapped to varchar, whereas string literals
get mapped to text constants.

• Variable references are resolved by looking up their
definition through the metadata interface. Table vari-
able references get bound to a relational get operator
xtra_get. For example, in Figure 2, q_var(trades) is
bound to xtra_get(trades).

• When binding each operator, operator’s properties are
derived in the resulting XTRA tree. For relational op-
erators, derived properties include the output columns
with their names and types, keys, and order. For scalar
operators, derived properties include the output type
and whether the expression has side effects.

• After binding the inputs of an operator, the binder
first checks whether the inputs are valid for the given
operator by accessing their properties derived at the
previous step. For example, the aj operator expects
its two inputs to be table expressions and the right
input to be a keyed table. Also, the join columns must
be included in the output columns of input operators.
If property checking succeeds, the operator is bound to
its XTRA representation. In Figure 2, the aj operator
is bound to a left outer join operator that computes a
window function on its right input. The results need
to be ordered at the end to conform with Q ordered
lists model.

3.2.3 Metadata lookup
The binder resolves variable references by looking up as-

sociated metadata in the metadata store. In the basic case,
where Q variables are mapped to PG tables, this corresponds
to executing a query against PG catalog to retrieve vari-
ous properties of the searched object. For tables, the re-
trieved metadata include columns, keys and sort order, while
for functions, the retrieved metadata include function argu-
ments and return type. Q also allows the definition of in-
memory variables. A computation result can be stored to a
variable that gets referenced in subsequent queries. Consider
the following example:

Example 3 Consider the following Q function,
which returns max price of trades matching a
given symbol Sym:

f:
{ [Sym]
dt: select Price from trades where Symbol=Sym;
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Figure 3: Hierarchy of variable scopes in Hyper-Q.

:select max Price from dt;
};
f[`GOOG];

Example 3 defines a function f, which assigns a computed
table to variable dt, while applying a filter to Symbol column
using the function argument Sym. The function returns the
maximum Price in the computed table dt. The last state-
ment in Example 3 calls f while passing the symbol (`GOOG)
as an argument.

Q distinguishes between two main types of variables: (i)
local variables defined in function bodies like dt in Exam-
ple 3, and (ii) global (server) variables like the function f

itself. Local variables are only visible in the scope where
they are defined, whereas global variables are visible to all
Q query clients connected to the same kdb+ server.

Local variables shadow global variables with the same
name. In Example 3, after the program is executed, the
function f becomes accessible by any client connected to the
server. If f is invoked later in the same session, there is
no guarantee that the function definition would still be the
same, since it may have been overwritten in the meantime
by another query client.
Hyper-Q needs to maintain the aforementioned behavior

for Q applications. The backend PG database is used to store
and materialize global server variables in publicly accessible
schemas. Shadowing of global variables by local variables
with the same names is implemented using a hierarchy of
variable scopes, as depicted in Figure 3. The hierarchy has
three variable scopes:

1. Local scope stores local function variables.

2. Session scope stores variables defined within session.

3. Server scope stores global variables.

Figure 3 shows a query session with a function f and two
statements outside f. The first statement in f looks up
a variable. The lookup has to be performed in the local
scope first. If the variable is not locally defined, the lookup
operation follows the scopes hierarchy. The first statement
outside f also looks up a variable. In this case, lookup is
directed to the session scope, since we are now outside the
function f. The bottom-most scope corresponds to retriev-
ing variable definition, such as tables and functions, through
PG MetaData Interface (MDI).

Figure 3 also shows how variable upsert (defini-
tion/redefinition) operation takes place. The second state-
ment in f upserts a variable (e.g., through variable assign-
ment). This upsert call can only be executed in the lo-
cal scope since, according to Q semantics, local upsert calls
never get promoted to higher scopes. The second statement
outside f is making another upsert call. In this case, the call
is directed to session scope. Session variables are promoted
to global (server) variables after upsert call is processed.
This is done as part of the session scope destruction.

3.3 Xformer
The Xformer component is responsible for applying trans-

formations to the XTRA expression before serializing it into
a SQL query. Transformations are used in Hyper-Q for three
main purposes:

• Correctness. Data models and query languages in
kdb+ and PG systems are widely different with implicit
assumptions on each side. For example, null values
in Q assume 2-valued logic, while in SQL, null values
assume 3-valued logic. To bridge this gap in seman-
tics between the two languages, a transformation is
used to replace strict equalities in XTRA expressions
with Is Not Distinct From predicate, which provides
the needed 2-valued logic for null values when serializ-
ing the outgoing SQL query.

• Performance. The XTRA expression holds relational
and scalar properties that are used to optimize the se-
rialized SQL. For example, each node in the XTRA tree
is annotated with all columns it can produce. The re-
quested columns at each node may be however a small
subset of the available columns. A transformation that
prunes the columns of each XTRA node, to keep only
the needed columns, is used to avoid bloating the seri-
alized SQL with unnecessary columns, which may neg-
atively impact query performance.

• Transparency. Ordering is a first-class citizen in Q.
However, this is not the case in SQL. To maintain Q or-
dering semantics in the serialized SQL query, ordering
criteria may need to be automatically added to the
SQL query constructs generated by Hyper-Q. This op-
eration is implemented via a transformation. Each re-
lational XTRA operator can declare an implicit order
column and an order preservation property that in-
dicates whether the XTRA operator can preserve the
order in its output or not. This property is used by the
Xformer to ignore ordering in some cases. For exam-
ple, consider a nested query in which the outer query
performs a scalar aggregation on the result of the inner
query. In this case, the Xformer can remove the order-
ing requirement on the inner query. The Xformer may
also generate implicit order columns by injecting win-
dow functions in the transformed expressions.

3.4 Cross Compiler
The XC component is responsible for driving the trans-

lation of incoming queries written in the Q language into
PG SQL, as well as the reverse translation of query results
produced by PG database into the result format expected
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by Q application. Figure 4 gives an overview of XC archi-
tecture:

• Protocol Translator (PT). This layer is the DB
protocol handler of Hyper-Q. PT is responsible for
cross translation of messages sent to and received
from the two end-point systems (Q application and
PG database). Parsing DB protocol messages to ex-
tract queries as well as creating messages that hold
queries and query results are handled by this layer.

• Query Translator (QT). This layer is the query lan-
guage handler of Hyper-Q. QT is responsible for driv-
ing the translation of Q queries into XTRA, the internal
query representation of Hyper-Q, serializing XTRA ex-
pressions into equivalent SQL statements, and com-
municating the generated SQL statements to PT to be
sent to the PG database for execution. QT communi-
cates with the Algebrizer and Serializer components to
perform these tasks.

The interface between PT and QT is as simple as sending
out a Q query from PT, and receiving back an equivalent
SQL query from QT.

The design of XC abstracts the implementation details of
PT and QT into two separate processes. Each translator
process is designed as a Finite State Machine (FSM) that
maintains translator internal state while providing a mech-
anism for code re-entrance. This is particularly important
because operations performed by the translators may entail
heavy processing, such as serializing large SQL statements
or executing PG queries. FSMs allow firing asynchronous
events that kick-off backend processing, as well as defin-
ing function callbacks that get automatically triggered when
events occur. For example, when the results of a PG query
are ready for translation, an FSM callback is automatically
triggered to process the results and generate the required
translation.

4. DISCUSSION
In this section, we discuss some of the implementation

details of Hyper-Q platform.
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Figure 5: Representation of {(1, 1), (2, 2)} result
set

4.1 Erlang
We chose Erlang as the programming language to build

Hyper-Q. The decision to use Erlang was motivated by the
requirement of building an efficient and highly available vir-
tualization system. Erlang is a programming environment
that combines powerful abstractions of parallel primitives
and is natively able to manipulate network traffic, while
providing high availability and massive data throughput.
Building on the Erlang parallelism and networking libraries
greatly improves our productivity while building Hyper-Q.

4.2 Database Systems Protocols
To communicate with both Q applications and

PG databases, Hyper-Q uses several methods to extract
information from network messages, package information
into messages, and implement process handshake and
message flow needed to establish connections with both
ends.

When establishing a connection using QIPC specifica-
tions, a client sends Hyper-Q a null-terminated ASCII string
“username:passwordN” where N is a single byte denoting
client version. If Hyper-Q accepts the credentials, it sends
back a single byte response. Otherwise, it closes the connec-
tion immediately. After the connection is established, the
client sends queries in the form of raw text. Hyper-Q sends
back query result messages encoding both result type and
contents as defined in [22].

When communicating using PG v3 protocol, Hyper-Q ex-
changes different types of messages with PG database to han-
dle start-up, query, function call, copy data, and connection
shutdown requests. An authentication server is used during
connection start-up to support authentication mechanisms
such as clear text password, MD5, and Kerberos. A PG v3
message starts with a single byte denoting message type,
followed by four bytes for message length. The remainder of
the message body is reserved for storing contents [18,19].
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A key point to enable two-way communication between
a Q application and PG database is handling the different
representations of queries and results in the two protocols.
PG v3 protocol allows streaming of query results. An initial
message describes the schema of the results. Each row in the
results is then transmitted in the following messages. At the
end, an end-of-content message is sent. On the other hand,
QIPC forms the result set in a column-oriented fashion and
sends it as a single message back to the client.

Figure 5 shows the raw byte representation of a tabular re-
sult set, with two columns c1 and c2 and two rows {(1, 1), (2,
2)}, using both QIPC and PG v3 protocols. To send query
results back to Q application, Hyper-Q buffers the query re-
sult messages received from the PG database until an end-of-
content message is received. The results are then extracted
from the messages, and a corresponding QIPC message is
formed and sent back to the Q application.

The incompatibility of result set formats between QIPC
(column-oriented) and PG v3 (row-oriented) poses a chal-
lenge when transmitting large data sets: Hyper-Q needs to
buffer the entire result set before it transmits the corre-
sponding QIPC messages. A possible solution is materializ-
ing the result set in the PG database (as a temporary table),
and then extracting column by column to form the QIPC
messages. This problem does not exist when the two end
systems use compatible formats, since Hyper-Q can stream
the results directly after translation.

4.3 Eager Materialization
This section discusses the need to implement eager ma-

terialization of intermediate results during query cross-
compilation in Hyper-Q. We use Example 3 for illustration.
The function f gets interpreted only when it is invoked, e.g.,
when issuing the query f[`GOOG]. When algebrizing the def-
inition of f in Hyper-Q, we store the function definition as
plain text in the current variable scope (cf. Section 3.2.3).
When f is invoked, the textual definition is retrieved from
the current variable scope and it gets algebrized.

The first statement of f assigns a computed table to an
in-memory variable dt. Before algebrizing the rest of the
function’s body, the definition and metadata of dt must be
stored in the current variable scope, so that the following
statements that refer to dt can be successfully algebrized.
In general, a Q variable assignment statement may need to
be physically executed before algebrizing the following state-
ments. The reason is that a variable assignment in Q could
have side effects (e.g., modifying other tables). In Hyper-Q,
materialization of Q variables into PG objects may need to
be done in situ to maintain a behavior consistent with the
behavior of Q applications with kdb+.

The previous semantics trigger the need to implement ea-
ger materialization of Q variables into PG objects during
query translation. In some cases, only logical materialization
(e.g., using PG views, or maintaining the variable definition
for scalar variables in Hyper-Q’s variable store) is sufficient.
In other cases, physical materialization (e.g., using tempo-
rary PG tables) is necessary for correctness. To illustrate,
Hyper-Q generates the following SQL queries when translat-
ing the Q query f[`GOOG]; in Example 3 using the physical
materialization approach:

CREATE TEMPORARY TABLE HQ_TEMP_1 AS

SELECT ordcol, Price FROM trades

WHERE Symbol IS NOT DISTINCT FROM `GOOG`::varchar
ORDER BY ordcol;

SELECT `1`::int AS ordcol, MAX(Price)

FROM HQ_TEMP_1 ORDER BY ordcol;

Note that in the presence of variable assignment multiple
Q statements may be folded into a single SQL statement,
where each variable reference is replaced by its definition.

5. CASE STUDY
The broad vision behind Hyper-Q is to provide full func-

tional compatibility between kdb+ and PG. Naturally, due
to the technical challenges associated with an automated so-
lution, there has been some skepticism about the feasibility
of our approach.

We describe our experience delivering on this vision and
providing real business value in deploying Hyper-Q at one
of our early adopters - a large Wall Street investment bank.
This customer had a pressing need to migrate some of their
workloads into a PG-compatible MPP database (while still
keeping the real-time analytics on kdb+). We started this
engagement by collecting representative query workloads,
which helped us shape our backlog and attack the features
in order of importance. In order to achieve a tight feed-
back loop, we provided the customers with monthly release
drops, gathered their feedback and prioritized features for
the upcoming releases.

The following summarizes our lessons learned throughout
the course of deploying Hyper-Q at the customer:

• The customer was easily able to perform the schema
mapping and data movement part of the migration into
their MPP database. This reaffirmed our belief that
while most automated solutions focus on this step, the
real challenge is elsewhere.

• The backup and disaster recovery solution, as well as
increased concurrency provided by the target MPP
system was critical to the customer’s IT department.
This further validated our hypothesis that different
data processing environments match customer require-
ments better, and providing a seamless integration be-
tween these environments is important to success.

• Since Hyper-Q is a man-in-the-middle technology, one
of the initial challenges when operationalizing Hyper-
Q was around security. We worked closely with the
customer to resolve Kerberos authentication issues and
provided them with a solution.

• As we implemented features from the customer work-
load, we needed a way to ensure the exact same behav-
ior to the application as before. For this purpose we
built a side-by-side testing framework, which can be
used for internal testing of features, and also used by
the customers in their staging environments to ensure
correctness of operation.

• In certain cases Hyper-Q improves on the user experi-
ence provided by kdb+. For example, error messages in
Hyper-Q are more verbose and informative than those
provided by kdb+, which can increase productivity es-
pecially for system administrators and analysts new to
Q and kdb+.
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One of the most important insights from this engagement
was that while Q as a whole is rather large, customer queries
use only a fraction of the language. As a result, we have
achieved a sufficiently large coverage of the kdb+ functional
surface to make Hyper-Q useful in practical customer use
cases, including in workloads with a large variety of Q oper-
ators, local and global variables, and unrolling a large class
of Q user-defined functions without the need to create user-
defined functions in PG. The latter is important as the data
analyst using Hyper-Q may not have sufficient rights to cre-
ate objects at the backend system.

Since Hyper-Q is still under active development, it has
certain limitations, which can be broadly summarized in the
following categories:

1. Missing common language features, which have a cor-
responding SQL representation. Naturally, we will
close this gap as we move forward.

2. Missing features for which PG does not provide
the same built-in capabilities as kdb+, for example
kdb+ data types that do not exist in PG. We have
not seen many of these in current customers’ work-
loads, but it is possible that they become important
in the future. We plan on attacking these limitations
through PG’s extensibility mechanism, that is, provid-
ing customers with a “toolbox” of PG’s user-defined
types and functions to achieve the desired behavior.
Since Q includes complex query language constructs
such while-loops and recursion, just-in-time compila-
tion to SQL stored procedure may be required in cer-
tain cases.

In addition, there are also certain cases where Hyper-Q en-
hances the kdb+ experience without breaking application
code in areas like configurable concurrency and improved
error logging. Despite all roadblocks, we have demonstrated
that an automated solution for integrating real-time and his-
torical analytics systems is possible. We have built a system,
which solves real customer use cases for a large set of appli-
cation scenarios. In the future, we plan to continue working
closely with customers to prioritize our development accord-
ing to their use cases.

6. EXPERIMENTS
In this section, we present our experimental evaluation

of Hyper-Q. Since Hyper-Q sits between the application and
data processing layers, one obvious question that arises is
what is the overhead introduced by Hyper-Q?

We focus on evaluating the efficiency of query transla-
tion in Hyper-Q. Evaluating end-to-end query performance
is outside the scope of this paper, since it mainly depends
on the relative performance and capabilities of kdb+ and the
analytical databases, which is orthogonal to this work. The
goal of our evaluation is to demonstrate that the overhead
introduced by Hyper-Q is typically minimal. We also illus-
trate the feasibility of adding new features in Hyper-Q to
cover the language surface of Q.

All experiments are conducted on an Analytical Workload
driven from customer use-cases. The workload is representa-
tive of actual production settings and consists of 25 queries
that involve three or more wide tables (e.g., tables with more
than 500 columns), joins, and various kinds of analytical ag-
gregate functions. We use Greenplum [20, 23], a massively

parallel database system, as the backend database. All ex-
periments are done on a dual core machine with 3GHz Intel
Core i7 processor and 16 GB RAM.

Query translation goes through the following stages: al-
gebrization of Q queries to XTRA, optimization by applying
XTRA transformations, and finally serialization of XTRA ex-
pressions to SQL queries. During algebrization, Hyper-
Q needs to lookup metadata (e.g., table definitions) in the
PG database catalog to bind parse trees into XTRA expres-
sions. Typically, metadata do not have frequent updates.
Hyper-Q provides a configurable metadata caching mecha-
nism with configurable invalidation policies and cache expi-
ration time. Our experiments are conducted with metadata
caching enabled.

Figure 6 shows the total time consumed by query trans-
lation for the Analytical Workload. On average, the time
consumed is around 0.5% of the total query execution time.
The maximum query translation time is 4% of the query
execution time. Queries # 10, 18, 19, and 20 involve more
tables to join compared to other queries. Hence, it takes
longer time to algebrize these queries, lookup the required
metadata, and serialize them into final SQL queries.

Figure 7 shows the split of translation time across differ-
ent stages. The optimization and serialization stages con-
sume most of the time in the shown results. This is because
the processing done in these stages for analytical queries
typically involves multi-table joins and aggregate functions
that generate XTRA expressions resulting in multi-level sub-
queries. During optimization, multiple transformations need
to be invoked to prepare the XTRA expressions for SQL se-
rialization (cf. Section 3.3). For example, the generated
columns in these expressions need to be processed to prune
the unused ones before serializing the final query.

The extensibility of Hyper-Q framework allows building
support for the surface of the Q language at a consistent
speed. While building the framework has been a challeng-
ing task, the payoffs from having an extensible framework
are substantial. Typically, supporting a new Q query type
in Hyper-Q requires adding parsing routines, AST nodes and
query transformations. The Hyper-Q framework handles all
the details of establishing the data pipeline, representing
new query constructs in the XTRA world, firing up the rele-
vant transformations and exchanging messages in the right
formats with the two endpoint systems. By building on the
powerful infrastructure provided by Hyper-Q, we have been
able to support many customer feature requests out-of-the-
box, and provide short turnaround times for missing fea-
tures. Driven by customer requirements, we expect reaching
parity with the bulk of the Q language surface in the very
near future.

Hyper-Q machine-generated queries go through extensive
correctness and quality assurance checks. The equivalent
manually migrated queries pose a much higher risk of bugs
and semantic inconsistencies. Adding a new feature in
Hyper-Q starts with finding a safe translation, and then,
based on customer feedback, adding further optimizations.

7. RELATED WORK
In [1] we have proposed the concept of Adaptive Data

Virtualization (ADV) and identified the primary require-
ments for the success of an ADV platform. This paper
presents Hyper-Q, the first implementation of an ADV plat-
form. Data virtualization has initially been proposed 30

1414



Query&#

0%

1%

2%

3%

4%

5%

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

Query&Translation&Time&wrt&Execution&Time&

Figure 6: Efficiency of query translation

Query&#

0.0%
0.5%
1.0%
1.5%
2.0%
2.5%
3.0%

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

Time&Consumed&by&Translation&Stages&wrt&Total&Execution&Time

Algebrization
Optimization
Serialization

Figure 7: Query translation stages

years ago [10]. Recently it has become an alternative to
ETL for business intelligence applications [21] with a num-
ber of vendors like, e.g., Informatica [13], Denodo [4], and
IBM [11]. Adaptive Data Virtualization extends traditional
Data Virtualization to also include applications. In addi-
tion to data and the machines it is hosted on, applications
also remain unmodified and are transparently adapted by
the platform.

The trading algorithms of the financial industry are writ-
ten for time-series databases like KDB [25]. They focus on
low-latency processing of large volumes of real time trade
ticks. To meet the timing requirements, the query processing
engines manage and process data directly in main memory
and in columnar format. Their capacity is restricted by main
memory and scalability constraints, limiting the data that
can be analyzed and processed to a couple of days. Massively
parallel processing database systems (MPPs) like, e.g., SQL
Server PDW [16], Amazon Redshift [8], Greenplum [20], and
IBM dashDB [12], on the other hand, scale well in data size
and compute capacity. Their shared-nothing architecture

and feature set suits Big Data analytics workloads well, en-
abling processing of very large amounts of data. However,
they lack the ability to process complex queries on time-
series data in real time.

Real-time warehousing solutions like MemSQL [15] com-
bine one or more of the aforementioned technologies (data
virtualization or integration of transactional processing in
one system to avoid ETL, in-memory processing for better
performance) to provide fast analytics. They cannot close
the gap between real time processing and Big Data analyt-
ics, though, leaving the financial trading applications to the
specialized systems built for them.

[6] raises the concern that vendors become “locked in“
to outdated costly technologies, despite various options to
use faster and lower cost execution engines. [6] introduced
Musketeer, a proof-of-concept workflow manager to map
workflows expressed in high-level query languages to vari-
ous query engine executions. In particular, high-level query
language operators are translated into an intermediate rep-
resentation from which it generates jobs for query execution
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engines. However, the intermediate representation is limited
to SQL-like operators and depends on user-defined functions
to translate the remaining high-level operators.

By tackling the integration of existing applications with
different kinds of data management system, adaptive data
virtualization enables businesses to leverage the advantages
each system provides and combine them seamlessly in their
existing applications.

8. SUMMARY
Adaptive Data Virtualization is the broad vision of de-

coupling applications from the underlying database systems
in a way that is completely transparent and non-intrusive.
In this paper, we presented Hyper-Q, an initial implemen-
tation of this vision. Hyper-Q enables applications written
for one specific database to run on a wide variety of alter-
native database systems – fully transparently and without
requiring changes to the application. Effectively liberating
enterprises from vendor lock-in, Hyper-Q provides businesses
with unprecedented flexibility to adopt database technology
and modernize their data infrastructure.

The financial use case of bridging real-time and analyt-
ics has proven a great starting point for our development as
it required us to address differences between systems on all
conceivable levels. As a result, our framework matured sub-
stantially over the past 12 months; great care has been taken
to delineate platform and plugins cleanly. The resulting sys-
tem clearly demonstrates the feasibility of our vision. Our
initial experience in implementing this platform has been
very encouraging and additional plugins for other languages
are currently under development.

While Hyper-Q as it stands today is not a data integra-
tion or a federated system, it can be used as a building block
in this context. For example, in a federated system which
delegates parts of queries to different systems, Hyper-Q can
be used to translate the query to the language of the corre-
sponding backend system, and convert the results back into
the format expected by the federated system.
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