
Multi-dimensional Data Statistics for Columnar In-Memory
Databases

Curtis Kroetsch∗

David R. Cheriton School of Computer Science
Faculty of Mathematics
University of Waterloo

Waterloo, Ontario, Canada
cckroets@uwaterloo.ca

ABSTRACT
The research presented here studies the multi-dimensional
data statistics in the context of columnar in-memory database
systems. Such systems, for example SAP HANA [4], SQL

Server Apollo, or IBM BLU, use an order-preserving dic-
tionary with dense encoding on the read-optimized storage
which encodes the values of a single column in an ordered,
dense-domain dictionary. The dictionary maps variable-
length domain values to fixed-size dictionary entries. This
encoding reduces memory consumption as dictionary values
can be represented with fewer bits than the original values,
and allows queries to be evaluated efficiently on the encoded
data. The main characteristics of the dictionary encoding
is that it results in a dense domain of values which can be
exploited for building efficient data statistics objects.

Categories and Subject Descriptors
H.2.4 [Database Management]: Systems—Query Pro-
cessing

Keywords
Multi-dimensional data statistics, Histograms

1. INTRODUCTION
Columnar in-memory databases divide its data into two

storages: one read-optimized storage, aka main storage, and
one write-optimized storage, aka delta storage. The delta
storage is merged into main storage in a process known as
delta-merge operation. During a delta-merge operation, for
a specific column, the column dictionary will be rebuilt to

∗The student author and the adviser, Dr. Anisoara
Nica, SAP AG, Waterloo, Ontario, Canada,
Anisoara.Nica@sap.com, worked on this project during
the student’s co-op term in Summer 2013.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
SIGMOD’14, June 22–27, 2014, Snowbird, UT, USA.
Copyright 2014 ACM 978-1-4503-2376-5/14/06 ...$15.00.
http://dx.doi.org/10.1145/2588555.2612663 .

reflect the data in the new main storage. Hence, any struc-
ture built using the main’s dictionary has to be rebuilt after
a delta-merge operation. For example indexes, materialized
views, or data statistics built on main storage have to be re-
built after a delta-merge operation. In this context, the re-
quirements for data statistics objects to be fast to (re)build,
space efficient, and precise are more stringent than in a clas-
sical database system, as the benefit for using dense-domain
dictionaries must be balanced to the requirement for rebuild
after each delta-merge operation.

The work presented in ACM SIGMOD 2014 in [3], in the
context of SAP HANA, shows how ordered dictionaries are
exploited for the efficient construction of precise and concise
one-dimensional histograms. One-dimensional data statis-
tics built for dictionary-encoded columns can be made very
efficient from point of view of space, built time, and quality
of estimates [3].

In contrast, we study here if multi-dimensional histograms
can also be made space-efficient, built-time efficient, and
have good quality of estimates when built on ordered dictio-
nary encoded data, hence on dense domains of values.

In this paper we present some preliminary results on build-
ing and using multi-dimensional histograms based on r-trees
[1], similar to rK-Hist proposed in [2]. The main focus is to
improve the construction algorithms, from point of view of
build-time, space efficiency, and the quality of the estimates
for range queries. The proposed design and implementa-
tion proved so far to provide very accurate cardinality esti-
mates for the data points with dense integer domains while
its space and build time is comparable to previous work.

The purpose of a multi-dimensional histogram is to sum-
marize a dataset over d dimensions. A dataset consists of
N distinct points, each with d values and a measure. A
point p has the form p = (v1, · · · , vd) where vi represents
the value of dimension i in p. Each point in the dataset also
has an associated measure equal to f(p) ∈ Z+ which is the
number of occurrences of the point p in the dataset. For a
dataset with N distinct points, there are M =

∑N
i=1 f(pi)

non-distinct points. A histogram for a dataset is a collec-
tion of buckets, where each bucket stores some information
about a hyper-space it represents. Given a range query Q
over d dimensions, the histogram estimates the number of
points in the dataset that intersect with Q.

We designed a series of improvements to the original rK-
Hist algorithms presented in [2], the most important are
described below.

1605



Figure 1: Cardinality Estimate Accuracy:

6-dimension points;

10 million distinct points;

516896321 non-distinct points;

200 range queries;

q-error = max{ (actual cardinality / estimated cardinality), (es-

timated cardinality / actual cardinality) }
q-error: Average: 1.0449, Maximum: 1.2702, Minimum: 1.0000

Improvement to Bucket Decomposition Method: The
initial bucketing scheme may produce sub-optimal, non-uniform
buckets which can lead to poor cardinality estimations. Bucket
decomposition is one of the optimizations the rK-Hist uses
to produce better results. Consequently, the rK-Hist uses
a cost function to evaluate the uniformity of a bucket to
determine if the points inside should be re-bucketed. Specif-
ically, instead of creating the desired number of buckets ini-
tially, only 90% are created. The cost function is applied
to each bucket and 5% of the absolutely worst buckets are
considered for decomposition. Then a “sliding window” [2]
approach is used to decompose each of the worst buckets into
two buckets of greater quality if possible. These newly cre-
ated buckets are also considered for further decomposition.
Decomposition continues until enough buckets are created
or the buckets can no longer decompose.

For the bucket decomposition algorithm, we observed that
once a bucket ω becomes decomposed into ω1 and ω2, these
new buckets are likely to be more uniform than those out-
side of the 5% decomposition list. This is because the ‘slid-
ing window’ technique is typically very affective in removing
dead space from the bucket. Decomposing further ω1 and ω2

is a waste if there are worse buckets to consider. So instead
of initially moving the worst buckets to a separate list, we
store all buckets in a priority queue Υ, according to their
cost. When decomposing, the worst bucket, which appears
at the top of Υ, is processed. Newly created buckets are also
inserted back into Υ, hence the best bucket to be consid-
ered for decomposition is the bucket with the worst quality
according to the cost function. Algorithm 1 describes the
procedure in more detail.
Improvement to cost function C: The original cost
function C in Algorithm 1 is calculated based on the K-
Uniformity metric of a bucket. This metric aims to assess
the relative emptiness of a bounding box. This is done by

Algorithm 1 Improved Bucket Decomposition

Input: A set B of I initial buckets, a cost function C, and
the total buckets to be produced α.

Output: A set Υ of α buckets.
Υ← PriorityQueue(B,C)
while size(Υ) < α do
ω ← ExtractMax(Υ)
(ω1, ω2)← Decompose(ω)
Push(Υ, ω1)
Push(Υ, ω2)

end while

recursively partitioning the points in a bucket into their own
box, via a k-d-tree. The K-Uniformity is the standard de-
viation of the volumes of each box. The higher this metric,
the worse the distribution is inside the bucket.

The complexity of calculating this metric for a bucket ω,
where n = |ω| is O(n lgn). This computation also requires
that the original points be read again (potentially bring back
into main memory) which is very expensive. We use instead
C(ω) = Volume(minimum bounding box (ω)) [1] which is
much cheaper to compute. The main advantage is that it
doesn’t require revisiting the raw data again and has a much
smaller complexity, O(d) for a d-dimensional dataset.

Figure 1 shows the cardinality estimate accuracy for ran-
domly generated range queries, on large datasets of 516896321
non-distinct points. We measure the q-error metrics as in-
troduced in [3]. The x-axis represents the actual cardinality
(in percentage) of the generated queries.

2. CONCLUSION
We studied a certain type of multi-dimensional data statis-

tics for dense domains which naturally characterize the dic-
tionary encoded columns in a columnar in-memory databases.
We plan to further exploit the properties that characterize
such systems in building and maintaining different types of
data statistics objects which are efficient and accurate.

3. REFERENCES
[1] Daniar Achakeev and Bernhard Seeger. A class of r-tree

histograms for spatial databases. In SIGSPATIAL/GIS,
pages 450–453, 2012.

[2] Todd Eavis and Alex Lopez. Rk-hist: an r-tree based
histogram for multi-dimensional selectivity estimation.
In ACM CIKM, pages 475–484, 2007.

[3] Guido Moerkotte, Dave DeHaan, Anisoara Nica,
Norman May, and Alexander Boehm. Exploiting
ordered dictionaries to efficiently construct histograms
with q-error guarantees in SAP HANA. In ACM
SIGMOD, 2014.

[4] Vishal Sikka, Franz Färber, and Anil Goel
andWolfgang Lehner. SAP HANA: The evolution from
a modern main-memory data platform to an enterprise
application platform. In PVLDB, volume 6, pages
1184–1185, 2013.

1606



 
 
    
   HistoryItem_V1
   TrimAndShift
        
     Range: all pages
     Trim: fix size 8.500 x 11.000 inches / 215.9 x 279.4 mm
     Shift: move down by 23.83 points
     Normalise (advanced option): 'original'
      

        
     32
            
       D:20140506181658
       792.0000
       US Letter
       Blank
       612.0000
          

     Tall
     1
     0
     No
     795
     352
     Fixed
     Down
     23.8320
     0.0000
            
                
         Both
         1
         AllDoc
         5
              

       CurrentAVDoc
          

     Uniform
     0.0000
     Top
      

        
     QITE_QuiteImposingPlus2
     Quite Imposing Plus 2 2.0
     Quite Imposing Plus 2
     1
      

        
     1
     2
     1
     2
      

   1
  

    
   HistoryItem_V1
   TrimAndShift
        
     Range: all pages
     Trim: fix size 8.500 x 11.000 inches / 215.9 x 279.4 mm
     Shift: move left by 7.20 points
     Normalise (advanced option): 'original'
      

        
     32
            
       D:20140506181658
       792.0000
       US Letter
       Blank
       612.0000
          

     Tall
     1
     0
     No
     795
     352
    
     Fixed
     Left
     7.2000
     0.0000
            
                
         Both
         1
         AllDoc
         5
              

       CurrentAVDoc
          

     Uniform
     0.0000
     Top
      

        
     QITE_QuiteImposingPlus2
     Quite Imposing Plus 2 2.0
     Quite Imposing Plus 2
     1
      

        
     1
     2
     1
     2
      

   1
  

 HistoryList_V1
 qi2base





