NScaleSpark: Subgraph-centric Graph Analytics on
Apache Spark

Abdul Quamar
University of Maryland
abdul@cs.umd.edu

ABSTRACT

In this paper, we describe NSCALESPARK, a framework for execut-
ing large-scale distributed graph analysis tasks on the Apache Spark
platform. NSCALESPARK is motivated by the increasing interest in
executing rich and complex analysis tasks over large graph datasets.
There is much recent work on vertex-centric graph programming
frameworks for executing such analysis tasks — these systems es-
pouse a “think-like-a-vertex” (TLV) paradigm, with some example
systems being Pregel, Apache Giraph, GPS, Grace, and GraphX
(built on top of Apache Spark). However, the TLV paradigm is
not suitable for many complex graph analysis tasks that typically
require processing of information aggregated over neighborhoods
or subgraphs in the underlying graph. Instead, NSCALESPARK is
based on a “think-like-a-subgraph” paradigm (also recently called
“think-like-an-embedding” [23]). Here, the users specify computa-
tions to be executed against a large number of multi-hop neighbor-
hoods or subgraphs of the data graph. NSCALESPARK builds upon
our prior work on the NSCALE system [18], which was built on top
of the Hadoop MapReduce system. We describe how we reimple-
mented NSCALE on the Apache Spark platform, the key challenges
therein, and the design decisions we made. NSCALESPARK uses
a series of RDD transformations to extract and hold the relevant
subgraphs in distributed memory with minimal footprint using a
cost-based optimizer. Our in-memory graph data structure enables
efficient graph computations over large-scale graphs. Our exper-
imental results over several real world data sets and applications
show orders-of-magnitude improvement in performance and total
cost over GraphX and other vertex-centric approaches.

1. INTRODUCTION

Increasing interest in executing complex analysis tasks over large
graphs has led to much recent work on large-scale distributed graph
processing frameworks. However, because of a wide variety and
range of graph analysis tasks and algorithms that are of interest,
there is little consensus on the programming paradigms or abstrac-
tions around which to build such large-scale graph processing sys-
tems. Perhaps the most popular such paradigm is the vertex-centric
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programming framework (also called “think-like-a-vertex” (TLV)
paradigm). In these frameworks, users write vertex-level compute
programs, that are then executed iteratively by the framework in
either a bulk synchronous fashion or asynchronous fashion using
message passing or shared memory. This model is well-suited for
some graph processing tasks like computing PageRank or connected
components, and also for several distributed machine learning and
optimization tasks that can be mapped to message passing algo-
rithms in appropriately constructed graphs [13, ?]. Originally intro-
duced in this context in Google’s Pregel system [14], several graph
analytics systems are built around this model (e.g., Apache Gi-
raph, Hama, GraphLab [13], PowerGraph, GRACE [25], GPS [19],
GraphX [8]).

Limitations of TLV paradigm: However, this model limits the com-
pute program’s access to a single vertex’s state and so the overall
computation needs to be decomposed into smaller local tasks that
can be (largely) independently executed; it is not clear how to do
this for many graph algorithms of interest, without requiring a large
number of iterations. For example, to analyze a 2-hop neighbor-
hood around a vertex to find social circles [15], one would first
need to gather all the information from the 2-hop neighbors through
message-passing, and reconstruct those neighborhoods locally (i.e.,
in the local states of the vertex programs). Even something as sim-
ple as computing the number of triangles for a node requires gath-
ering information from 1-hop neighbors (since we need to reason
about the edges between the neighbors). This requires significant
network communication and an enormous amount of memory.
Consider some back-of-the-envelope calculations for estimating
the message passing and memory overheads for constructing neigh-
borhoods of various sizes at each vertex. Here we use a sample
of the Orkut social network graph, containing approximately 3M
nodes, 234M edges and an average degree of 77. The original
graph occupies 14GB of memory for a data structure that stores
the graph as a bag of vertices in adjacency list format. Construct-
ing the 1-hop neighborhoods for all vertices through message pass-
ing requires 231M messages and consumes a total of 233 GB of
cluster memory, whereas constructing 2-hop neighborhoods would
require approximately 18B messages and 18TB of memory. It is
clear that a vertex-centric approach requires inordinate amounts of
network traffic, beyond what can be addressed by “combiners” in
Pregel or GPS, and impractical amount of cluster memory. Al-
though GraphLab is based on a shared memory model, it too would
require two phases of GAS (Gather, Apply, Scatter) to construct
a 2-hop neighborhood at each vertex and also suffers from dupli-
cation of state and high memory overhead. Furthermore, because
most existing graph processing frameworks hash-partition vertices
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Figure 1: An example of neighborhood-centric analysis: iden-
tify users’ social circles in a social network.

by default, this approach will create much duplication of neighbor-
hood data structures. In recent work, Seo et al. [21] also observe
that these frameworks quickly run out of memory and do not scale
for ego-centric analysis tasks.

NSCALESPARK: In this paper, we present NSCALESPARK, which
supports a significantly more general subgraph-centric program-
ming framework that we introduced in our prior work [18], while
keeping many of the benefits of the vertex-centric programming
frameworks including the ability to parallelize the task across a dis-
tributed cluster of machines. NSCALESPARK is better suited for a
large class of graph analysis tasks that can be viewed as operations
on local neighborhoods (or subgraphs of local neighborhoods) of
a large number of nodes in the graph. For example, there is much
interest in analyzing ego networks, i.e., 1- or 2-hop neighborhoods,
of the nodes in the graph. Examples of specific ego network anal-
ysis tasks include identifying structural holes, brokerage analysis,
counting motifs [16], identifying social circles (Figure 1) [15], link
prediction and recommendations using Personalized Page Rank [6],
computing local clustering coefficients, and anomaly detection [5].
In other cases, there may be interest in analyzing connected or in-
duced subgraphs satisfying certain properties. As an example, we
may be interested in analyzing the induced subgraph on users who
tweet a particular hashtag in the Twitter network. Similarly, we
may be interested in analyzing groups of users who have exhibited
significant communication activity in recent past. More complex
subgraphs can be specified as unions or intersections of neighbor-
hoods of pairs of nodes; this may be required for graph cleaning
tasks such as link prediction and entity resolution.

More specifically, in NSCALESPARK, the user specifies': (a) the
subgraphs of interest as k-hop neighborhoods around vertices or
sets of vertices that satisfy a set of predicates, and (b) a user pro-
gram to be executed on those subgraphs (which may itself be it-
erative). The user program is written against a general graph API
(specifically, BluePrints), and has access to the entire state of the
subgraph against which it is being executed. The NSCALESPARK ex-
ecution engine is in charge of ensuring that the user program only
has access to that state and nothing more; this guarantee allows
existing graph algorithms to be used without modification. Thus a
program written to compute, say, connected components in a graph,
can be used as is to compute the connected components within each
subgraph of interest.

NSCALESPARK consists of two major components. First, the
graph extraction and packing (GEP) module extracts relevant sub-
graphs of interest and uses a cost-based optimizer for data replica-

"This has subtle differences from the NSCALE programming
framework as we discuss later.

tion and placement that minimizes the number of machines needed,
while attempting to balance load across machines to guard against
the straggler effect. Second, the distributed execution engine exe-
cutes user-specified computation on the subgraphs in memory. It
employs several optimizations that reduce the total memory foot-
print by exploiting overlap between subgraphs loaded on a machine,
without compromising correctness.

Whereas NSCALE was built on top of Hadoop, NSCALESPARK
is written using Apache Spark [26], which has emerged as a pop-
ular big data analytics platform in the recent years. It provides the
unique ability to prune large datasets through a series of coarse-
grained transformations and to hold them in distributed memory for
further analysis providing great performance benefits, especially for
iterative analysis tasks. It uses a lineage graph to achieve fault tol-
erance without resorting to intermediate state materialization as is
done in Hadoop MapReduce. As such, itis a viable platform for big
data data analytics which provides transparent distribution of data
and computation and fault tolerance at scale.

Although, Spark provides its own graph analytics library, GraphX,
it does not scale well for many neighborhood- or subgraph-centric
analysis tasks as we showed in our prior work (and often does
not finish even for small graphs). It basically emulates the vertex-
centric programming frameworks thus suffering from the same lim-
itations. The storing of the vertex and edge information as sepa-
rate immutable RDDs further aggravates the problem of aggregat-
ing neighborhood state and executing user computation on it. Our
experimental results show that NSCALESPARK provides significant
improvement over GraphX both in terms of performance and re-
source consumption (memory required).

Related Work: There have been several other proposals for subgraph-
centric programming frameworks. Giraph++ [24] and GoFFish [22]
both primarily target the message passing overheads and scalabil-
ity issues in the vertex-centric, BSP model of computation. Gi-
raph++ partitions the graph onto multiple machines, and runs a
sequential algorithm on the entire subgraph in a partition in each
superstep. GoFFish is very similar and partitions the graph using
METIS (another scalability issue) and runs a connected components
algorithm in each partition. An important distinction is that in both
cases, the subgraphs are determined by the system, in contrast to
our framework, which explicitly allows users to specify the sub-
graphs of interest. Furthermore, these previous frameworks use se-
rial execution within a partition and the onus of parallelization is
left to the user. It would be extremely difficult for the end user to
incorporate tools and libraries to parallelize these sequential algo-
rithms to exploit powerful multicore architectures available today.
Arabesque [23], proposed recently, is much closer to our work,
and also espouses a “think-like-an-embedding” paradigm. Their fo-
cus is primarily on graph mining tasks like frequent pattern mining
where the intermediate result sizes could be larger than the input
graph itself, and they assume that the entire graph can be main-
tained in memory at each of the cluster nodes. In this work, we
assume that the graph is too large for any single machine and must
be partitioned across the machines; in ongoing work, we are inves-
tigating the issues in bridging the gap between these two models.
Among other graph programming frameworks, SociaLite [20]
describes an extension of a Datalog-based query language to ex-
press graph computations such as PageRank, connected compo-
nents, shortest path, etc. The system uses an underlying relational
database with tail-nested tables and enables users to hint at the exe-
cution order. Galois [17], LEGraph [10], are among highly scalable
general-purpose graph processing frameworks that target systems-



or hardware-level optimization issues, but support only low-level or
vertex-centric programming frameworks. Facebook’s Unicorn sys-
tem [7] constructs a distributed inverted index and supports online
graph-based searches using a programming API that allows users
to compose queries using set operations like AND, OR, etc.; thus
Unicorn is similar to an online SPARQL query processing system
and can be used to identify nodes or entities that satisfy certain
conditions, but it is not a general-purpose complex graph analytics
system. We omit a more detailed discussion of other systems (e.g.,
XStream, GraphChi) due to lack of space.

Outline: We begin with a brief overview of our prior NSCALE sys-
tem (Section 2). We then describe NSCALESPARK, the key chal-
lenges we faced in porting NSCALE to Spark, and some of the de-
sign decisions that we made (Section 3). We then present an exper-
imental evaluation comparing NSCALESPARK with NSCALE and
GraphX (Section 4).

2. BACKGROUND: NSCALE

In this section, we briefly summarize the NSCALE system that
we proposed in our prior work, including some of the represen-
tative applications that motivated that system. A comprehensive
experimental evaluation comparing NSCALE with Apache Giraph,
GraphLab, and GraphX showed that NSCALE performs 3X to 30X
better that those systems for analysis tasks over 1-hop neighbor-
hoods and 20X to 400X for 2-hop neighborhood analytics.

2.1 Application Scenarios

We begin with discussing two representative graph analysis tasks
that are ill-suited for vertex-centric frameworks, that we use for our
experimental evaluation in this paper. Several other applications are
described in detail in [18].

Local clustering coefficient (LCC). In a social network, the LCC
quantifies, for a user, the fraction of his or her friends who are also
friends—this is an important starting point for many graph analytics
tasks. Computing the LCC for a vertex requires constructing its ego
network, which includes the vertex, its 1-hop neighbors, and all the
edges between the neighbors. Even for this simple task, the limita-
tions of vertex-centric approaches are apparent, since they require
multiple iterations to collect the ego-network before performing the
LCC computation (such approaches quickly run out of memory as
we increase the number of vertices we are interested in).

Social recommendations using personalized PageRank. Random
walks with restarts (such as personalized PageRank (PPR) [6]) lie
at the core of several social recommendation algorithms. These
algorithms can be implemented using Monte-Carlo methods [9]
where the random walk starts at a vertex v, and repeatedly chooses
arandom outgoing edge and updates a visit counter with the restric-
tion that the walk jumps back only to v with a certain probability.
The stationary distribution of such a walk assigns a PageRank score
to each vertex in the neighborhood of v; these provide the basis
for link prediction and recommendation algorithms. Implement-
ing random walks in a vertex-centric framework would involve one
iteration with message passing for each step of the random walk.
In contrast, with NSCALESPARK the complete state of the k-hop
neighborhood around a vertex is available to the user’s program,
which can then directly execute personalized PageRank or any ex-
isting algorithm of choice.

2.2 Programming Model
We assume a standard definition of a graph G(V, E) where V =
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Figure 2: A subgraph extraction query on a social network

ArrayList<RVertex> n_arr = new ArrayList<RVertex>();
for (Edge e: this.getQueryVertex () .getOutEdges)
n_arr.add(e.getVertex (Direction.IN));

int possiblelinks = n_arr.size()* (n_arr.size()-1)/2;

// compute #actual edges among the neighbors
for(int i=0; i < n_arr.size()-1; i++)
for (int j=i+1l; J < n_arr.size(); J++)
if (edgeExists (n_arr.get (i), n_arr.get(j)))
numkEdges++;
double lcc = (double) numEdges/possiblelLinks;

Figure 3: Example user program to compute local clustering
coefficient written using the BluePrints API. The edgeExists()
call requires access to neighbors’ states, and thus this program
cannot be executed as is in a vertex-centric framework.

{v1,v2, ..., vy } denotes the set of vertices and E = {e1, e, ..., em }
denotes the set of edges in G. Let A = {a1,as,...,ar} denote
the union of the sets of attributes associated with the vertices and
edges in GG. In contrast to vertex-centric programming models,
NSCALE allows users to specify subgraphs or neighborhoods as
the scope of computation. More specifically, users need to specify:
(a) subgraphs of interest on which to run the computations through
a subgraph extraction query, and (b) a user program.

Specifying subgraphs of interest. NSCALE supported extraction
queries that are specified in terms of four parameters: (1) a predi-
cate on vertex attributes that identifies a set of query vertices (Pgov ),
(2) k — the radius of the subgraphs of interest, (3) edge and vertex
predicates to select a subset of vertices and edges from those k-
hop neighborhoods (Pg, Py ), and (4) a list of edge and vertex at-
tributes that are of interest (Ag, Av ). This captures a large number
of subgraph-centric graph analysis tasks, including all of the tasks
discussed earlier. For a given subgraph extraction query ¢, we de-
note the subgraphs of interest by SG1(V1, E1), ..., SGq(Vy, Ey).

Figure 2 shows an example subgraph extraction query, where the
query vertices are selected to be vertices with age > 18, radius is
set to 1, and the user is interested in extracting induced subgraphs
containing vertices with age > 25 and edges with weight > 5.
The four extracted subgraphs, SG1, ..., SG4 are also shown.

Specifying subgraph computation user program. The user com-
putation to be run against the subgraphs is specified as a Java pro-
gram against the BluePrints API [1], a collection of interfaces anal-
ogous to JDBC but for graph data. Blueprints is a generic graph
Java API used by many graph processing and programming frame-
works (e.g., Gremlin, a graph traversal language [3]; Furnace, a
graph algorithms package [2]; etc.). By supporting the Blueprints
API, we immediately enable use of many of these already existing
toolkits over large graphs. Figure 3 shows a sample code snippet of




how a user can write a simple local clustering coefficient computa-
tion using the BluePrints APIL. The subgraphs of interest here are the
1-hop neighborhoods of all vertices (by definition, a 1-hop neigh-
borhood includes the edges between the neighbors of the node).

2.3 System Overview
NSCALE has two main components.

Graph Extraction and Packing (GEP) Module. Unlike prior graph
processing frameworks, the GEP module forms a major component
of the overall NSCALE framework. From a usability perspective,
it is important to provide the ability to read the underlying graph
from the persistent storage engines that are not naturally graph-
oriented. However, more importantly, partitioning and replication
of the graph data are more critical for graph analytics than for ana-
lytics on, say, relational or text data.

Graph analytics tasks, by their very nature, tend to traverse graphs
in an arbitrary and unpredictable manner. If the graph is partitioned
across a set of machines, then many of these traversals are made
over the network, incurring significant performance penalties. Fur-
ther, as the number of partitions of a graph grows, the number of cut
edges (with endpoints in different partitions), and hence the num-
ber of distributed traversals, grows in a non-linear fashion. This is
in contrast to relational or text analytics where the number of ma-
chines used has a minor impact on the execution cost.

NSCALE treats user programs as black-boxes and avoids dis-
tributed traversals altogether by replicating vertices and edges suf-
ficiently so that every subgraph of interest is fully present in at least
one partition. Similar approach has been taken by some of the prior
work such as SPARQL queries [11] in distributed settings. The
GEP module is used to ensure this property, and is responsible for
extracting the subgraphs of interest and packing them onto a small
set of partitions such that every subgraph of interest is fully con-
tained within at least one partition.

NSCALE uses Apache Hadoop Map-Reduce platform for imple-
menting the GEP phase, and we refer the reader to [18] for further
details on that implementation.

Distributed Execution Engine. The distributed execution phase in
NSCALE is implemented as a MapReduce job, which reads the
original graph and the mappings generated by GEP, shuffles graph
data onto a set of reducers, each of which constructs one of the par-
titions. Inside each reducer, an instance of the execution engine is
instantiated along with the user program, which then receives and
processes the graph partition.

The NSCALE execution engine supports both serial and paral-
lel execution modes for executing user programs on the extracted
subgraphs. For serial execution, the execution engine uses a single
thread and loops across all the subgraphs in a partition, whereas for
parallel execution, it uses a pool of threads to execute the user com-
putation in parallel on multiple subgraphs in the partition. However,
this is not straightforward because the different subgraphs of inter-
est in a partition are stored in an overlapping fashion in memory to
reduce the total memory requirements. The execution engine em-
ploys several bitmap-based techniques [18] to ensure correctness in
that scenario.

3. NSCALESPARK SYSTEM DESIGN

In this section, we discuss in detail the various aspects of the
NSCALESPARK system design. We first list out the major chal-
lenges in the NSCALESPARK system design and then provide a
brief overview of the system architecture. Figure 4 shows the high-
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level system architecture of NSCALESPARK. The framework sup-
ports ingestion of the underlying graph in a variety of different for-
mats including edge lists, adjacency lists, and in a variety of dif-
ferent types of persistent storage engines including key-value pairs,
specialized indexes stored in flat files, relational databases, etc. As
in NSCALE, the two major components of NSCALESPARK are the
graph extraction and packing (GEP) module and the distributed ex-
ecution engine embedded as a library within the the Spark runtime
environment.

Some of the key challenges that needed to be addressed in de-
signing and building NSCALESPARK include:

e Providing an efficient mechanism for extracting the user-defined
subgraphs from the underlying raw graph data using a series of
coarse-grained transformations supported by the Spark API.

e Designing and developing an appropriate abstraction for hold-
ing the extracted subgraphs in a distributed setting while mini-
mizing the memory footprint for the same.

e Building an efficient execution model that would execute the
user computation on the extracted subgraphs in distributed mem-
ory without incurring the overheads of the vertex-centric ap-
proaches.

e Providing support for both one pass and iterative analytics while
keeping in mind the limitations of the Spark execution model
arising due to the immutability of the RDDs.

NSCALESPARK is still under active development, and in this
section, we describe the functionality that NSCALESPARK is en-
visioned to support.

Programming Model. The programming model of NSCALESPARK
is similar to the NSCALE programming model wherein the user
specifies the subgraphs of interest and the graph computation to be
executed on them using the NSCALESPARK user APL. The model
has been further generalized to allow the user to specify a query
pattern instead of a single query vertex. If there are no vertex or
edge predicates, then an extracted subgraph is the union of k-hop
neighborhoods around a matched pattern. This allows us to handle
a larger variety of graph mining tasks [23]. Note that, any given
vertex may participate as a matched vertex in a potentially large
number of extracted subgraphs, making it even more important to
carefully distribute and partition the graph as we do.

Graph Extraction and Packing (GEP) Module. In NSCALESPARK,
the GEP module has been implemented on Apache Spark using a




series of RDD transformations in Scala. We describe the detailed
steps below:

e Starting from a raw edge list representation of the underlying
graph data, we use a series of coarse-grained transformations to
incrementally construct and extract the relevant subgraphs of in-
terest, instantiated in memory as a Spark RDD. Each subgraph
is represented as a list of vertices, and information about edges
is not maintained to keep the memory footprint low. As a result,
we may extract supergraphs of the final subgraphs of interest.

e These subgraphs (as lists of vertices) are then provided as input
to a shingle-based bin-packing algorithm [18]. The bin packing
algorithm groups together subgraphs based on neighborhood
similarity to minimize the memory footprint of the subgraphs
when held in distributed memory. The final output of the bin
packing algorithm is a vertex-to-partition mapping.

e Once this mapping information is obtained, it is then joined
with the original graph data, to produce a memory efficient dis-
tributed instantiation of the extracted subgraphs.

Instantiating the subgraphs in distributed memory. We have built
a graph library for NSCALESPARK that exposes a similar API and
provides similar functionality as the graph library for NSCALE. The
library provides the data structures for holding the subgraphs in
memory as well as the bitmap implementations [18] required for the
distributed and parallel execution of user computation. The graph
library exports the popular BluePrints API, enabling the use of a
large number of existing toolkits, applications and programs over
large graphs. Once we made the BluePrints-based graph library
available within the NSCALESPARK environment, we used the fol-
lowing steps to instantiate the subgraphs of interest in distributed
memory.

e The subgraph structural information extracted was joined with
the subgraph-to-partition information obtained from the bin pack-
ing algorithm within a coarse-grained map transformation. This
enabled us to group the subgraphs using the partition number as
the grouping key.

e The graph library API was used within the transformation to
construct a graph object for each partition. Each graph ob-
ject within a partition contains a set of subgraphs that had been
binned together into the partition by the bin packing algorithm
in the GEP phase. This ensures that all the subgraphs binned
together are available in the memory of a single partition.

e The final output of this phase is a Spark RDD containing a set of
BluePrint graph objects as described above, ready for executing
user computation by the execution engine (Figure 5).

Executing user computation. The NSCALESPARK execution en-
gine written in Java is primarily based on the NSCALE distributed
execution engine [18] with some modifications. These modifica-
tions include design changes to the Master-worker architecture of
the execution engine for enabling it to run within the Spark coarse-
grained transformations. These transformations take the RDD graph
objects as input for executing user computation and provide an out-
put RDD to store the results of user computation. We explain the
details of the execution phase below:

e We use the graph object Spark RDD obtained from GEP phase
as input and apply a map transformation. The execution engine
is instantiated within the map transformation creating a sepa-
rate instance for each graph object within the RDD. This design
choice seamlessly enables us to use the Spark platform function-
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Figure 5: In-memory subgraph representation and execution of
user computation.

ality to create an instantiation of a distributed execution engine
for NSCALESPARK.

e Within each instantiation of the execution engine instance, the
Master process of the execution engine spawns several worker
threads within a thread pool whose size is governed by the un-
derlying hardware of the machine running the Spark executor
instance.

e The worker threads execute the compute function written by the
user (using the BluePrints API) on the subgraphs within each
graph object of the RDD. The bitmap implementation provided
by our library controls the scope of computation for each worker
thread while enabling the parallel execution of user computation
on subgraphs that have been stored in an overlapped fashion in
memory.

e The design choice of using the bitmap-based NSCALE execu-
tion engine within the NSCALESPARK framework thus enables
the distributed execution of user computation while minimizing
memory consumption by exploiting overlap among the neigh-
borhoods of interest.

The NSCALESPARK design draws from a unique performance ad-
vantage of the underlying Spark platform. Once an RDD is created,
it can be persisted in memory and be repeatedly used for differ-
ent analysis tasks. The NSCALESPARK design benefits from this
wherein the graph RDD object created by the GEP phase can be
persisted and used as input for several graph analytics tasks thus
amortizing the cost of GEP phase across different analytics tasks.
This also gives us the ability to meaningfully compose more com-
plex tasks as chains wherein the output of a previous task can be
directly fed as input to the next tasks in the chain.

4. EXPERIMENTAL EVALUATION

We performed an extensive evaluation of NSCALESPARK, and
compared it to NSCALE (on Hadoop) and GraphX (on Apache
Spark). We briefly discuss some additional implementations details
of NSCALESPARK here, and describe the experimental setup.

Implementation Details. NSCALESPARK has been written in scala
and deployed on an Apache Spark Cluster. The framework imple-
ments and exports the generic BluePrints API to write graph com-
putations. The GEP module takes the subgraph extraction query,
the bin packing heuristic to be used and the bin capacity. The
Spark platform distributes the user computation and the execution
engine library using the distributed cache mechanism to the ap-
propriate machines on the cluster. The execution engine has been
parametrized to vary its execution modes, and use different batch

distributed execution engine



Dataset # Nodes # Edges Avg Degree | Avg Clust | # Triangles Diameter
Coeff

Notre Dame Web Graph 325729 2,994,268 9.19 0.2346 8910005 46

Google Web Graph 875713 10,210,078 11.66 0.5143 13391903 21

Wikipedia Talk Network 2,394,385 10,042,820 42 0.0526 9203519 9

LiveJournal Social Network 4,847,571 137,987,546 28.5 0.2741 285730264 16

Table 1: Dataset Statistics

sizes and bitmap construction techniques. In our current implemen-
tation of NSCALESPARK we focus on one-pass analytics to ascer-
tain the feasibility and functionality of the port. We are currently
working on adding support for iterative applications such as PageR-
ank that NSCALE supports.

Data Sets. We conducted experiments using several different datasets,

majority of which have been taken from the Stanford SNAP dataset
repository [4] (see Table 1 for details and some statistics).

e Web graphs: We have used two different web graph datasets:
Notre Dame Web Graph, and Google Web Graph; in all of these,
the nodes represent web pages and directed edges represent hy-
perlinks between them.

o Communication/Interaction networks: We use the Wikipedia
Talk network, created from the talk pages of registered users on
Wikipedia until Jan 2008.

e Social networks: We also use one social network dataset: the
Live Journal social network.

Graph Applications. We evaluate NSCALESPARK over 4 differ-
ent applications. Two of them, namely, Local Clustering Coefficient
(LCC), and Link Prediction using Personalized Page Rank (PPR),
are described in Section 2. In addition, we used:

e Triangle Counting (TC): Here the goal is to count the num-
ber of triangles each vertex is part of. These statistics are very
useful for complex network analysis [12] and real world appli-
cations such as spam detection, link recommendation, etc.

o Motif Counting (MC): Network motifs are subgraphs that ap-
pear in complex networks which have important applications in
biological networks and other domains. Counting network mo-
tifs over large graphs involves identifying and counting specific
subgraph patterns (e.g., Feed-forward loops) in the neighbor-
hood of every query vertex that the user is interested in.

Comparison platforms. We compare NSCALESPARK with two
different graph programming frameworks.

e NScale. NSCALE deployed on a Apache YARN framework.

e GraphX [8]. GraphX is a graph programming library that sits
on top of Apache Spark. We used the GraphX library version
2.10 over Spark version 1.4.0 with HDFS as the underlying stor-
age layer.

Evaluation metrics. We use the following evaluation metrics to
evaluate the performance of NSCALESPARK.

e Computational Effort (CE). CE captures the total cost of doing
analytics on a cluster of nodes deployed in the cloud. Let 7" =
{T1,T5,...,Tn} be the set of tasks (or processes) deployed by
the framework on the cluster during execution of the analytics
task. Also, let ¢; be the time taken by the task 7; to be executed
on node 7. We define C€ = Efvzl t;. The metric captures
the cost of doing data analytics in terms of node-secs which is
appropriate for the cloud environment.

e Execution Time. This is the measure of the wall clock time or
elapsed time for executing an end-to-end graph computation on
a cluster of machines. It includes the time taken by the GEP
phase for extracting the subgraphs as well as the time taken by
the distributed execution engine to execute the user computation
on all subgraphs of interest.

o Cluster Memory. Here we measure the maximum total physi-
cal memory used across all nodes in the cluster.

Experimental Setup. We used a 16 node cluster wherein each
data node has 2 4-core Intel Xeon E5520 processors, 24GB RAM
and 3 2TB disks. The cluster runs Apache YARN (MRv2 on Cloud-
era’s CDH version 5.1.2), Apache Zookeeper for coordination and
Apache Spark 1.4.0. Each process on this cluster runs in a con-
tainer with a max memory capacity restricted to 15GB with a max-
imum of 6 processes per physical machine. We have evaluated our
NSCALESPARK prototype on the Apache Spark platform with 15
executor instances and one driver instance with 15GB of memory
available for each.

Experimental Results. Figure 6 shows the results for the perfor-
mance comparisons of NSCALESPARK with NSCALE and GraphX.
Comparing the performance of NSCALESPARK with NSCALE in
terms of computational effort (CE—node secs) for two different data
sets Web NotreDame and Web Google (Figures 6(a), 6(b)), we
see that NSCALESPARK performs a little better which can be at-
tributed to a better performance of the GEP phase on the Spark
platform as compared to a multistage map-reduce implementation
in Hadoop. As far as the memory consumption is concerned (Fig-
ures 6(c), 6(d)), NSCALESPARK consumes a little more memory
than NSCALESPARK. The maximum virtual memory actually used
by the Spark instance was 25.3GB for this set of experiments.

Next we compare the performance of NSCALESPARK with NSCALE

and GraphX for (1) the LCC application, which requires computa-
tion over 1-hop neighborhoods around the query vertices and (2) the
PPR application, which requires computation over 2-hop neighbor-
hoods around the query vertices. We see that our implementation of
NSCALESPARK performs much better than GraphX both in terms
of C€ and cluster memory for LCC. For PPR, GraphX did not finish
for even the smallest of the datasets; specifically, many executor in-
stances start thrashing and get lost/crash, and the scheduler tries to
start the same tasks on other executor instances which also eventu-
ally run out of memory. This better performance can be attributed to
a better design of the abstractions that hold the graph in much lesser
memory and a better execution model which can take advantage of
overlapped execution.

Finally Figure 7 shows the performance breakdown of the differ-
ent components of NSCALESPARK in terms of the computational
effort. We see that similar to NSCALE the user computation is still
the major part of the computational effort as compared to the GEP
phase. GEP phase in NSCALESPARK has been further broken down
into subgraph extraction, bin packing and the actual construction of
the graph RDD object.
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Figure 6: NSCALESPARK Performance : (a-b) Computational Effort (CE (node-secs)) comparison with NSCALE; (c-d) Cluster
memory (GB) comparison with NSCALE; (e-h) Performance comparison with NSCALE and GraphX in terms of CE and Cluster
memory. (DNC: Did not complete due to insufficient memory/thrashing.)
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Figure 7: Performance breakdown of NSCALESPARK.

5. CONCLUSION

In this paper, we described the implementation of a subgraph-
centric graph programming framework on Apache Spark, which
can handle a large class of graph analysis tasks that are inefficient to
execute using the popular vertex-centric programming framework.
We argue that the subgraph-centric framework, where the users can
write computations against entire subgraphs or multi-hop neigh-
borhoods in the graph, is more natural both for ease-of-use and
efficiency. Our comprehensive experimental evaluation illustrates
the ability of our framework to execute a variety of graph analyt-
ics tasks on very large graphs with much better performance than
GraphX, while consuming significantly fewer resources. We are
currently working on enriching the programming model to support
a large class of graph analysis and mining tasks through support for
more general graph extraction queries; we are also working on de-
veloping better partitioning and placement algorithms for handling
such analysis tasks. We are aiming to do an open-source release of
the NSCALESPARK system in the near future.
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