
How to Stop Under-Utilization and Love Multicores

Anastasia Ailamaki
EPFL

anastasia.ailamaki@epfl.ch

Erietta Liarou
EPFL

erietta.liarou@epfl.ch

Pınar Tözün
EPFL

pinar.tozun@epfl.ch

Danica Porobic
EPFL

danica.porobic@epfl.ch

Iraklis Psaroudakis
EPFL, SAP AG

iraklis.psaroudakis@epfl.ch

ABSTRACT
Designing scalable database management systems on mod-
ern hardware has been a challenge for almost a decade.
Hardware trends oblige software to overcome three major
challenges against systems scalability: (1) Exploiting the
abundant thread-level parallelism provided by multicores,
(2) Achieving predictively efficient execution despite the vari-
ability in communication latencies among cores on multi-
socket multicores, and (3) Taking advantage of the aggres-
sive micro-architectural features.

In this tutorial, we shed light on the above three chal-
lenges and survey recent proposals to alleviate them. First,
we present a systematic way of eliminating scalability bottle-
necks based on minimizing unbounded communication and
show several techniques that minimize bottlenecks in major
components of database management systems. In addition,
we demonstrate methods to parallelize major database op-
erations. Then, we analyze the problems that arise from
the non-uniform nature of communication latencies on mod-
ern multisockets and ways to address them for systems that
already scale well on multicores. Finally, we examine the
sources of under-utilization within a modern processor and
present insights and techniques to better exploit the micro-
architectural resources of a processor by improving cache
locality at the right level of the memory hierarchy.

1. INTRODUCTION
Length: 3 hours
Target Audience: Researchers and developers in the

field of data management systems who are non-experts on
modern hardware and the challenges the emerging hardware
poses on high-performance transaction and query process-
ing, and PhD students who are interested in learning more
about the underlying hardware and seeking a challenging
and high-impact research topic on data management sys-
tems.

Related Previous Tutorials: The first part of this tu-
torial, scaling-up on multicores, is presented as part of the

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
SIGMOD’14, June 22–27, 2014, Snowbird, UT, USA.
Copyright 2014 ACM 978-1-4503-2376-5/14/06 ...$15.00.
http://dx.doi.org/10.1145/2588555.2588892.

VLDB 2013 tutorial titled Toward Scalable Transaction Pro-

cessing - Evolution of Shore-MT [1]. This tutorial, however,
has broader scope and includes a range of data manage-
ment systems and hardware platforms. More specifically, it
surveys the concept of scalability for data management sys-
tems not just on multicores with uniform access latencies
but also on multisockets with non-uniform memory accesses
(NUMA) and at the micro-architectural level. In addition,
it includes examples from a broader range of storage man-
agers, not just from Shore-MT.

2. THREAD-LEVEL PARALLELISM
In step with Moore’s Law, hardware gives us more and

more opportunities for parallelism rather than faster proces-
sors since 2005. Exploiting parallelism is crucial for utiliz-
ing the available architectural resources and enabling faster
software. However, designing scalable systems that can take
advantage of the underlying parallelism remains a challenge.
In traditional high performance transaction processing, the
inherent communication leads to scalability bottlenecks on
today’s multicore and multisocket hardware. Even systems
that scale very well on one generation of multicores might
fail to scale-up on the next generation. On the other hand, in
traditional online analytical processing, the database opera-
tors that were designed for unicore processors fail to exploit
the abundant parallelism offered by modern hardware.

In this first part of the tutorial, we initially teach a method-
ology for scaling-up transaction processing systems on mul-
ticore hardware. More specifically, we identify three types of
communication in a typical transaction processing system:
unbounded, fixed, and cooperative [17]. We demonstrate that
the key to achieve scalability on modern hardware, especially
for transaction processing systems but also for any system
that has similar communication patterns, depends on avoid-
ing the unbounded communication points or downgrading
them into fixed or cooperative ones. We show how effective
our methodology is in practice by surveying related propos-
als from recent work (e.g., [10, 18, 21, 27, 28, 30]).

Traditional online analytical processing, however, is formed
of read-only queries. Therefore, it does not suffer from the
unbounded communication as in transaction processing. On
the other hand, the database operators such as joins, scans,
etc. are mainly optimized for single threaded execution.
Therefore, they fail to exploit intra-query parallelism and
cannot utilize several cores näıvely. In this tutorial, we also
survey the recent techniques that aim at parallelising tra-
ditional database operations and exploring work and data

189

sharing opportunities among the concurrent queries (e.g. [6,
13, 15, 24]).

3. NON-UNIFORM MEMORY ACCESSES
Data management applications traditionally run on the

highest performing servers of the day. Up until recently,
such servers had uniform core-to-core communication laten-
cies - multisocket uniprocessors communicate slowly with
each other and cores on a multicore communicate fast. Now
with multisocket multicores, for the first time we have Is-

lands, i.e., groups of cores that communicate fast among
themselves and slower with other groups. Currently, an Is-
land is represented by a processor socket but soon, with
dozens of cores on the same socket, we expect that Islands
will form within a chip. In this setting, memory access times
vary greatly depending on several factors including latency
to access remote memory and contention for the memory
hierarchy such as the shared last level caches, the memory
controllers, and the interconnect bandwidth.

In the context of transaction processing, it can be appeal-
ing to regard multisocket as a distributed system and deploy
multiple nodes in a shared-nothing configuration [18, 27].
While this approach works great for perfectly partitionable
workloads, it is very sensitive to distributed transactions and
the workload skew. At the same time, hardware-oblivious
shared-everything systems suffer from non-uniform latencies
that amplify bottlenecks in the critical path [23]. First, we
present a set of best practices for choosing a good configura-
tion based on different properties of workload and hardware
topology. Then, we present a system that achieves scala-
bility on multisockets by utilizing hardware topology-aware
data structures and dynamically adapting to workload and
hardware [22].

On the other hand, analytical workloads consist of ad-hoc,
long running, and scan-heavy queries over relatively static
data. In order to optimize performance, the execution en-
gine needs to become NUMA-aware by tackling two main
challenges: (a) employing a scheduling strategy for assign-
ing multiple concurrent threads to cores in order to mini-
mize remote memory accesses while avoiding contention on
the memory hierarchy, and (b) dynamically deciding on the
data placement in order to minimize the total memory access
time of the workload. The two problems are not orthogo-
nal, as data placement can affect scheduling decisions, while
scheduling strategies need to take into account data place-
ment. We review the requirements and recent techniques
for highly concurrent NUMA-aware analytics that take into
consideration data locality, parallelism, and resource alloca-
tion (e.g., [2, 5, 9, 20, 25]).

4. MICRO-ARCHITECTURAL BEHAVIOR
Recent studies analyzing the micro-architectural behavior

of OLTP workloads on modern hardware emphasize that
OLTP exploits modern micro-architectural resources very
poorly. More than half of the execution time goes to memory
stalls [11]; as a result, on processors that have the ability
to execute four instructions in a cycle, which is the most
common on modern commodity hardware, OLTP achieves
around one instruction per cycle (IPC) [29]. Such under-
utilization of micro-architectural features is a great waste of
hardware resources.

Several proposals have been made to reduce memory stalls
through improving instruction and data locality to increase
cache hit rates. These range from cache-conscious data
structures and algorithms [8] to sophisticated data partition-
ing and thread scheduling for data [22], and from compila-
tion optimizations [26], advanced prefetching [12], to compu-
tation spreading [3, 7] and transaction batching for instruc-
tions [4, 14]. We illustrate the strengths and weaknesses of
each technique with examples from recent work as well as
present the key insights behind each of them.

In addition, several recent proposals opt for hardware spe-
cialization for some of the database operations ([16, 19, 31]).
We briefly go over these techniques and emphasize their im-
pact for emerging hardware technologies.

5. TUTORIAL OUTLINE

• INTRODUCTION AND OVERVIEW (15 minutes)

• Tutorial overview: goal, audience, and schedule

• Hardware trends

• Problem statement:

• three dimensions of scalability

• challenges traditional data management systems
face on modern hardware

• EXPLOITING THREAD-LEVEL PARALLELISM (45
minutes)

• Scaling up OLTP

• Communication types in transaction processing

• Recent work on scaling-up OLTP on modern hard-
ware

• Mapping state-of-the-art design principles to the
communication types they eliminate

• Intra- & Inter-Query Parallelism

• Revisiting database operators on multicores

• Exploiting sharing opportunities among concur-
rent queries

• NUMA-AWARE OLTP (30 minutes)

• Assumptions modern server hardware with NUMA
changes for data management systems

• Quantifying the impact of non-uniform communica-
tion on OLTP performance using various design op-
tions and workloads

• Dynamically adjusting to the hardware topology and
workload characteristics while designing transaction
processing systems that can scale across sockets

• NUMA-AWARE OLAP (30 minutes)

• Memory access bottlenecks in multisocket multicore
architectures

• NUMA-aware analytical algorithms

• Outline of the requirements of a NUMA-aware execu-
tion engine for highly concurrent analytical workloads

• MICRO-ARCHITECTURAL UTILIZATION (50 min-
utes)

190

• Results from recent workload characterization studies

• Techniques to improve data cache locality

• Techniques to improve instruction cache locality

• Toward specialized hardware

• CONCLUSIONS AND FUTURE DIRECTIONS (10 min-
utes)

6. BIOGRAPHY
Anastasia Ailamaki is a Professor of Computer Sci-

ences at École polytechnique fédérale de Lausanne (EPFL)
in Switzerland. Her research interests are in database sys-
tems and applications, and in particular (a) in strengthening
the interaction between the database software and emerging
hardware and I/O devices, and (b) in automating database
management to support computationally-demanding and de-
manding data-intensive scientific applications. She has re-
ceived a Finmeccanica endowed chair from the Computer
Science Department at Carnegie Mellon (2007), a European
Young Investigator Award from the European Science Foun-
dation (2007), an Alfred P. Sloan Research Fellowship (2005),
eight best-paper awards at top conferences (2001-2012), and
an NSF CAREER award (2002).

Erietta Liarou is a postdoctoral researcher at the Data-
Intensive Applications and Systems (DIAS) lab of EPFL led
by Prof. Anastasia Ailamaki. Her primary research inter-
ests include database architectures, transaction processing
on modern hardware, data-stream processing, distributed
query processing, and data analytics with emphasis on very
large data management. She received her PhD in Computer
Science from the University of Amsterdam, The Nether-
lands, in 2013, and she has also been with the System S
group in IBM T.J.Watson Research Center, Hawthorne, NY,
USA and the Intelligent Systems Laboratory in Technical
University of Crete, Greece.

Pınar Tözün is a fifth year PhD student at École poly-
technique fédérale de Lausanne (EPFL) working under the
supervision of Prof. Anastasia Ailamaki in Data-Intensive
Applications and Systems (DIAS) Laboratory. Her research
focuses on scalability and efficiency of transaction processing
systems on modern hardware. She received her BSc degree
in Computer Engineering department of Koç University in
2009.

Danica Porobic is a fourth year PhD student at École
polytechnique fédérale de Lausanne (EPFL) working un-
der the supervision of Prof. Anastasia Ailamaki in Data-
Intensive Applications and Systems (DIAS) Laboratory. Her
research focuses on designing scalable transaction processing
systems for non-uniform hardware. She has graduated top of
her class with MSc and BSc in Informatics from University
of Novi Sad and has worked at Oracle Labs and Microsoft
SQL Server.

Iraklis Psaroudakis is a third year PhD student at École
polytechnique fédérale de Lausanne (EPFL) working un-
der the supervision of Prof. Anastasia Ailamaki in Data-
Intensive Applications and Systems (DIAS) Laboratory. His
research focuses on scheduling highly concurrent analytical
workloads and he also co-operates with the SAP HANA
database team. He has received his diploma from the School
of Electrical and Computer Engineering of the National Tech-
nical University of Athens.

7. REFERENCES
[1] A. Ailamaki, R. Johnson, I. Pandis, and P. Tözün.

Toward Scalable Transaction Processing: Evolution of
Shore-MT. PVLDB, 6(11):1192–1193, 2013.

[2] M.-C. Albutiu, A. Kemper, and T. Neumann.
Massively Parallel Sort-merge Joins in Main Memory
Multi-core Database Systems. PVLDB,
5(10):1064–1075, 2012.

[3] I. Atta, P. Tözün, A. Ailamaki, and A. Moshovos.
SLICC: Self-Assembly of Instruction Cache Collectives
for OLTP Workloads. In MICRO, pages 188–198,
2012.

[4] I. Atta, P. Tözün, X. Tong, A. Ailamaki, and
A. Moshovos. STREX: Boosting Instruction Cache
Reuse in OLTP Workloads through Stratified
Transaction Execution. In ISCA, pages 273–284, 2013.

[5] C. Balkesen, G. Alonso, J. Teubner, and M. T. Ozsu.
Multi-Core, Main-Memory Joins: Sort vs. Hash
Revisited. PVLDB, 7(1), 2014.

[6] G. Candea, N. Polyzotis, and R. Vingralek. A
Scalable, Predictable Join Operator for Highly
Concurrent Data Warehouses. PVLDB, 2(1):277–288,
2009.

[7] K. Chakraborty, P. M. Wells, and G. S. Sohi.
Computation Spreading: Employing Hardware
Migration to Specialize CMP Cores On-the-fly. In
ASPLOS, pages 283–292, 2006.

[8] S. Chen, P. B. Gibbons, T. C. Mowry, and
G. Valentin. Fractal Prefetching B+-Trees:
Optimizing Both Cache and Disk Performance. In
SIGMOD, pages 157–168, 2002.

[9] M. Dashti, A. Fedorova, J. Funston, F. Gaud,
R. Lachaize, B. Lepers, V. Quéma, and M. Roth.
Traffic Management: A Holistic Approach to Memory
Placement on NUMA Systems. In ASPLOS, pages
381–394, 2013.

[10] C. Diaconu, C. Freedman, E. Ismert, P.-A. Larson,
P. Mittal, R. Stonecipher, N. Verma, and M. Zwilling.
Hekaton: SQL Server’s Memory-optimized OLTP
Engine. In SIGMOD, pages 1243–1254, 2013.

[11] M. Ferdman, A. Adileh, O. Kocberber, S. Volos,
M. Alisafaee, D. Jevdjic, C. Kaynak, A. D. Popescu,
A. Ailamaki, and B. Falsafi. Clearing the Clouds: A
Study of Emerging Scale-out Workloads on Modern
Hardware. In ASPLOS, pages 37–48, 2012.

[12] M. Ferdman, C. Kaynak, and B. Falsafi. Proactive
Instruction Fetch. In MICRO, pages 152–162, 2011.

[13] G. Giannikis, G. Alonso, and D. Kossmann.
SharedDB: Killing One Thousand Queries with One
Stone. PVLDB, 5(6):526–537, 2012.

[14] S. Harizopoulos and A. Ailamaki. STEPS Towards
Cache-Resident Transaction Processing. In VLDB,
pages 660–671, 2004.

[15] S. Harizopoulos, V. Shkapenyuk, and A. Ailamaki.
QPipe: A Simultaneously Pipelined Relational Query
Engine. In SIGMOD, pages 383–394, 2005.

[16] R. Johnson and I. Pandis. The bionic dbms is coming,
but what will it look like? In CIDR, 2013.

[17] R. Johnson, I. Pandis, and A. Ailamaki. Eliminating
unscalable communication in transaction processing.
VLDBJ, 23(1):1–23, 2014.

191

[18] A. Kemper and T. Neumann. HyPer: A hybrid
OLTP&OLAP main memory database system based
on virtual memory snapshots. In ICDE, pages
195–206, 2011.

[19] O. Kocberber, B. Grot, J. Picorel, B. Falsafi, K. Lim,
and P. Ranganathan. Meet the Walkers: Accelerating
Index Traversals for In-memory Databases. In
MICRO, pages 468–479, 2013.

[20] Y. Li, I. Pandis, R. Mueller, V. Raman, and
G. Lohman. NUMA-aware Algorithms: The Case of
Data Shuffling. In CIDR, 2013.

[21] I. Pandis, P. Tözün, R. Johnson, and A. Ailamaki.
PLP: Page Latch-free Shared-everything OLTP.
PVLDB, 4(10):610–621, 2011.

[22] D. Porobic, E. Liarou, P. Tözün, and A. Ailamaki.
ATraPos: Adaptive Transaction Processing on
Hardware Islands. In ICDE, 2014.

[23] D. Porobic, I. Pandis, M. Branco, P. Tözün, and
A. Ailamaki. OLTP on Hardware Islands. PVLDB,
5(11):1447–1458, 2012.

[24] I. Psaroudakis, M. Athanassoulis, and A. Ailamaki.
Sharing Data and Work Across Concurrent Analytical
Queries. PVLDB, 6(9):637–648, 2013.

[25] I. Psaroudakis, T. Scheuer, N. May, and A. Ailamaki.
Task Scheduling for Highly Concurrent Analytical and
Transactional Main-Memory Workloads. ADMS, 2013.

[26] A. Ramirez, L. A. Barroso, K. Gharachorloo, R. Cohn,
J. Larriba-Pey, P. G. Lowney, and M. Valero. Code
Layout Optimizations for Transaction Processing
Workloads. In ISCA, pages 155–164, 2001.

[27] M. Stonebraker, S. Madden, D. J. Abadi,
S. Harizopoulos, N. Hachem, and P. Helland. The End
of an Architectural Era: (It’s Time for a Complete
Rewrite). In VLDB, pages 1150–1160, 2007.

[28] A. Thomson, T. Diamond, S.-C. Weng, K. Ren,
P. Shao, and D. J. Abadi. Calvin: Fast Distributed
Transactions for Partitioned Database Systems. In
SIGMOD, pages 1–12, 2012.

[29] P. Tözün, I. Pandis, C. Kaynak, D. Jevdjic, and
A. Ailamaki. From A to E: Analyzing TPC’s OLTP
Benchmarks – The obsolete, the ubiquitous, the
unexplored. In EDBT, pages 17–28, 2013.

[30] S. Tu, W. Zheng, E. Kohler, B. Liskov, and
S. Madden. Speedy Transactions in Multicore
In-memory Databases. In SOSP, pages 18–32, 2013.

[31] L. Wu, A. Lottarini, T. K. Paine, M. A. Kim, and
K. A. Ross. Q100: The Architecture and Design of a
Database Processing Unit. In ASPLOS, pages
255–268, 2014.

192

