Demonstrating Efficient Query Processing in
Heterogeneous Environments

Tomas Karnagel, Matthias Hille,

Mario Ludwig, Dirk Habich, Wolfgang Lehner

Database Technology Group
Technische Universitat Dresden
01062 Dresden, Germany

tomas.karnagel@tu-dresden.de

ABSTRACT

The increasing heterogeneity in hardware systems gives de-
velopers many opportunities to add more functionality and
computational power to the system. As a consequence, mod-
ern database systems will need to be able to adapt to a wide
variety of heterogeneous architectures. While porting sin-
gle operators to accelerator architectures is well-understood,
a more generic approach is needed for the whole database
system. In prior work, we presented a generic hardware-
oblivious database system, where the operators can be exe-
cuted on the main processor as well as on a large number of
accelerator architectures. However, to achieve fully hetero-
geneous query processing, placement decisions are needed
for the database operators. We enhance the presented sys-
tem with heterogeneity-aware operator placement (HOP) to
take a major step towards designing a database system that
can efficiently exploit highly heterogeneous hardware envi-
ronments. In this demonstration, we are focusing on the
placement-integration aspect as well as presenting the re-
sulting database system.

Categories and Subject Descriptors

H.2.4 [Database Management|: Systems—query process-
ing, Relational databases

Keywords

Modern Hardware Architecture; Hardware-Oblivious Data
Processing; Heterogeneous Hardware; Operator Placement;
Query Optimization;

1. INTRODUCTION

The hardware landscape is getting increasingly diverse.
Today, besides the “traditional” multi-core CPU, a single
machine can already contain several different parallel proces-
sors, such as an integrated graphics processing unit (iGPU),

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from Permissions @acm.org.

SIGMOD’14, June 22-27, 2014, Snowbird, UT, USA.

Copyright 2014 ACM 978-1-4503-2376-5/14/06 ...$15.00.
http://dx.doi.org/10.1145/2588555.2594526.

693

Max Heimel, Volker Markl
Database Systems and Information
Management Group
Technische Universitat Berlin
10587 Berlin, Germany
max.heimel@tu-berlin.de

or even multiple discrete graphics cards (dGPUs). Given
that this hardware heterogeneity is expected to keep grow-
ing in the future [2], modern database systems will need to
be able to adapt to a wide variety of heterogeneous archi-
tectures. A significant number of research work has already
transformed single traditional database operators to accel-
erators like GPUs [4] or FPGAs [7]. However, to tackle the
heterogeneity aspect in the query processing context more
generally, a generic physical operator approach is necessary.

In prior work, we demonstrated how a database engine can
be implemented in a hardware-oblivious manner, i.e., with-
out relying on specific hardware features [6]. This approach
allows writing operators that can run on arbitrary compute
units, relieving the developer of the difficult task of imple-
menting and maintaining distinct operators for each tar-
geted architecture. However, using a hardware-oblivious en-
gine is only the first step towards implementing a truly adap-
tive system: In order to fully utilize the potential of a het-
erogeneous system, the database needs to be heterogeneity-
aware: It has to understand the capabilities of each avail-
able compute unit and be able to automatically use all of
them in an efficient manner. We provide this understanding
with our heterogeneity-aware operator placement (HOP) ap-
proach. There, database operators are placed on the most
suitable compute unit in the system according to a cost
model, which is based on the properties of the compute
units, the operators, and the runtime parameters.

A similar placement approach for heterogeneous systems
was done by [5] for data partitioning and by [3] as a learning
approach. While the first is very specific on using a cost
model for data partitioning of hash join data, the second is
a more general approach of a learning-based decision model.
Both approaches are very promising, but they are either too
specific or lack the full integration into a database system.

In this demonstration, we showcase our integration of a
HOP cost model into a hardware-oblivious database engine,
thereby achieving a major step towards our goal of design-
ing a database system that can fully automatically adapt to
highly heterogeneous hardware environments.

2. BACKGROUND

In this section, we provide required background infor-
mation about hardware-oblivious database systems and the
HOP model, which build the foundation for our work.

2.1 Hardware-Oblivious Column Stores

Providing efficient data processing in highly heterogeneous
environments usually requires database vendors to imple-
ment several hand-tuned database operators for each tar-
geted architecture — a very challenging and resource-intensive
task. In [6], we introduced the notion of a hardware-oblivious
database as a way to cope with the increasing hardware di-
versity. The general idea is to minimize development and
maintenance efforts by avoiding hand-tuned implementa-
tions and relying on hardware abstractions and self-tuning to
generate architecture-specific operators at runtime. We also
contributed a proof-of-concept by implementing Ocelot, a
prototypical hardware-oblivious database engine integrated
into the in-memory column-store MonetDB [1].

The central part of Ocelot is a set of hardware-oblivious
relational operators, which were implemented using the ab-
stract parallel programming library OpenCL [8]. We decided
to use OpenCL as our foundation, as it is an open standard
that is supported across a wide variety of platforms from all
major hardware vendors — including CPUs, iGPUs, dGPUs,
accelerators like Xeon Phi, and even FPGAs. Thereby we
achieve efficient, yet highly portable code without the need
for manual optimization. Using Ocelot within MonetDB, we
could demonstrate that a hardware-oblivious approach can
offer competitive performance across such diverse architec-
tures as CPUs and GPUs from a single, unified code-base.

<
S 7
> O Scalefactor 1
s - O Scalefactor 10
[s =}
o S
o
o .
8 o
[Z BT
£
[}
g © |
= o
c
S
2 .
b
o

CPU dGPU iGPU

Execution Compute Units

HOP

Figure 1: Heterogeneity-aware Operator Placement
(HOP) yields great performance gains.

2.2 Heterogeneity-aware Operator Placement

The operator placement problem deals with selecting the
best suited compute unit for a given operator. In order to
tackle this problem, we developed a heterogeneity-aware op-
erator placement model (HOP), which considers the proper-
ties of compute units, information about the operators, and
runtime information to make a placement decision. During
setup, a generic benchmark suite gathers important proper-
ties of the compute units, enabling the model to assess each
unit without prior knowing it. Knowledge about the opera-
tors is gathered through an on-line learning approach basing
estimations on historical run times and heuristics. Together
with knowledge about the runtime parameters (parallelism,
input, and output sizes), this knowledge is used to make
the placement decision. We had tested this approach on a
single database query without the full database integration
with promising results (Figure 1). In this test, we used three
compute units, a CPU, an integrated GPU (iGPU), and a
discrete GPU (dGPU). We achieved an execution speedup
of up to 4.9x with our placement model compared to the

694

best single compute unit execution (CPU). Note that this
speedup was only achieved through sole placement. In par-
ticular, no parallel execution between compute units was ex-
ploited. These results encouraged us to integrate the place-
ment model into a real database system and to gain even
higher speedups through parallel execution.

3. IMPLEMENTATION DETAILS

In this section, we discuss several details and design de-
cisions for our system. In particular, this includes the deci-
sion strategy, the selected data locality model, and potential
inter-operator parallelism.

3.1 Decision Strategy

When integrating an operator placement model into a

database system, one of the main questions is when to ac-
tually make the placement decision: Making the decision at
“compile-time” in the optimizer yields the chance to find the
most optimal placement with regard to data sharing and
operator dependencies. However, there are two issues aris-
ing from this approach: (i) The additional search directions
lead to a combinatorial increase in the number of poten-
tial plans. For instance: Given a plan with 10 operators
running on a system with three compute units, there are
310 = 59049 possible placements for every physical plan.
This enormous number makes an exhaustive search of the
plan space typically infeasible; (ii) During optimization, the
placement model cannot work on accurate cardinality infor-
mation. The in- and output cardinalities of the operators
are typically unknown or can only be estimated. However,
these information are crucial for a placement decision, espe-
cially when the compute units need to transfer data.
A different approach is to make the placement decision greed-
ily at runtime. Just before an operator is executed, the deci-
sion can be made based on the full knowledge of cardinality
information and placement of the data. Additionally, the de-
cision has to be made for just one operator at a time, leaving
only a search space of the amount of compute units (three in
our example). The main downside to this approach is that
data sharing between operators cannot be globally optimized
resulting in a good but possibly not the best placement for
the whole query tree. However, seeing the upsides of full
cardinality knowledge and the substantially smaller search
space, we chose the placement-on-runtime strategy for our
current prototype.

3.2 Locality Model

Data locality becomes a very important performance fac-
tor for compute units that cannot work directly on data
stored in main memory (e.g., for a dGPU). Given the limited
memory sizes and the high update latencies, it is infeasible
to maintain data on the compute unit’s dedicated memory
(device memory). Also, maintaining data on the compute
units and caching intermediate results could lead to several
problems: (i) Intermediate results might overflow the device
memory, forcing data to be (costly) swapped out; (ii) With-
out proper maintenance, data on the device memory will
become stale and out of date; (iii) Data exchange between
the compute units is more difficult, given that the placement
model needs to track the data locality and consider it during
the decision.

In order to avoid these problems, we opted for a much
simpler approach, by assuming that data — including inter-

mediate results — are always resident in main memory: Every
operator reads its input and writes its results to main mem-
ory, independent of the selected compute unit. This model
removes dependencies between the operators and leaves the
device memory for one operator exclusively. Additionally,
with data solely residing in main memory, the database can
perform updates without checking for stale data copies on
the compute units. However, if two dependent operators are
placed on the same compute unit, the transfers to the main
memory add an unnecessary overhead.

In order to avoid this overhead, we delay the result trans-
fer of an operator until either (i) This data is needed by an
operator on another compute unit or (ii) The compute unit
is needed by another operator. In the first case, the next
operator depends on the results of the previous one, but the
placement choice is different. In the second case, the next
operator is independent of the results but it is placed on the
same compute unit. Since all operators assume exclusive
ownership of the compute unit, the result data is transferred
back to main memory. In all other cases, the data transfer
is either not needed or delayed until a later decision. This is
illustrated in Figure 2. With this approach, each placement
decision is made assuming the data is located in main mem-
ory. However, if the model picks the same compute unit for
a subsequent, dependent operator, the unnecessary transfer
from and to device memory is avoided.

next

is

operator: dependent

next
placement:

decide for following operator

b &
g o o
= z
No Copy Copy No Copy
Needed back Yet

Figure 2: Delayed result transfer depends on the
next operators and their placement.

3.3 Inter-Operator Parallelism

Beside increasing performance through a good operator
placement, there is also the opportunity of exploiting inter-
operator parallelism by scheduling independent operators
concurrently on different compute units. For our approach,
we defined three different execution options concerning the
parallelism between compute units:

1. Single execution: Each operator is executed on the
chosen compute unit without any parallelism between
compute units. Here, only the placement decisions
have an impact on performance.

2. Parallel execution: FEach operator is executed on
the chosen compute unit. If independent operators
are scheduled on different compute units, parallel exe-
cution is applied.

3. Load-balancing: Independent operators are sched-
uled parallel to each other. If the chosen compute unit

695

is busy, there is the possibility to change the placement
decision to the second best compute unit. This is only
done if the operator is likely to finish earlier than wait-
ing for the optimal compute unit and executing on it.

3.4 Summary

There are multiple effects on the overall performance with
the proposed placement on runtime and the main memory
as central data storage. For execution with a single compute
unit, we expect (i) No changes in performance if the com-
pute unit can access the main memory directly and (ii) A
performance drop if the data needs to be copied to the com-
pute unit’s device memory. Even with our memory locality
optimization, it is possible that data is evicted from the de-
vice memory when independent operators are executed.
However, our focus lies on heterogeneous systems and us-
ing all heterogeneous compute units for execution. There,
two factors have the opportunity to increase performance
significantly.

e Operator placement: As shown before, the right
placement can speed up the whole query execution.

e Inter-Operator Parallelism: Using parallel execu-
tion or even load balancing to speed up independent
operators.

4. DEMONSTRATION

The demonstration consists of a remote test system, which
can be accessed through a web interface. The interface is
presented on a laptop computer and attendees can interact
with the demo, start queries with different configurations,
and view the result visualization.

4.1 System Setup

The test system consists of three compute units: A CPU,
an integrated GPU (iGPU), and a discrete GPU (dGPU). In
detail, the first two compute units are combined in an AMD
A10-5800K processor (CPU: 4 Cores, 3.8 GHz; iGPU: 384
cores, 800 MHz) and the third compute unit is a NVIDIA
Tesla K20 (2496 cores, 706 MHz). While the CPU and iGPU
can work directly on data in main memory, the dGPU has
to copy data before and after processing. This setup might
change towards newer and faster hardware and potentially
multiple dGPUs for the final demo.

4.2 User Interaction

In this demo, the attendee is able to interact with the sys-
tem through a web interface, where he is presented with a
choice of queries and execution options. Our system sup-
ports the TPC-H benchmark with some minor adjustments
according to [6]. All in all, 15 TPC-H queries are supported.
For each query, three scale factors can be chosen. Each com-
pute unit can be switched on or off for detailed placement
evaluation. Additionally, one of the three inter-operator
parallelism options can be chosen, as described in Section
3.3. Together, there are over 900 different execution con-
figurations all influencing either the placement decision or
the overall performance. The option panel and an example
configuration is illustrated in Figure 3(a).

The attendee is encouraged to select a TPC-H query for sin-
gle execution on the CPU. This acts as a baseline, which can
be compared to the heterogeneous execution with multiple

Queries (TPC-H):

o Q1 Pricing Summary Report Scale-Factor:
e Q3 Shipping Priority Query e 0.1

o Q4 Order Priority Checking o1

o Q5 Local Supplier Volume o010

o Q6 Forecasting Revenue Change

o Q7 Volume Shipping Enable:

o Q8 National Market Share s CPU

o Q10 Returned Item Reporting m iGPU

o Q11 Important Stock Identification n dGPU

o Q12 Shipping Modes and Order Priority

o Q15 Top Supplier Execution:

o Q17 Small-Quantity-Order Revenue o Single

o Q18 Large Volume Customer o Parallel

o Q19 Discounted Revenue e Load-Balancing
o Q21 Suppliers Who Kept Orders Waiting

(a) Option Panel

OcPU

OiGPU
@dGPU | Query: Q3
SF: 0.1
Exec.: load balancing
a Enabled: CPU
iGPU
@ dGPU
Runtime: 65 ms
Result: 4500 tuples

P P

) Result Visualization Panel

Figure 3: Example of the web interface showing execution options and placement visualization.

compute units, where each compute unit can be added or re-
moved separately. If the placement decision assigns an oper-
ator to a non-CPU compute unit, the overall query runtime
should be lower than the baseline because a more efficient
compute unit was found. However, for some configurations,
it can also be the case that no compute unit performs better
than the CPU and the placement decisions will reflect that.
Attendees can play with the configurations to see the influ-
ence of each compute unit for the chosen query. For each
query, the scale factor has also a large influence on the place-
ment because more data means more computation time and
more transfer time (if needed). Additionally, the attendee
can interactively evaluate the effect of parallel execution or
load balancing on the query runtime if there is a reasonable
amount of independent operators.

4.3 Result Visualization

After configuration and execution, a visualization presents
the placement decisions to the attendee. For selected queries,
a query graph illustrates the decisions as shown in Fig-
ure 3(b). The query graph includes all involved relations
and operators. The placement is color coded in the circle
around each operator. Parallel execution is symbolized by
a p next to the operator. A ring around an operator shows
that the decision was changed through load balancing, where
the color of the ring symbolizes the first placement decision
and the color of the inner circle the actual placement, which
was executed. Unfortunately, large queries can not be illus-
trated with a query graph due to the missing clarity. These
queries are presented with a detailed table of placement de-
cisions. Additionally, the runtime and the amount of output
tuples are displayed for all queries. An example for this vi-
sualization panel is shown in Figure 3(b).

S. SUMMARY

With this prototype demonstration, we are taking a major
step towards designing a database system that can efficiently
exploit highly heterogeneous hardware environments. Based
on a hardware-oblivious column store and heterogeneity-
aware operator placement, we propose a way of integrat-
ing placement decisions into the database system. We con-
sider multiple decision strategies and data locality models
for the integration. Three different ways of inter-operator

696

parallelism were implemented, which can be used to eval-
uate their effect on the overall performance. Finally, we
present our demonstration interface, which includes many
options for the attendee to interact with and a detailed way
of result and placement visualization.

6. ACKNOWLEDGMENTS

This work is partly funded by the German Research Foun-
dation (DFG) within the Cluster of Excellence “Center for
Advancing Electronics Dresden” and by the European Union
together with the Free State of Saxony through the ESF
young researcher group “IMData” 100098198. Parts of the
evaluation hardware were generously provided by the Dres-
den CUDA Center of Excellence.

7. REFERENCES

[1] P. A. Boncz, M. L. Kersten, and S. Manegold. Breaking
the memory wall in monetdb. Commun. ACM,
51(12):77-85, Dec. 2008.

S. Borkar and A. A. Chien. The future of
microprocessors. Commun. ACM, 54(5):67-77, 2011.
S. Bress, F. Beier, H. Rauhe, K.-U. Sattler,

E. Schallehn, and G. Saake. Efficient co-processor
utilization in database query processing. Information
Systems, 38(8):1084 — 1096, 2013.

B. He, M. Lu, K. Yang, R. Fang, N. K. Govindaraju,
Q. Luo, and P. V. Sander. Relational query
coprocessing on graphics processors. ACM Trans.
Database Syst., 34(4):21:1-21:39, Dec. 2009.

J. He, M. Lu, and B. He. Revisiting co-processing for
hash joins on the coupled cpu-gpu architecture.
PVLDB, 6(10):889-900, 2013.

M. Heimel, M. Saecker, H. Pirk, S. Manegold, and

V. Markl. Hardware-oblivious parallelism for
in-memory column-stores. PVLDB, 6(9):709-720, 2013.
R. Mueller, J. Teubner, and G. Alonso. Streams on
wires: a query compiler for fpgas. Proc. VLDB Endow.,
2(1):229-240, Aug. 20009.

The Khronos Group Inc. OpenCL - the open standard
for parallel programming of heterogeneous systems.
http://www.khronos.org/opencl/, May 2011.

2l
B8l

(4]

(5]

(6]

http://www.khronos.org/opencl/

	Introduction
	Background
	Hardware-Oblivious Column Stores
	Heterogeneity-aware Operator Placement

	Implementation Details
	Decision Strategy
	Locality Model
	Inter-Operator Parallelism
	Summary

	Demonstration
	System Setup
	User Interaction
	Result Visualization

	Summary
	Acknowledgments
	References

