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ABSTRACT
Crowdsourced query processing is an emerging processing
technique that tackles computationally challenging problems
by human intelligence. The basic idea is to decompose a
computationally challenging problem into a set of human
friendly microtasks (e.g., pairwise comparisons) that are dis-
tributed to and answered by the crowd. The solution of the
problem is then computed (e.g., by aggregation) based on
the crowdsourced answers to the microtasks. In this work,
we attempt to revisit the crowdsourced processing of the top-
k queries, aiming at (1) securing the quality of crowdsourced
comparisons by a certain confidence level and (2) minimizing
the total monetary cost. To secure the quality of each paired
comparison, we employ two statistical tools, Student’s t-
distribution estimation and Stein’s estimation, to estimate
the confidence interval of the underlying mean value, which
is then used to draw a conclusion to the comparison. Based
on the pairwise comparison process, we attempt to minimize
the monetary cost of the top-k processing within a Select-
Partition-Rank framework. Our experiments, conducted on
four real datasets, demonstrate that our stochastic method
outperforms other existing top-k processing techniques by a
visible difference.

1. INTRODUCTION
Recently crowdsourcing is employed to process a variety

of database queries, including MAX queries [12, 13, 21, 26,
38], JOIN queries [29, 40], and top-k queries [12, 13, 33].
In this work, we focus on the crowdsourced top-k queries
for a collection of data items, where humans are involved
in deciding the ordering of items. The crowdsourced top-k
queries are particularly helpful in ranking computer hostile
but human friendly items. For instance, finding the best
translations of a sentence for training is an emerging re-
quirement in machine translation. It is a difficult task for
computer since the judgment relies on advanced natural lan-
guage skills. However, humans can easily point out the bet-
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ter translation of two candidates if they have corresponding
knowledge. Thus Google Translate [1] filters the transla-
tions via crowdsourcing. Zaidan et al. [43] asked the crowd
to rank the translations. The ranking result was then used
to improve the automatic translator. Many other applica-
tions like Duolingo [2], Facebook [3], and Twitter [4] also
collect top translations by crowdsourcing. Top-k ranking
for some annual events is another typical application. For
instance, finding the best 3 soccer players of the year is the
ever interesting topic for soccer fans. The judgment may rely
on multi-source data integration and perceptual cognizance,
which is more suitable for asking human soccer fans than
computing by machines. Crowdsourced top-k query can also
be used in estimating adverse drug reactions (ADRs). Some
ADRs can be life-threatening while the others may be al-
lergic slightly which makes the severity gradation of ADRs.
Gottlieb et al. [20] ranked ADRs according to the severity by
crowdsourcing pairwise comparisons on Amazon Mechanical
Turk and achieved good correlation between mortality rate
associated with ADRs and their ranks. More potential ap-
plications of the crowdsourced top-k queries can be found in
Appendix A.

To process a crowdsourced top-k query, one needs to judge
between data items; there are several ways to perform such
judgments. A straightforward way is to ask humans to rank
all or part of the items and then return the best k items
by aggregating received rankings [29, 33]. These methods
need complex user interface and are inconvenient for the
human workers. Another way is to ask humans to grade the
items and then return the best k items in terms of their
average ratings [29]. However, graded judgments are known
to differ in scale across judges [39]. To make things worse
for crowdsourcing, graded judgments are hard to calibrate
(e.g., normalizing the scores of each worker for fairness) as a
worker may grade only a partial set of the items. Therefore,
recent crowdsourced top-k query processing [12, 13, 20, 44]
focus on pairwise judgments, i.e., comparing two items at a
time. In contrast to other alternatives, pairwise judgments
are easier to answer and less prone to human error, requiring
only relative preference judgments for paired items.

Figure 1 is an example to show the general idea of how to
process the top-k query by pairwise judgments in this work.
The process (shown in the box) works in several rounds and
in each round there are 2 phases. The upper phase is ranking
and scheduling (cf. Section 5), which decides how to rank the
items and which pairs should be compared in this round. To
perform a comparison between a pair of items, a set of iden-
tical microtasks are sent to independent workers to collect
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Figure 1: Query the top-k soccer players

the judgments. In the lower phase, the collected answers are
fed into a judgment model (cf. Section 3) to decide the win-
ner of a comparison as well as a confidence of the decision
(i.e., the probability that the decision is correct). The two
phases iterate until top-k items are found.

Determining the number of judgments (called workload
hereinafter) needed for a pair of items is a hard problem. For
instance, we probably need a large workload (e.g., 1,000 mi-
crotasks) to decide the better football player of Lionel Messi
and Cristiano Ronaldo. In contrast, the workload needed for
Lionel Messi and Anthony Martial should be substantially
smaller (e.g., 30 microtasks).1 If a fixed workload is used for
both cases, it is either unthrifty or insufficient. To address
this problem, Busa-Fekete et al. [8] proposed to estimate the
workload from pairwise binary judgments (i.e., “yes or no”
answers). However, their solution demands large workloads
as the confidence intervals2 [23] derived from binary sam-
ples are in general not tight enough. We will discuss and
evaluate the estimation models in Section 3.2.

Figure 2: Pairwise preference judgments

In this work, we propose a new judgment model, enti-
tled pairwise preference judgment, to tackle the problem
discussed above. Our model can be viewed as a hybrid of
graded judgments and pairwise binary judgments. Figure 2
demonstrates an example interface to collect pairwise prefer-
ence judgments: a sliding bar is used to weigh the preference
for a pair of items. Comparing to graded / pairwise binary
judgments, pairwise preference judgments can derive tighter
confidence intervals such that fewer workloads are needed to
make judgments (Section 3.2). Table 1 briefly summarizes

1Martial is the most expensive teenager in football history.
2The confidence interval of an unobserved variable with con-
fidence level 1 − α means that the variable falls into the
interval with probability 1− α.

the features of three judgment models. Note that the rel-
ative order is easy to give (similar to that of the pairwise
binary judgment), but the preference level is more difficult
to grade (similar to that of the graded judgment). Therefore,
the error of the pairwise preference judgment is moderate as
compared with other two judgment models.

Table 1: Features of different judgment models

Model Target Pref. Error
Workload
per target

Graded item absolute high unknown
Binary item pair relative low large

Preference item pair relative moderate small

For ease of discussion, we assume normally distributed
preferences3 as in many existing solutions [6, 10, 34, 36].
Based on this assumption, we can readily derive the prefer-
ence distribution between a pair of items from their judg-
ments (see Figure 2). Given a set of judgments and a con-
fidence level 1− α, the confidence interval of the preference
mean can be estimated by statistical tools such as Student’s
t-distribution [23] and Stein’s estimation [35]. To distinguish
a pair, we simply check the lower and the upper bounds of
the interval against a neutral value. For example, if the lower
bound of the confidence interval with α = 0.05 is larger than
0, then we are more than 95% confident that the right-hand
side item is better than the left-hand side one (see Figure 2).
In other words, we can stop comparing this pair if 95% con-
fidence is adequate for our application.

Given the confidence-based judgment model, our objec-
tive is to return the top-k items such that the monetary
cost (i.e., the total workload) is minimized. Given N items,
the best known workload complexity of finding the top-k
items is O (Nw log k) by heap sort and O (Nw + kw logN)
by tournament tree, where w is the expected workload for
a paired comparison. These approaches overlook a property
that the workload needed for a pair of items should be in-
versely proportional to their distance in the (unknown) true
total order. As an example, in Figure 3 the workload needed
for (oa, ob) is likely less than (ob, oc).

Figure 3: Select-Partition-Rank (SPR) top-k pro-
cessing

With such considerations, our solution aims at avoiding
the judgments between pairs that are close to each other
in the underlying total ordering (i.e., pairs of items that
are relatively difficult to distinguish). We develop a Select-
Partition-Rank (SPR) framework that consists of (1) selecting
a representative reference r, (2) partitioning items based on

3For clarity, this assumption is used to derive tighter confi-
dence interval when judging a pair of items. We can adopt
other statistical models, e.g., Hoeffding’s inequality, if the
preference is not normally distributed.
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their relative ordering with respect to r, and (3) ranking
some of the items (related to the query) via sorting. With
a good reference item r, the partitioning step is effective
to avoid unpromising paired judgments. To the best of
our knowledge, our work is the first to answer the crowd-
sourced top-k queries by an optimization (objective: min-
imizing the monetary cost) subject to a quality guarantee
(constraint: confidence-aware pairwise comparison). The
confidence-aware setting makes the optimization problem
nontrivial since the workloads are varying on different pairs
of items.

In the remainder of the paper, we first discuss related
work in Section 2. We then introduce the pairwise preference
judgment model and its superiority in Section 3. We give our
objectives and analyze baseline solutions in Section 4. We
discuss and analyze our Select-Partition-Rank framework in
Section 5. Our experiments and conclusion can be found
in Section 6 and Section 7. For ease of discussion, notation
used thoroughly in this paper is listed in Table 2.

Table 2: Notation
Notation Description

oi ∈ O An item in the item set O
o∗i ∈ O The i-th item in the total order of O
O∗ Top-k item set
s(oi) Underlying score of item oi

v(oi, oj) Pairwise preference judgment between oi and oj
Vi,j Bag of preferences {v1(oi, oj), . . . , vwi,j (oi, oj)}

Comp (oi, oj) Comparison process based on Vi,j
wi,j Workload of Comp (oi, oj) (i.e., size of Vi,j)

1− α Confidence level

2. RELATED WORK
Several existing studies involve crowdsourced ranking and

top-k queries. Venetis et al. studied max queries (i.e., top-1
queries) over a set of items, with concerns on answer quality,
monetary budget and time cost (i.e., the number of algorith-
mic steps to return the max item) [38]. In each judgment,
a human worker was asked to identify the best out of sev-
eral items. Strategies for partitioning items and recovering
the max were then analyzed with respect to different human
error models. Polychronopoulos et al. studied top-k queries
over a set of data items [33]. Human workers were paid
to rank small subsets of items, and then these ranked lists
were used to determine the global top-k list via median-rank
aggregation [16]. Instead of max or top-k queries, Marcus
et al. aimed at sorting a given set of data items [29]. Two
types of judgments were considered: one asked the work-
ers to provide rankings of several items, and the other re-
quested explicit ratings on items along, for example, a seven-
point Likert scale [27]. Recently, Matsui et al. considered
worker quality in such sorting problems [30]. They aggre-
gated crowdsourced partial rankings based on Spearman’s
distance [14]. The above-mentioned studies are all different
from our work, in that their methodologies are not based
on pairwise comparisons, and therefore their solutions are
in general not applicable to our problem.

Guo et al. investigated answering max queries by hiring
human workers for pairwise comparisons [21]. Specifically,
given a set of items and a budget, Guo et al. aimed at dis-
covering the best item with the highest confidence out of
the budget, to which end they took a marginal perspective

toward the problem and managed to maximize the gain out
of any additional budget. In their work, feedbacks from
human workers were collected to form a vote matrix, and
then maximum likelihood techniques (e.g., Kemeny rank-
ing [25]) and graph-based heuristics (e.g., PageRank [32])
were employed to infer the best item. Davidson et al. as
well considered such max queries [12, 13]. Pairwise votes
from human workers, via a majority voting mechanism, were
used to construct a tournament tree. With a random per-
mutation of data items as leaves, the tree was tailored such
that at the bottom levels each question was asked only once
whereas at the top levels the number of questions for each
comparison increased as the level approached the top. Un-
der a proper error model, Davidson et al. showed that their
solution might strike a balance between quality and cost.
Gottlieb et al.’s [20] method outsourced random pairwise
comparisons and inferred an initial order. By excluding ties
and easy pairs, another set of random pairwise comparisons
were asked. The global ranking was the one minimized the
conflicts in the collected judgments.

Besides simple strategies such as majority voting, advanced
models were developed to draw a conclusion from multiple
votes for comparing a pair of data items. Thurstone pro-
posed a model in which scores of items were assumed to
be Gaussian random variables with known deviations but
unknown means [36]. Given votes on two such items, Thur-
stone’s model is able to estimate the mean difference of their
scores, based on which one item can be inferred superior to
the other. Bradley and Terry [7] and Luce [28] proposed
what is now known as the Bradley-Terry-Luce (BTL) model.
The model assumes that item scores are Gumbel, instead of
Gaussian, random variables. Similar to Thurstone’s model,
the BTL model is also able to rank items based on votes.

Based on the BTL model, Chen et al. proposed solutions
for aggregating votes on pairwise comparisons into a global
ranking [9]. Similar to Guo et al. [21], they took a marginal
perspective to solve the problem, aiming at finding (i) the
best next pair of items to compare and (ii) the best human
worker to do the comparison. In particular, Chen et al. con-
sidered crowdsourcing in an active learning scenario: relia-
bility of each individual worker was estimated using known
facts and was then incorporated into a maximum likelihood
aggregation toward the gold-standard global ranking. Ye
and Doermann considered both pairwise comparisons and
absolute ratings for the sorting problem [41], where Thur-
stone’s model was used to find the final winner from the
votes for a paired comparison. Khan and Garcia-Molina [26]
proposed a hybrid strategy that combines the graded and
pairwise judgments to find the max item. Specifically, the
graded judgment is used to filter out unpromising items and
the pairwise judgment is used to rank the remained items.
We share the intuition that the pairwise judgment is a better
model to distinguish close items.

Busa-Feketes et al. [8] proposed to estimate the confidence
interval of the mean score based on binary votes and pro-
cessed the top-k queries by a preference-based racing algo-
rithm. However, the objective of the algorithm was not to
minimize the monetary cost.

These statistical models (e.g., the Thurstone’s model, the
BTL model and the confidence interval) secure the query
answering quality but overlook a fact that the monetary
cost is a major concern in processing a crowdsourced query.
In this work we ask the human workers to express their
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preferences in pairwise comparisons (instead of purchasing
binary votes), which are much more informative in nature.
Based on the judgment model, our work aims at not only
securing the query answering quality but also minimizing
the monetary cost.

Ciceri et al. [11] studied the crowdsourced top-k query
over uncertain data with prior knowledge that the score of
each data item is uniformly distributed in a narrow numeri-
cal domain. By enumerating the possible orderings of items
in a tree, the item pair that most significantly reduces the
uncertainty is outsourced in each iteration. The scenario is
different from ours that zero prior knowledge exists. It is
intractable to find the appropriate item pair in the tree of
exponential size.

There are a bunch of other studies that can be consid-
ered related to our work in general. Their focus were, how-
ever, clearly different from ours. For example, Venetis and
Garcia-Molina [37] investigated the role of task difficulty in
comparison tasks. Yi et al. [42] studied crowdsourced rank-
ing in a recommender system scenario. Fan et al. [17] studied
the task assignment problem in crowdsourcing and proposed
an iCrowd framework which could adaptively assign micro-
tasks to high quality worker by estimating the accuracy of
her previous completed tasks. Amsterdamer et al. [6] pro-
posed a general crowd mining framework to discover asso-
ciation rules from human workers. They approximated the
sample distribution as a normal distribution and sampled
from a fixed numerical domain. Moreover, Amsterdamer et
al. assumed the worker answers are independent and in-
creased the confidence of data pattern (rule) by collecting
more samples.

3. JUDGMENT MODELS

3.1 Comparison Process and Workloads
For a human worker to compare items oi and oj , she

provides a preference v(oi, oj) ∈ [−1, 1], of which the sign
indicates her judgment intention and the absolute value de-
scribes her strength towards that intention. The comparison
process Comp (oi, oj) for items oi and oj is to draw a con-
clusion from a bag of wi,j (the workload) human preference
values Vi,j = {v1(oi, oj), . . . , vwi,j (oi, oj)}. Since the unit
cost of collecting a human preference is fixed, the goal is to
minimize the workload to save monetary cost.

We may assume that every data item oj is associated with
a hidden score s(oj) (higher is better), and a human prefer-
ence v (oi, oj) is in principle monotonically proportional to
the difference of the scores, ∆si,j = s(oi)− s(oj). Although
such ∆si,j is unknown, we trust the human workers in that
their preference values truly reflect ∆si,j . Put in another
way, the actual (unknown) difference of scores, ∆si,j , deter-
mines a Gaussian distribution of human preference values
between data items oi and oj , i.e., v (oi, oj) ∼ N

(
µi,j , σ

2
i,j

)
,

where µi,j is proportional to ∆si,j and the variance σ2
i,j de-

scribes how difficult it is to choose between oi and oj .
Since the mean µi,j is a monotonically increasing func-

tion of ∆si,j , to conclude s(oi) < s(oj) (i.e., oi ≺ oj) or
s(oi) > s(oj) (i.e., oi � oj) we only need to test µi,j against
0. In particular, during the comparison process we aim at
minimizing the number of samples required and estimating
µi,j with a predefined confidence level of 1− α.

Intuitively, for more difficult comparisons, more samples
are required to reach the confidence level. Statistical tools

Figure 4: Comparison process

for parameter estimation can thus be applied on the bag
of samples Vi,j to find the confidence interval of µi,j with
1 − α confidence. When the interval excludes 0, we are
1−α confident to make a judgment between a pair of items.
Figure 4 illustrates a concrete example.

For ease of presentation, we adopt a closed symmetrical
interval for the comparison process. However, the cumula-
tive probability of half-closed confidence interval (excludes
0) can be larger than 1 − α which improves the confidence
of comparison. Our strategy can also extend to half-closed
interval theoretically.

In this work, we use a statistical tool, Student’s t-distribution
estimation, to estimate the confidence interval of µi,j (with
confidence level 1− α). An alternative tool, Stein’s estima-
tion, is described in Appendix E.

Student’s t-distribution estimation [23]. Let n = wi,j
(number of samples), and µ̄n and Sn be the sample mean
and sample standard deviation of Vi,j respectively,

µ̄n =
1

n

n∑
`=1

v` (oi, oj) and Sn =

√∑n
`=1 (v` (oi, oj)− µ̄n)2

n− 1
.

Then, a 1− α confidence interval is given by

µi,j ∈
[
µ̄n − tα

2
,n−1 ·

Sn√
n
, µ̄n + tα

2
,n−1 ·

Sn√
n

]
.

where tα
2
,n−1 indicates the right-tail probability of size α

2
of

the t-distribution with n − 1 degrees of freedom. Once the
above interval does not contain 0 (the neutral value) then
some conclusion can be made. For example, if µ̄n− tα

2
,n−1 ·

Sn√
n
> 0 then it is safe to conclude that µi,j > 0 (and as a

consequence oi � oj).

Algorithm 1 StudentComp(oi, oj)

B: budget for the pairwise comparison; I: minimum workload
1: Publish I microtasks and get V ← {v1(oi, oj), . . . , vI(oi, oj)}
2: for w = I + 1, I + 2, · · · , B do
3: Publish one more microtask and get vw(oi, oj)
4: V ← V ∪ {vw (oi, oj)}
5: µ̄w ← sample mean of V
6: Sw ← sample standard deviation of V

7: if µ̄w − tα
2
,w−1 · Sw√w > 0 then return oi � oj

8: if µ̄w + tα
2
,w−1 · Sw√w < 0 then return oi ≺ oj

9: return oi ∼ oj . indistinguishable under budget B

As a general trend, with a larger workload we obtain
tighter bounds on µi,j . Therefore, in our crowdsourcing
setting we take a progressive methodology: one additional
feedback is retrieved from the crowd if current workload is
insufficient to make any comparative judgment. Algorithm 1
shows the pseudo-code of the estimation process. In the
pseudo-code, we add two additional parameters: B the bud-
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get limiting the total workload, and I the minimum initial
workload to overcome cold start. The value of I should be
at least 30 according to common practice in statistics [23].

3.2 Why Preference Judgment?
To demonstrate the effect of different judgment models,

we empirically study the number of microtasks needed to
achieve certain confidence levels. Generally speaking, the
confidence level can be achieved by fewer microtasks if the
judgment model is more informative.

Our experiments are on an IMDb dataset.4 The statis-
tics of the dataset can be found in Section 6. We randomly
pick 30 popular movies (> 100, 000 votes) from the dataset.5

The ground truth total order Ω of the movies is decided
based on their means of votes (see Section 6). To simu-
late a pairwise preference judgment for a pair of movies oi
and oj , we sample the ratings s(oi) and s(oj) from corre-
sponding voting histograms (i.e., preference distributions)
and set v(oi, oj) = s(oi)− s(oj). To simulate a pairwise bi-
nary judgment, we set v(oi, oj) = 1 when s(oi) − s(oj) > 0
and v(oi, oj) = −1 when s(oi)− s(oj) < 0. If s(oi) = s(oj),
then this judgment is dropped since it is not identifiable.

Given the bag Vi,j = {v1(oi, oj), . . . , vn(oi, oj)}, we eval-
uate the effect of three statistical tools on the comparison
process Comp (oi, oj) by varying the confidence level 1− α.
Comp (oi, oj) stops when the estimated confidence reaches
the predefined level. We record the actual accuracy and the
workload for each pair of the movies (435 pairs in total),
then report the average accuracy and workload. We say a
comparison result (e.g., oi ≺ oj or oi � oj) is accurate if it
follows the order in Ω. For each Comp (oi, oj), we run 100
times and use B =∞ and I = 30 for all estimation models.

Table 3: Accuracy and Workload of Different Judg-
ment Models

Model Est. by
435 Confidence level, 1− α

pairs 0.95 0.98 0.99

Binary Hoeffding
Work. 6,029.7 8,713.8 10,847.1
Acc. 0.989 0.990 0.990

Student
Work. 639.2 1,510.6 1,987.0

Preference
Acc. 0.992 0.996 0.998

Stein
Work. 557.4 1,250.6 2,029.8
Acc. 0.992 0.996 0.998

Model -
30 Workload

items 100 1,000 10,000
Graded - Acc. 0.965 0.991 0.998

*Work. and Acc. are the average workload (number of microtasks)

and the average accuracy of comparisons.

Table 3 reports the average performance of the compari-
son processes Comp (oi, oj) on 435 pairs of movies. We first
compare the pairwise preference judgment to the pairwise
binary judgment considered in [8]. To achieve the same con-
fidence level, the workload needed for the preference judg-
ment is 5.34 to 10.81 times lower than that of the pairwise
binary judgment since more information leads to tighter con-
fidence interval estimations. This indicates that the prefer-
ence model is a better model to return high quality ranking
results with relatively low monetary cost. The performance
of the Student’s t-distribution estimation and the Stein’s es-
timation is very similar so that any of them can be used to

4http://www.imdb.com/interfaces
5The mean of graded judgments can be viewed as the ground
truth score of an item when the volume is large enough.

process Comp (oi, oj) for the bag of preferences Vi,j . This
advantage is further verified theoretically in Appendix D.

In addition, we show the performance of the graded judg-
ment. It is hard to determine the workload of an item judg-
ment, so we report the performance by varying the work-
loads in Table 3. The graded judgment model is not recom-
mended since (1) the accuracy is not guaranteed and (2) a
fixed budget is applied to every item.

Besides, the unit monetary cost of these judgments is more
or less the same according to our empirical study on a real
crowdsourcing platform CrowdFlower (cf. Appendix B). In
this work, we recommend the pairwise preference judgment
for comparing pairs of items since it not only secures the
quality (the confidence level) but also requires lower mone-
tary cost (fewer microtasks).

4. CROWDSOURCED TOP-K QUERIES
Given a set of N items O = {o1, o2, · · · , oN}, we want to

find the k best items O∗ = {o∗1, o∗2, · · · , o∗k} ⊂ O via pair-
wise comparisons, where o∗i is the i-th best item. Assuming a
unified cost per human worker per microtask, the total mon-
etary cost (TMC) for finding the top-k items O∗ depends on
(i) the set of pairs to compare, C, and (ii) the workload for
each paired comparison in C:

TMC =
∑

(oi,oj)∈C

wi,j .

Our goal is to minimize TMC while maintaining a certain
quality of O∗. We carry out two objectives to that goal:

1. Microtask-level cost minimization with confi-
dence guarantee, in which we manage to determine
the workload wi,j of each comparison Comp (oi, oj)
subject to a confidence guarantee; and

2. Query-level cost minimization, in which we target
towards minimizing the number of paired comparisons
for finding O∗.

We achieve the first objective via statistical estimations
discussed in Section 3.1. As a matter of fact, the strength
of a preference and the confidence level 1 − α suggest the
difficulty in distinguishing items oi and oj , and intuitively
the workload needed should be proportional to the underly-
ing difficulty of the corresponding comparison. The variance
of effort in distinguishing different pairs of items makes the
second objective hard to achieve. Traditional top-k algo-
rithms assume that the comparison process Comp (oi, oj)
has unified cost in any pair of items but this assumption is
no longer held in crowdsourced top-k queries. Thus simply
minimizing the number of comparisons does not necessarily
mean minimizing TMC. Note that, we assume that the an-
swers from the same worker are independent over different
comparisons. The dependency may exist in practice since a
high quality worker should have a consistent personal stan-
dard. However this information is not considered in this
work for simplicity. In the following, we briefly review tra-
ditional top-k query processing techniques and then discuss
the infimum cost to answer a crowdsourced top-k query.

1419



4.1 Baseline Solution: Tournament Tree
Tournament trees TourTree are widely adopted in crowd-

sourced top-k query processing [12, 13]. TourTree first
randomly groups items into N/2 pairs. Winners of paired
comparisons are promoted to upper levels of the tourna-
ment tree, until the best item reaches the root. The 2nd
best item can be identified by building a tournament tree
over the items that ever directly lost to the best item. All k
items can be found in a similar way progressively.

Let w be the expected workload of a comparison. The
total workload of TourTree is O (Nw + kw logN). Note
that, the expected workload w is very sensitive to the ini-
tial grouping of the items. For instance, the workload may
become very large when all initial N/2 pairs of items are
adjacent in the true total order.

4.2 Baseline Solution: Heap Sort
Another common technique to answer top-k queries is to

initialize a min-heap with k random items (i.e., top-k can-
didates) and then sequentially test every other item against
the top of the heap. Whenever an item is found better than
the worst candidate in the heap, it expels the worst can-
didate from the heap and becomes a new top-k candidate.
Essentially, this is a crowd-based heap sort over the items.

Let w be the expected workload of a comparison. The to-
tal workload of the above solution, HeapSort, isO(Nw log k).
The performance of HeapSort is sensitive to the choice of
initial top-k candidates.

4.3 Baseline Solution: Quick Selection
Quick selection [22] returns the k-th element in an un-

ordered list, of which the execution process is similar to that
of quick sort. The difference is that, after data partitioning,
quick selection recurses into only one side, instead of both
sides, of the data items. For example, to find the 5th item
within a set of 100 items, quick selection may randomly pick
a reference item and compare it with every other item. If
after all the comparisons 30 items are found to be better
than the reference, then quick selection recurses into these
30 items (discarding the rest 70) for the 5th item.

It is straightforward to adapt the quick selection algorithm
to solve our crowdsourced top-k problem. The total work-
load of this method, QuickSelect, is O

(
N2w + kw log k

)
in the worst case but O (Nw + kw log k) in the average case.

4.4 Infimum Cost: Linear Scan
None of the above baseline solutions (TourTree, Heap-

Sort, and QuickSelect) is aware of the fact that paired
comparisons may differ largely in difficulty. For example, the
references selected in each recursion of QuickSelect may
cause a large number of difficult comparisons, leading to very
large TMC. This raises an interesting question: What is the
infimum cost (i.e., the minimum possible cost) to answer a
crowdsourced top-k query?

Let W(oi, oj) be the expected workload to judge between
data items oi and oj , satisfying

W(oi, oj) ∝
1

|s(oi)− s(oj)|
.

The following lemma calculates the infimum cost to find the
top-k list.

Figure 5: Infimum cost

Lemma 1. Given a set of N items O, the infimum cost
to find the top-k list is

TMCinf =

k−1∑
j=1

W(o∗j , o
∗
j+1) +

N∑
j=k+1

W(o∗j , o
∗
k).

Proof. To find the top-k list it is sufficient and necessary
to confirm (i) o∗1 � o∗2 � · · · � o∗k and (ii) o∗k � o∗j for

j > k. In the best case, the former costs
∑k−1
j=1 W(o∗j , o

∗
j+1),

comparing each adjacent pair of the top-k items.
To establish the latter, every o∗j must be compared to at

least one item o ∈ O. The lemma is trivially true when every
o∗j is directly compared to o = o∗k. Hence, we only need to
consider the case when o∗k � o∗j is established by inference.

Assume without loss of generality that o = o∗i (k < i <
j), and o∗k � o∗i has already been confirmed. Confirming
o∗i � o∗j (thus inferring o∗k � o∗j ) takes a cost of W(o∗j , o

∗
i ) ≥

W(o∗j , o
∗
k). The inequality is due to the fact that |s(o∗j ) −

s(o∗k)| ≥ |s(o∗j )− s(o∗i )| as o∗i is in between o∗k and o∗j .

Figure 5 illustrates the query processing with the infimum
cost. Note that the infimum cost in Lemma 1 is theoretically
achievable: We could be lucky to pick the right reference o∗k,
thus after N − k comparisons we prune N − k non-result
items. Then, when sorting the remaining k items, we may
find that the items are already sorted.

5. SELECT-PARTITION-RANK (SPR)
Inspired by our discussion in Section 4.4, towards an ef-

ficient algorithm any non-result item o ∈ O \ O∗ should be
excluded as early as possible by comparing o with o∗k. With-
out any prior knowledge on o∗k, this is of course only if we
are very lucky to pick o∗k by a wild guess. Fortunately, as
will be shown later in Section 5.2, items succeeding but not
far away from o∗k may also have strong pruning power. We
define the sweet spot as the set of items

{
o∗k, o

∗
k+1, · · · , o∗dcke

}
where c > 1 controls the size of the sweet spot (ck � N).

Figure 6: The framework of SPR

We develop a randomized algorithm, SPR, to solve our
crowdsourced top-k problem. Figure 6 and Algorithm 2
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Algorithm 2 SPR(O, k)

1: R← ∅
2: Pick a reference item r . Section 5.1
3: Compare every other item with r, partitioning O into winners

(Wr), ties (Tr), and losers (Lr) . Section 5.2
4: if |Wr| < k and |Wr ∪ Tr| ≥ k then
5: R←Wr; Add random k − |Wr| items of Tr into R
6: return O∗ ← Sort(R) . Section 5.3

7: if |Wr ∪ Tr| < k then
8: R←Wr ∪ Tr ∪ SPR (Lr, k − |Wr| − |Tr|)
9: return O∗ ← Sort(R)

10: return O∗ ← top-k items of Sort(Wr) . |Wr| ≥ k

sketch its general idea. SPR first manages to identify an
item within the sweet spot with large probability via sam-
pling (Figure 6:1; Line 2). By using that item as a reference,
SPR then compares all the other items and prunes non-
result ones. After the comparison processes, we get three
different groups: winners, ties, and losers, holding those
items that are superior to, indistinguishable from, and infe-
rior to the reference, respectively (Figure 6:2; Line 3). Based
on the partition, SPR efficiently finds the top-k results by
sorting certain part of the partition (Figure 6:3; Lines 4-10).

5.1 Selecting a Reference
Given a set of N items, by a wild guess we have j

N
chance

to hit an item r in the top-j set. This probability can be
made much larger if r is the max item in a set of independent
random samples X ⊂ O (with putting back),

Pr
{
r � o∗j

∣∣x} = 1−
(

1−
j

N

)x
. (1)

Therefore the probability of r falling into or before the
sweet spot is Pr {o � o∗ck|x}. From both intuition and Equa-
tion (1) we know that this probability is monotonically in-
creasing with respect to x, the total number of samples.

Recall that our goal is to find a reference item within the
sweet spot. In other words, we want to find an item that
can beat any item worse than o∗ck but meanwhile is itself
no better than o∗k. That being the purpose, we take m in-
dependent sampling procedures, X1,X2, · · · ,Xm, each with
x samples, to get m independent max items r1, r2, · · · , rm.
We argue that, when m is sufficiently large, the median of
r1, r2, · · · , rm stays in the sweet spot with high probability.
Indeed, if r is the median of r1, r2, · · · , rm, then

Pr {o∗k � r � o∗ck|x,m} = 1−
m∑

i=dm
2
e

(
m

i

)
pi(1− p)m−i

−
m∑

i=dm+1
2
e

(
m

i

)
qm−i(1− q)i

where p = Pr {ri � o∗k−1|x} and q = Pr {ri � o∗ck|x}.
The following lemma shows that, by carefully tuning m

and x, the probability Pr {o∗k � r � o∗ck|x,m} can be arbi-
trarily close to 1, thus a good reference is always achievable.

Lemma 2. For arbitrarily small constant δ ∈ (0, 1), there
exists a pair of integers x and m, such that

Pr {o∗k � r � o∗ck|x,m} > 1− δ.

Proof. Consider x = N
k

ln 1
γ

for some γ ∈ (0, 1). We get

p = Pr {ri � o∗k−1|x} < 1−
(

1− k

N

)N
k

ln 1
γ

< 1− γ + o(1),

q = Pr {ri � o∗ck|x} = 1−
(

1− ck

N

)N
k

ln 1
γ

> 1− γc − o(1).

There exists γ such that p < 1
2
< q as c > 1. Note that,

m∑
i=dm

2
e

(
m

i

)
pi(1− p)m−i =

bm
2
c∑

i=0

(
m

i

)
(1− p)ipm−i.

Since m(1−p) ≥ bm
2
c, the Hoeffding inequality is applicable:

bm
2
c∑

i=0

(
m

i

)
(1− p)ipm−i ≤ exp

(
−2

(
m(1− p)− bm

2
c
)2

m

)
,

indicating
∑m
i=dm

2
e
(
m
i

)
pi(1 − p)m−i → 0 when m → +∞.

Analogously, it can be shown that
∑m

i=dm+1
2
e

(
m
i

)
qm−iqi →

0 when m→ +∞. Hence, for any preset δ,

Pr {o∗k � r � o∗ck |x,m} > 1− δ

if x = N
k

ln 1
γ

for some proper γ andm is sufficiently large.

Intuition of choosing the median. When x = 1, the
expected rank of their median is N/2 (uniformly picked).
When x = N (i.e., all items are sampled), the maxima are
always o∗1. This implies that the expected rank will ascend
from N/2 to 1 when x increases from 1 to N , thus with a
proper x the median can approach the sweet spot.

Balancing quality and cost. In practice, as one may
imagine, there should be a balance between the quality of
the reference and the cost of sampling. In general, we would
like to restrict the cost such that it does not dominate the
cost of the entire SPR algorithm.

The sampling process takes m(x− 1) comparisons to find
r1, r2, · · · , rm and then any sorting or selection algorithm
can be applied to find the median r. Since it takes O(N)
comparisons to partition the set of items (Line 3 of Algo-
rithm 2), we solve the following optimization problem for a
good choice of integers x and m:

max
x,m

Pr {o∗k � r � o∗ck|x,m}

s.t. m(x− 1) + C(A,m) ≤ O(N), (2)

where C(A,m) is an upper bound of the number of compar-
isons if algorithmA is used to find the median of m numbers.
For example, it can be shown that C(A,m) = 1

8
(3m2+m−2)

if algorithm A refers to bubble sort (cf. Appendix C).
Algorithm 3 summarizes our discussion in this section.

Algorithm 3 SelectReference(O)

1: R← ∅
2: Solve Problem (2) for x and m
3: for i ∈ {1, 2, · · · ,m} do
4: Generate Xi, a set of x random items
5: Insert the max item of Xi into R

6: return r, the median of R

Complexity analysis. Let w be the expected workload
to judge between two items. It takes O(Nw) microtasks to
find a good reference.
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5.2 Reference-based Partitioning
With a proper reference r, SPR sequentially compares r

with every other item. As a result, items O\{r} are divided
into three groups: winners Wr, ties Tr, and losers Lr, con-
sisting of the items that are superior to, indistinguishable
from, and inferior to r, respectively. Ties are mainly due to
practical considerations: two items are considered tying if
their relative ordering cannot yet be determined.

In Lemma 1 we have established that if r = o∗k then the
cost for finding the top-k set (i.e., Wr∪{o∗k}) is minimal. Let
us suspend the discussion on ties for the moment, assuming
that every pair of items oi and oj can be eventually separated
via a workload of W(oi, oj). We now show that, when r is
in the sweet spot, it is still efficient in pruning non-result
items.

Lemma 3. If the set O of N items are to be partitioned
using r = o∗` (` > k), then finding the top-k list requires an
infimum cost of

TMCinf (o∗` ) =

k−1∑
j=1

W(o∗j , o
∗
j+1) +

∑̀
j=k+1

W(o∗j , o
∗
k)

+

N∑
j=`+1

W(o∗j , o
∗
` ).

Specifically, TMCinf (o∗k) = TMCinf as in Lemma 1.

Proof. When using o∗` as a reference, to find the top-k
list it is sufficient and necessary to confirm (i) o∗1 � o∗2 �
· · · � o∗k, (ii) o∗k � o∗j for k < j ≤ `, and (iii) o∗` � o∗j for
j > `. TMCinf (o∗` ) is then the sum of the minimal cost of
each of the three confirmations.

Lemma 4. When k < `� N , TMCinf (o∗` ) is monotoni-
cally increasing with respect to `.

Proof. For any `′ such that ` < `′ � N , from Lemma 3
it is easy to infer that

TMCinf (o∗` )− TMCinf (o∗`′)

=

N∑
j=`′+1

(
W(o∗j , o

∗
` )−W(o∗j , o

∗
`′)
)

(≤ 0)

+

`′∑
j=`+1

(
W(o∗j , o

∗
` )−W(o∗j , o

∗
k)
)
. (≥ 0)

Since ` < `′ � N , the non-positive term clearly dominates
the other, hence TMCinf (o∗` ) ≤ TMCinf (o∗`′).

Lemmata 3 and 4 imply that a reference closer to o∗k is
preferable. Given an initial reference r, Algorithm 4 follows
this implication to efficiently prune non-result items. Before
any comparison we consider every pair of items (o, r) as a tie
(Line 1). We then take an incremental approach to partition
the set Tr of ties (Line 2-12). Despite special handling of
cold starts, for every item in Tr we ask the crowd to provide
one more preference feedback, if the budget still allows, and
see whether any judgment can be made. As the iteration
proceeds, Wr and Lr grow by accepting confirmed winners
or losers (Lines 7-8).

Changing the reference. Algorithm 4 is designed to
be incremental to defer difficult comparisons as much as
possible. Such deferment is often beneficial because, as soon

Algorithm 4 Partition(O, k, r)
B: budget for the pairwise comparison; I: minimum workload

1: Wr ← ∅; Tr ← O \ {r}; Lr ← ∅
2: while ∃o ∈ Tr s.t. |Vo,r| 6= B do
3: for each item o ∈ Tr do
4: if Vo,r = ∅ then β ← I else β ← 1
5: Generate β microtask(s) to compare o and r
6: Collect the β answer(s) into the bag Vo,r
7: if o � r (resp. o ≺ r) can be inferred from Vo,r then
8: Remove o from Tr to Wr (resp. Lr)
9: if |Wr| = k then . change reference (optional)

10: Lr ← Lr ∪ {r}
11: r ← the k-th item in Wr

12: Wr ←Wr \ {r}
13: if |Wr| < k then Wr ←Wr ∪ {r} . add the reference back
14: return (Wr, Tr, Lr)

as the size of Wr reaches k, we have the opportunity to
change for a better reference (Lines 9-12). Indeed, when
|Wr| = k, the k-th best item in Wr (say r′) satisfies o∗k �
r′ � r, thus according to Lemma 4 r′ is a better reference
than r. However, one should also notice that in this case
previous efforts in comparing o ∈ Tr with r could be wasted.

Table 4: Effect of changing the reference
Times 0 1 2 4 8 16
Work. 91310 88233 86498 86372 87718 88626
*Times and Work. are the maximum times of changing reference

and the average workload (number of microtasks).

Table 4 shows effect of the changing the reference on IMDb
dataset on default setting (cf. Section 6). In general, it is
good to change the reference for several times but not too
frequently. It is not the primary goal for Algorithm 4 to find
o∗k. Given the effort in picking the initial reference, there is
a high probability for r to be in the sweet spot and thus
is good already (Section 5.1). In addition, reference-based
sorting over Wr may find the top-k list at a much lower cost
(Section 5.3).

(a) Incremental partition (b) Reference refinement

Figure 7: Reference-based partitioning

Figure 7(a) is an example to demonstrate the idea of Al-
gorithm 4 where this example contains 5 items and k = 3.
Suppose o∗3 is picked as the initial reference. We compare all
remained items to o∗3 by distributing microtasks to the crowd
(Lines 5-6 of Algorithm 4). After collecting the bag of pref-
erences from the crowd, we are able to partition these items
into three sets, Wr = {o∗1}, Tr = {o∗2, o∗4} and Lr = {o∗5},
based on the comparison process Comp (oi, oj) (Lines 7-8 of
Algorithm 4). Since Tr is not empty, we keep distributing
microtasks to the crowd until we add o∗2 to Wr. Now, the
k-th item in Wr (i.e., o∗2) is a better reference so that we can
replace the reference by o∗2 (Figure 7(b)).

Complexity analysis. Reference-based partitioning com-
pares r with all the other items, thus costs O(Nw).
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5.3 Reference-based Sorting
Given a small set of top-k candidates, a sorting procedure

can find the top-k list. The key observation here is that,
based on their pairwise comparisons with the reference item
r, we may obtain a good initial order of those top-k candi-
dates, hence any best-case linear sorting algorithm can find
the top-k items efficiently.

In fact, for two top-k candidates oi and oj , we can compute
the probability of oi being better than oj as

Pr {oi � oj} = Pr {s(oi) > s(oj)}
= Pr {s(oi)− s(r) > s(oj)− s(r)} .

Recall that, when comparing two items o and o′, workers’
feedbacks can be viewed as random samples drawn from
a distribution, of which the mean µo,o′ is proportional to
s(o) − s(o′) and the standard deviation σo,o′ reflects the
difficulty of the comparison. Hence,

Pr {s(oi)− s(r) > s(oj)− s(r)} = Pr {µi,r > µj,r} .

To compute this probability, we may use Vi,r and Vj,r, the
bags of preference values collected from the workers. For
example, when the samples in Vi,r and Vj,r observe normal
distributions, from Thurstone’s calculation [36] we get

Pr {µi,r > µj,r} ≈ Pr {µ̂i,r > µ̂j,r} = Φ

(
µ̂i,r − µ̂j,r

σ̂i,j

)
,

where σ̂2
i,j = σ̂2

i,r+ σ̂2
j,r, assuming independence between the

two distributions, and Φ(·) is the cumulative distribution
function of the standard normal distribution.

Based on such probability calculations, an ordering be-
tween top-k candidates can be established, which is a rough
estimation of the true ordering. Such an initial ordering may
provide a good jumpstart to a best-case linear sorting algo-
rithm. It is worth mentioning that most divide-and-conquer
methods such as quick sort and merge sort are not good for
this task, since they do not take any advantage of the fact
that the input is almost sorted. In contrast, bubble sort
could be a good choice. Given an almost sorted input, bub-
ble sort takes near-linear time to adjust the ordering. In
crowdsourcing scenarios, all human preference feedback can
be stored and the results of comparisons are always reusable.
Hence, although a pair of items could be compared multiple
times during the execution of bubble sort, it is not a per-
formance bottleneck when our goal is to save as much as
possible the monetary cost.

Complexity analysis. Since r is in sweet spot (with high
probability), the number of items to sort is fewer than ck.
Therefore the monetary cost of sorting is O((ck)2w) in the
worst case but it is O(ckw) in the best case. To sum up, the
best case overall cost of SPR is O(Nw + ckw).

5.4 System Accuracy Analysis
With the confidence of every pairwise judgment, we can

analyze the system accuracy according to the procedure of
the SPR framework. Incorrect judgments in selecting the
reference will only affect the efficiency. However the top-k
items may be falsely filtered from the result if the errors
occur in the partitioning phase or the ranking phase. The
probability of a top-k item o∗i losing the comparison against
the reference r is less than α. Therefore the expected num-
ber of top-k items is erroneously pruned in the partitioning

phase is

E[pruned] =

k∑
i=1

Pr {o∗i ≺ r} · 1 = αk.

The remaining number of top-k items is k(1−α). Since there
are ck items in total after partitioning, random k out of ck
items can be returned, in which case the expected system
precision is 1−α

c
.

This is the lower bound of the expected system precision
of the SPR framework since the ranking phase can be treated
as a refinement step for returning higher quality result.

5.5 Latency Analysis
For different methods, the comparisons of different item

pairs are outsourced in parallel only if they are indepen-
dent, which follows the typical idea adopted in distributed
algorithms.

Tournament tree. TourTree naturally supports par-
allel processing. To find the top-1 item o∗1, each level of
the tournament tree can be done in parallel, and there are
in total O(logN) levels. To find the top-j item for j ≥ 2,
TourTree takes O(log logN) rounds to find the best item
within O(logN) items. The total latency of TourTree is
thus O (B · (logN + k log logN)), where B is the maximum
budget of a pairwise comparison.

Heap sort. It is difficult for HeapSort to run in par-
allel. Indeed, to build a min-heap of k items, every item
in the initial binary tree should be moved down into one
of its two subtrees. This can be done in a level-wise man-
ner: To handle the j-th level of the tree, 2j−1 items can
be moved down in parallel in 2j rounds, thus the latency of
building the heap is

∑log k−1
j=1 2j = O

(
log2 k

)
. After that,

every other item should be evaluated sequentially against
the heap, taking (N − k) log k rounds. Hence, the overall
latency of HeapSort is O

(
B ·
(
log2 k + (N − k) log k

))
.

Quick selection. QuickSelect can be readily run in
parallel. At each iteration, QuickSelect may compare the
reference to all the other items in one batch. Therefore the
expected latency of QuickSelect is O (B · (logN)).

SPR. SPR is parallelism-friendly. While selecting the refer-
ence, the m sampling processes (each sampling x items) can
be done in parallel since they are independent (see Section
5.1). Then, log x rounds are required to find the best items,
and another logm rounds are to sort the m candidates for se-
lecting the median. The latency for selecting the reference is
thus log x+logm. During partitioning, the reference can be
compared with all the other items simultaneously, thus the
latency is constant. Finally, all the items in W are sorted.
Recall that |W | ≤ ck. The total number of rounds for sort-
ing is thus O(ck) in the worst case and O(1) in the best case
(cf. best-case linear sorting in Section 5.3). To sum up, the
best overall latency of SPR is O (B · (log x+ logm)).

Microtask-level batch processing. To compare a pair
of items, there is often latency between the distribution of
microtasks and the collection of user feedbacks. At one ex-
treme, every time only 1 microtask is sent into the crowd.
Assume that w microtasks are sufficient and necessary to
make a judgment. In this way, the monetary cost is w,
which is minimized, but there is also a latency of w, which
is often undesirable. At the other extreme, we can simply
send B microtasks into the crowd at once, minimizing the
latency to 1 but increasing the monetary cost to B, which
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is often wasteful. To strike a balance between the monetary
cost and the latency, we distribute microtasks in batches.
Specifically, if we distribute η microtasks at one time, then
in the worst case we need B/η rounds to make a judgment.
Then the constant B in the latency of all the methods can
be reduced to B/η.

6. EXPERIMENTS

6.1 Datasets

Table 5: Dataset statistics
Dataset #Items Filtering criterion Source

IMDb 1225 movies with ≥ 100,000 votes Rating
Book 537 books with ≥ 50 votes Rating
Jester 100 users voted all the jokes Rating
Photo 200 N/A Pairwise

IMDb. This dataset is collected from IMDb that contains
642,775 movies. Associated to each movie there is a his-
togram of the user votes and the weighted rank of a movie
can be computed by

weighted rank =
#votes

#votes +K
· µ+

K

#votes +K
· C,

where K and C are the constants (where K = 25, 000 and
C = 6.9 based on the description in the IMDb dataset [5])
and µ is the mean of the votes. For each movie, we calcu-
late its mean of the votes based on the weighted rank for-
mula. The total order of the movies Ω is then determined by
their mean values. To simulate a pairwise preference judg-
ment for a movie pair oi and oj , we generate the ratings
s(oi) and s(oj) based on their own voting histograms and
set v(oi, oj) = s(oi)− s(oj).
Book. This dataset is collected from Book Crossing, a
free online book club used in [45]. Similar to what we do to
IMDb, we simulate the judgment based on the histograms
of books. The total order of the books Ω is determined by
the mean of the histograms.

Jester. This dataset is collected from the Jester online joke
recommender system developed by UC Berkeley [19]. We
simulate a judgment result of any joke pair oi and oj by pick-
ing a random user from the dataset and setting v(oi, oj) =
s(oi)−s(oj) where s(oi) and s(oj) are the rates given by the
picked user. The total order of the jokes Ω is determined by
the mean of the joke ratings.

Photo. This dataset contains a set of 200 campus photos
(one photo per university) and we build a judgment database
D by the workers on a real crowdsourcing system Crowd-
Flower. For each judgment record in D, we ask a worker to
compare two campus photos and to rate her preference on
an eight-point Likert scale [27]. The monetary cost is 0.1
US cent per question. To secure the database quality, we
collect at least 10 judgment records for each pair of campus
photos. To simulate a judgment, we randomly sample one
record from D of the corresponding pair.

6.2 Experiment Settings
All methods were implemented in Java compiled by JDK

1.8. The experiments were conducted on a machine with
Intel 3.4GHz i7-2600 CPU and 3.17GB memory, running
Windows 7 32-bit OS. Investigated parameters and their

Table 6: Experiment parameters
Parameter Values

Number of items, N 25, 50, 100, 200, 400, 800, All
Query parameter, k 1, 5, 10, 15, 20
Confidence level, 1− α 0.8, 0.85, 0.9, 0.95, 0.98

Pairwise comparison budget, B
(I=)30, 100, 200, 500,

1000, 2000, 4000
Sweet spot range, c 1.25, 1.50, 1.75, 2.00

evaluated ranges are listed in Table 6. Unless otherwise
specified, in each experiment we vary one parameter and set
the remaining ones to their defaults (shown in bold).

In the experiments, the performance factors we evaluated
include (1) the total monetary cost (TMC), (2) the query
latency, and (3) the accuracy of the top-k result. TMC is
the total number of microtasks we need for a query. The
query latency is the number of the batch iterations we need
for a query. As explained in Section 5.5, the microtasks
are distributed in batches. We set the batch size η to 30
in all experiments. The accuracy of the result is measured
by Normalized Discounted Cumulative Gain (NDCG) [24]
that is a general metric for the ranking quality. All reported
results are averaged over 100 runs.

Table 7: TMC of confidence-aware methods
TMC SPR TourTree HeapSort QuickSelect PBR

IMDb 88,233 177,231 114,190 334,938 1.6M
Book 80,369 175,280 115,382 319,498 2.2M
Jester 35,371 47,560 56,265 80,497 222,596
Photo 30,989 38,787 48,920 58,088 41,360

Table 7 shows the experiment results of the confidence-
aware methods on default settings. SPR is the best method
on all the datasets with respect to TMC. Preference-Based
Racing algorithm (PBR) [8] considers a different scenario
that the transitivity may not exist in the pairwise compar-
isons. This causes PBR to require much more microtasks so
that we omit it from the remaining experiments.

In the following experiments, since the performance trends
on all the datasets are similar, we only present the results on
IMDb and Book. Other results can be found in Appendix F.

6.3 Scalability Experiments
Effect of k. Figure 8 shows the trend of TMC and query
latency by varying k on IMDb and Book, respectively. SPR
requires consistently less monetary cost than TourTree (Tour)
and QuickSelect (QS). HeapSort (Heap) performs slightly
better than SPR when k is small. Nevertheless, for Heap-
Sort, the TMC increases significantly when k becomes larger
and the query latency is much higher than that of the other
methods. The query latency of SPR is less than that of
TourTree and HeapSort because reference-based parti-
tioning is parallelism-friendly. Benefiting from its binary
partition, QuickSelect achieves roughly the same query
latency with SPR, but its TMC is higher than the other
methods on all the settings (except k = 20 on Jester).

Effect of item cardinality. Figure 9 shows TMC and
query latency by varying the number of items on IMDb and
Book, respectively. QuickSelect, TourTree and Heap-
Sort are more sensitive than SPR in terms of TMC. The
trends of SPR on TMC and query latency are the closest
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(a) TMC (IMDb) (b) Latency (IMDb)

(c) TMC (Book) (d) Latency (Book)

Figure 8: Effect of k

(a) TMC (IMDb) (b) Latency (IMDb)

(c) TMC (Book) (d) Latency (Book)

Figure 9: Effect of item cardinality

to infimum (cf. Section 4.4), making SPR superior to its
competitors.

Effect of confidence level. Figure 10 shows that TMC
and query latency of all the methods are increasing when the
confidence level becomes higher. For each pair of items oi
and oj , comparison process Comp (oi, oj) needs more micro-
tasks with a higher confidence level (1 − α). SPR achieves
less (vs. HeapSort and TourTree) or similar (vs. Quick-
Select) query latency with lower cost in the experiments.

Effect of B. Figure 11 shows TMC and query latency by
varying pairwise comparison budget on IMDb and Book.
SPR is constantly close to infimum corresponding to TMC
and query latency. As the monetary cost and query latency
of all the methods monotonically increase with respect to the
pairwise comparison budget B, TMC and execution rounds

(a) TMC (IMDb) (b) Latency (IMDb)

(c) TMC (Book) (d) Latency (Book)

Figure 10: Effect of confidence level

(a) TMC (IMDb) (b) Latency (IMDb)

(c) TMC (Book) (d) Latency (Book)

Figure 11: Effect of B

can be reduced by decreasing B. However, we show that a
sufficient B is necessary to secure the accuracy in the next
section.

Performance summary. Figure 12 summarizes the per-
formance using the default settings on IMDb and Book.
SPR is the only method that can approach infimum. More-
over, we conducted an interactive experiment on Crowd-
Flower to verify the performance of SPR in Appendix F.

6.4 Accuracy
Figure 13 shows the accuracy by varying k, item cardi-

nality, pairwise comparison budget and confidence level on
IMDb. All the methods perform badly when B ≤ 100, in-
dicating that the accuracy can only be secured when B is
sufficiently given. To balance the accuracy and cost, we set
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(a) IMDb (b) Book

Figure 12: Performance summary

(a) Effect of k (b) Effect of item cardinality

(c) Effect of B (d) Effect of confidence level

Figure 13: Accuracy on IMDb dataset

B = 1000 by default. As a comparison among the methods,
SPR has similar accuracy with its competitors but achieves
lower TMC. Though QuickSelect achieves higher accuracy
in some cases, its TMC is much higher.

6.5 Non-Confidence-Aware Methods
To further investigate the performance of SPR, we ad-

ditionally compare SPR with two representative heuristic
algorithms (with no confidence guarantee) of the crowd-
sourced top-k queries (recommended by a recent survey [44]).
CrowdBT [9] decides the global ranking of items based on
the pairwise binary judgment using the Bradley-Terry-Luce
(BTL) model. Hybrid [26] is a hybrid method that employs
both graded and pairwise binary judgment models. It first
asks the crowd to grade the items and keeps the highest
rating items (filtering phase). Then it outsources and com-
pares every pair of the remained items (ranking phase). The
scores of items are estimated based on both phases.

We compare SPR with Hybrid, CrowdBT, and an SPR
based hybrid method HybridSPR on IMBb and Book. For
fairness, Hybrid and CrowdBT are set to have the same
budget to the TMC of SPR. The parameters are set follow-
ing the suggestion of the original papers. The likelihood is
optimized by BFGS [31] with 100 iterations. HybridSPR is
a hybrid method that employs the filtering phase of Hybrid
and ranks the remained items by SPR.

(a) NDCG on IMDb dataset (b) NDCG on Book dataset

Figure 14: Non-confidence-aware methods

CrowdBT has relatively low NDCG since the given bud-
get is not enough to distinguish a sufficient number of paired
items. So the hidden item scores are not well estimated. The
hybrid methods Hybrid and HybridSPR may have slightly
better NDCG than SPR. This is because the item ratings
are treated as the ground truth in this work so that the
filtering phase can return a set of good candidates for the
ranking phase. Our HybridSPR verifies the effectiveness
of the confidence-aware technique as it consistently outper-
forms Hybrid. Besides, HybridSPR saves 10% monetary
cost on average due to a more effective ranking phase.

7. CONCLUSION
In this work, we first discuss how the pairwise preference

judgment helps to reduce the monetary cost of the compari-
son processes in crowdsourcing. According to our empirical
study, it outperforms two popular judgment models as it
achieves similar accuracy of comparisons by less number of
microtasks. Based on the pairwise preference judgment, we
develop a novel Select-Partition-Rank (SPR) framework by
minimizing unnecessary tie pair comparisons. SPR not only
reduces the cost but also secures the quality of the compari-
son processes. Our experiments show that SPR outperforms
other competitors in terms of the monetary cost and the
query latency.

In the future, we plan to further exploit the crowdsourced
top-k queries by introducing other settings and optimization
techniques. For instance, given some partial knowledge of
the items [11], SPR could more effectively select a reference
so that the overall cost can be further reduced. In addition,
one possible optimization we left for future work is to out-
source more judgments at microtask-level to achieve tighter
intervals (e.g., we continue the comparison process even if
the interval already excludes the neutral point), and infer
the partial ranking based on the distinguishable intervals
and their dependence.

We will also explore the statistical tools to enhance the
performance of other crowdsourced queries, e.g., ranking,
natural join, skyline, etc.
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APPENDIX
A. POTENTIAL APPLICATIONS
Crowdsourced Q&A systems. The main challenge in
the crowdsourced Q&A systems is to properly rank the an-
swers from the crowd so that the top answers are valuable
to the users. Yahoo! Answer and Stack Overflow are two
popular crowdsourced Q&A systems for general users and
professional programmers, respectively. In order to rank the
crowdsourced answers, these systems ask users (who are in-
terested in the question) to vote for their favourite answers.
When looking for the best in rating list on Yahoo! Answer,
we may find some very good answers with lower ratings.
Actually, it is not strange because the crowd may just give
comments without rating others’ or they may just rate the
several popular comments skipping over the rest. Conse-
quently, the asker may miss the real best answer if she just
browses the first few answers. To polish the ranking mech-
anism on those crowdsourced Q&A systems, our top-k al-
gorithm can progressively refine the ranking by generating
pairwise comparisons without leaving the good answers out.

Crowdsourced pattern recognition. Pareidolia6 is an
emerging topic in many social media web sites, e.g., Face-
Book, Flickr, and Reddit, which asks users to post images
of patterns that look like other things. The most common
pattern type is to find things with faces7. Reddit collects its
top image archive by users’ votes, e.g., like or dislike. How-
ever, some good images may not get any votes because they
are at the tail of a long list. Our proposed algorithm can
right avoid this voting unfairness and find the top-k items
with high accuracy guarantee.

Trip planner. Gogobot (https://www.gogobot.com/) is
a crowdsourcing travel-planning platform that collects (sug-
gests) the travel information from (to) the crowd. Given
the set of user itineraries in a city, our crowdsourced top-k
queries can be used to recommend the top-k most interesting
travel plans for potential travelers.

Annual top-k ranking. Pairwise comparison can be par-
ticularly helpful in finding top items of some annual events.
For instance, The Washington Post hosts the prize “Worst
Year in Washington”8 by asking people to compare paired
candidates.

B. MICROTASK CATEGORIES AND UNIT
MONETARY COST

Table 8: Crowdsourcing task categories
Type Characteristics Examples

Micro
Volume: very high
Cost: very low

1. Label an image
2. Verify an address
3. Simple entity resolution

Macro
Volume: high
Cost: low

1. Write a restaurant review
2. Test a new website feature
3. Identify a galaxy

Simple
Volume: low
Cost: moderate

1. Design a logo
2. Write a term paper

Complex
Volume: single
Cost: high

1. Build a website
2. Develop a software system

6https://en.wikipedia.org/wiki/Pareidolia
7http://www.thingswithfaces.net/
8http://www.washingtonpost.com/wp-
srv/interactivity/worst-year-voting.html

The tasks in modern crowdsourcing platforms [15, 18] can
be classified into four categories (shown in Table 8). To
our understanding, both binary and preference judgments
should be classified into the microtask category. Due to the
task simplicity of this category, the monetary cost is rela-
tively low (e.g., 0.1 US cent per question) and the popularity
is high (in terms of volume) in the crowdsourcing platforms.

Table 9: Worker Satisfaction
Judgment Overall Ease of Job Unit Time #Microtasks

Binary 4.3/5 4.7/5 7.8s 300
Preference 4.3/5 4.2/5 10.3s 300

We empirically evaluate the difference between these two
pairwise judgments in CrowdFlower9. We published 10 bi-
nary questions and 10 preference questions in CrowdFlower,
each offering US$0.01. Each question was then answered by
30 workers. Table 9 shows the average worker satisfaction
(5 is the highest) based on 17 (Binary) and 21 (Preference)
worker feedback provided by CrowdFlower. In general, the
workers are positive to both binary and preference questions.
Although the binary judgments were reported to be easier,
both types of questions can be answered in 11 seconds (on
average) and the overall satisfaction was similar.

C. UPPER BOUND ANALYSIS FOR CHOOS-
ING THE MEDIAN

In order to find the median of m numbers, a straightfor-
ward idea is to sort the entire set up to the median position.
We can use many sorting algorithms to solve this problem.
As an example, we give the upper bound analysis if A refers
to bubble sort. The main idea is that we start from the last
number and compare with its previous adjacent neighbour,
swapping can only happen when it is superior to the neigh-
bour. After dm

2
e iterations, we can finally obtain the median

number.

C(A,m) =

dm
2
e∑

i=1

(m− i) = (m− 1 +m− dm
2
e) · dm

2
e · 1

2

6 (m− 1 +
m

2
) · m+ 1

2
· 1

2
=

1

8
(3m2 +m− 2).

For other algorithms, we omit the details since similar anal-
ysis directly gives the upper bounds in Table 10.

Table 10: Upper bound of other sorting algorithms
for choosing the medium

Algorithm Upper Bound Algorithm Upper Bound

Selection 1
8
(3m2 +m− 2) Heap m+ 2m log m

2

Merge 3m logm Quick 1
2
m(m− 1)

D. THEORETICAL ANALYSIS OF JUDG-
MENT MODELS

From the intuition and the experiments shown in Table 3,
the pairwise preference judgment is likely a better judgment
model than the pairwise binary judgment. We confirm this

9http://www.crowdflower.com
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advantage by demonstrating the expected number of micro-
tasks of the pairwise preference judgment until converge is
less than that of the pairwise binary judgment.

Assume without loss of generality that the sample mean
µ̄n > 0. Following the assumptions in Section 3.1, we deduce
the number of microtasks n of a given item pair oi and oj
based on pairwise preference judgment model. We have the
number of microtasks when

µ̄n − tα
2
,n−1 ·

Sn√
n

= 0⇒ n =

(
tα

2
,n−1 ·

Sn
µ̄n

)2

.

We then consider the number of microtasks nb based on
the pairwise binary judgment model. In the pairwise bi-
nary judgment, a user preference v(oi, oj) is classified into a
binary choice vb(oi, oj) ∈ {−1, 1}. Mathematically,

vb(oi, oj) =

{
−1, v(oi, oj) < 0

1, otherwise
.

Then the expected value of sample mean shifts from µi,j to
µ̃i,j where the shifted mean

µ̃i,j = E[vb(oi, oj)] = 1− 2Pr {v(oi, oj) < 0}

= 2Φ

(
µi,j
σi,j

)
− 1.

Assuming the sample mean of the binary judgment is µ̄nb ,

Pr {|µ̄nb − µ̃i,j | ≤ t} ≥ 1 − 2 exp
(
−nbt

2

2

)
based on Hoeffd-

ing inequality. When t < µ̃i,j , we are 1 − 2 exp
(
−nbt

2

2

)
confident to make the judgment between oi and oj . Then
we replace t by µ̃i,j and obtain

Pr {|µ̄nb − µ̃i,j | < µ̃i,j} > 1− 2 exp

(
−
nbµ̃

2
i,j

2

)
= 1− α.

Thus, the number of microtasks nb based on pairwise binary
judgment model is

nb =
2

µ̃2
i,j

log
2

α
. (3)

Since there do not exist explicit formulation of Φ(·) and
tα

2
,n−1, we run a simulation of nb−n by Mathematica show-

ing that nb > n on all values of µi,j and σi,j in Figure 15.

Figure 15: Analysis of nb − n by Mathematica

E. ADDITIONAL ESTIMATION TOOL
Stein’s estimation [35]. Given a predefined interval
width 2L, Stein proposed a method to estimate the number
of samples n needed to conclude µi,j ∈ [µ̄n − L, µ̄n + L] with

confidence level 1 − α. In its original form, the estimation
takes two stages:

1. Get y (Gaussian) samples and calculate Sy, the sample
standard deviation. Sy is thus a rough estimation of
the true standard deviation σi,j ;

2. Compute y′ = S2
y ·L−2·t21−α

2
,y−1. Then, n = max{y, y′}

is the number of samples necessary to conclude µi,j ∈
[µ̄n − L, µ̄n + L] with confidence level 1− α.

Recall that in our problem we simply want to find an
interval [µ̄n − L, µ̄n + L] that excludes 0 with as few samples
as possible. That being the purpose, we transform Stein’s
original method into a progressive estimation on µi,j .

Algorithm 5 SteinComp(oi, oj)

B: budget for the pairwise comparison; I: minimum workload
1: Publish I microtasks and get V ← {v1(oi, oj), . . . , vI(oi, oj)}
2: for w = I + 1, I + 2, · · · , B do
3: Publish one more microtask and get vw(oi, oj)
4: V ← V ∪ {vw (oi, oj)}
5: µ̄w ← sample mean of V
6: Sw ← sample standard deviation of V
7: L← |µ̄w| − ε . ε is a small positive value
8: if S2

w · L−2 · t2
1−α

2
,w−1

> w then continue

9: if µ̄w < 0 then return oi ≺ oj
10: if µ̄w > 0 then return oi � oj
11: return oi ∼ oj . indistinguishable under budget B

As shown in Algorithm 5, for comparing a pair of data
items oi and oj , we progressively retrieve human preference
values v1 (oi, oj) , v2 (oi, oj) , · · · , vw (oi, oj) until the number
of samples is sufficient to make a judgment. During such a
process, we dynamically change the width of the confidence
interval, L (Line 7). Specifically, based on the sample mean
µ̄ we always make L slightly smaller than |µ̄| such that the
interval [µ̄− L, µ̄+ L] is always “adjacent” to 0.10 With this
invariance, as soon as the workload is sufficient (Line 8), the
algorithm terminates with a judgment (Lines 9-10).

F. ADDITIONAL EXPERIMENTS

(a) TMC (IMDb) (b) TMC (Book)

Figure 16: Sweet spot range

Sweet spot range. As we mentioned in Section 5, sweet
spot consists of items o∗k, o

∗
k+1, · · · , o∗ck where c controls the

range (ck � N). Figure 16 shows the TMC of SPR as a
function of c. The monetary cost of SPR is stable when we
vary c. Therefore we simply set c = 1.5 in the experiments.

Confidence estimation. We compare SteinComp and
StudentComp using IMDb by varying k. Figure 17(a) is

10A small positive ε guarantees that the interval excludes 0.
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(a) Effect of k (Stein) (b) Stein vs. Student (SPR)

Figure 17: Stein and Student comparison (TMC)

a reproduction of Figure 8(a) under the same settings but
replacing StudentComp with SteinComp. Figure 17(b)
demonstrates the difference between SteinComp and Stu-
dentComp. The results show that the performance of Stein-
Comp and StudentComp are analogous. And the results
are consistent on the other datasets. Therefore we simply
select StudentComp as our default estimation method.

Figure 18: TMC experiments on Jester

Additional scalability experiments. Figures 18-21
show the TMC and query latency of the methods as a func-
tion of k, number of items N , confidence level 1 − α and
pairwise comparison budget B, respectively, on Jester and
Photo datasets. The overall trend is similar to the results
on IMDb and Book (cf. Section 6.3).

Interactive Experiment. We also conducted an interac-
tive experiment on another dataset PeopleAge11. We pick
this dataset since it offers ground truth for the accuracy
evaluation. PeopleAge contains a set of 100 different women
photos from 1 year old to 100 years old. The query is to
find the 10 youngest women. To save our monetary cost,
we set 1 − α = 0.90 and B = 100. SPR takes 6 hours 55
minutes to get the final result and costs 10.56 US dollars
on CrowdFlower. The NDCG is 0.917. We also run the
simulation on PeopleAge with the same settings. The TMC
and the NDCG by simulation are 9570 (i.e. 9.57 US dollars)
and 0.905, respectively. This experiment confirms that our
simulations can reflect the real performance of our method.

11http://edouardjanssens.com/art/1-to-100-years/women/

Figure 19: Latency experiments on Jester

Figure 20: TMC experiments on Photo

Figure 21: Latency experiments on Photo
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