
What Makes a Good Physical plan? — Experiencing
Hardware-Conscious Query Optimization with Candomblé

Holger Pirk
MIT CSAIL

holger@csail.mit.edu

Oscar Moll
MIT CSAIL

orm@csail.mit.edu

Sam Madden
MIT CSAIL

madden@csail.mit.edu

ABSTRACT
Query optimization is hard and the current proliferation
of “modern” hardware does nothing to make it any easier.
In addition, the tools that are commonly used by perfor-
mance engineers, such as compiler intrinsics, static analyz-
ers or hardware performance counters are neither integrated
with data management systems nor easy to learn. This fact
makes it (unnecessarily) hard to educate engineers, to pro-
totype and to optimize database query plans for modern
hardware. To address this problem, we developed a system
called Candomblé that lets database performance engineers
interactively examine, optimize and evaluate query plans us-
ing a touch-based interface. Candomblé puts attendants in
the place of a physical query optimizer that has to rewrite
a physical query plan into a better equivalent plan. Atten-
dants experience the challenges when ad-hoc optimizing a
physical plan for processing devices such as GPUs and CPUs
and capture their gained knowledge in rules to be used by a
rule-based optimizer.

1. INTRODUCTION
Hardware conscious database tuning is often regarded like

a dark art – understood by few, difficult to learn and a disci-
pline in which tiny details can have surprisingly large effects.
Figure 1 illustrates how simple choices such as the way the
output of a selection is materialized can have significant ef-
fects on query performance. In the figure, we see the penalty
on query runtime if we use a branching over a branch-free
implementation of the select operator: When branches are
least predictable (50% selectivity) the penalty is slight on a
GPU (Nvidia Titan X) but significantly negative on CPUs
(an Intel(R) Xeon(R) CPU E3-1270 v5).

While sensitivity to parameters seems an inherent feature
of the field of hardware-conscious optimization, our work ad-
dresses the other two problems: understanding and learning
curve. These problems are, to a large extent, due to the
lack of proper tools: the available tools are usually not inte-

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

SIGMOD’16, June 26-July 01, 2016, San Francisco, CA, USA
c© 2016 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ISBN 978-1-4503-3531-7/16/06. . . $15.00

DOI: http://dx.doi.org/10.1145/2882903.2899410

Single Thread Multithreaded GPU

1 5 10 50 100

0.5

1

2

5

Selectivity

P
en
al
ty
fo
r
B
ra
nc
hi
ng

Figure 1: The penalty for branching selections is hardware
as well as data dependent

grated with the data management system but inherited from
the programming language and the computer architecture.

In the light of the increasing importance of hardware-
conscious optimization on database performance, many re-
cent approaches have blurred the line between data proces-
sors and compilers: systems like HyPeR [3], Legobase [2]
and TupleWare [1] compile declarative queries into imper-
ative code at runtime and rely on the underlying compiler
to optimize it. This way, the low-level optimizer can make
decisions with full knowledge about the hardware it is op-
timizing for. Unfortunately, this approach has a significant
shortcoming: the low-level compiler is not aware of prop-
erties of the data that is to be processed by the generated
code. This prevents a number of optimizations of which
predication (the one applied for Figure 1) is one example.
Other examples include the selection of appropriate paral-
lelization strategies, materialization points, hash-functions
and collision handling.

To address this problem, we developed Voodoo, a virtual
database kernel based on a unified algebra for physical and
logical optimization. The Voodoo kernel is “virtual” in the
sense that it generates efficient executable machine code for
variety of different hardware platforms, both sequential as
well as parallel. In addition, Voodoo provides fine grained
control over low-level tuning through the use of RISC-style1

plan operators. Through these techniques, Voodoo achieves
performance that is competitive and sometimes superior to

1Reduced Instruction Set Computing [4]

2149

that of existing “hand-optimized” systems such as HyPeR
and Tupleware “on their home turf”, i.e., classic multicore
processors running TPC-H [5]. In addition, Voodoo code
can also run on massively parallel processors and, thus, sig-
nificantly outperform existing CPU-oriented systems.

While Voodoo allows expressing and executing efficient
plans for relational query processing on different hardware,
it still relies on a hardware-conscious optimizer to generate
an appropriate plan. Fortunately, we found that appropri-
ate plans on these different devices are often similarly shaped
and can, thus, be enumerated efficiently. So, while Voodoo
makes it possible to express, enumerate and execute plans,
it takes a hardware-conscious cost model to select an ap-
propriate plan. In the absence of that, we currently rely on
rule-based optimization. However, Voodoo’s RISC opera-
tors are an easily comprehensible way to represent virtually
every static 2 aspect of the query evaluation process such
as join or grouping strategies. We propose to exploit this
property to illustrate the challenges of hardware-conscious
optimization but also the level of tunability that is offered
by a RISC-style plan algebra.

Purpose of the Demonstration
The purpose of the demonstration is for the attendants to ex-
perience the challenges of hardware-conscious optimization
without the need to learn to use specialized tools. To that
end, we demonstrate a touch-based visual query builder that
allows users to examine, optimize and evaluate the query
plan by tuning operator parameters as well as by manip-
ulating the plan structure itself. Through this UI, users
will experience how a) local changes to operators can have
broader impact on the plan and b) seemingly unnecessary
operators can improve performance by, e.g., increasing lo-
cality or enabling intermediate reuse. We also demonstrate
that a compact RISC-style plan algebra is a useful interme-
diate stage on the way to executable machine code, allowing
effective tuning without suffering from prohibitive interpre-
tation overhead.

2. THE VOODOO SYSTEM
Before presenting the specific demonstration, let us briefly

discuss the architecture of our system (see Figure 2). Our
demonstration is built on the Voodoo database kernel [5]
which provides the query execution layer in the DBMS stack.
While Voodoo can be used as a standalone library, it is de-
signed to serve as a drop-in replacement for existing database
kernels: for our prototype we replaced the execution layer
of MonetDB with Voodoo. By reusing the MonetDB SQL
compiler, we allow users to formulate ad-hoc queries in SQL.
We extract the relational algebra plan that is generated by
MonetDB and compile it to the Voodoo plan algebra (see
Section 2.1). This plan is passed through an extensible rule
based optimizer before being sent to the interactive plan
optimization component that is the heart of our demonstra-
tion. At this point, the evaluation process blocks until the
user finishes her interactive optimization pass and sends the
plan back for execution. At that point, the Voodoo pro-
gram is evaluated by either compiling and running it using
the OpenCL Backend on a CPU, a GPU or using the Inter-

2as opposed to runtime aspects such as aspects like load-
balancing or memory allocation

Voodoo

MonetDB

SQL

Relational Algebra

Voodoo Vector Algebra

OpenCL Backend Interpreter Backend

CPU

Core

CoreCore

Core

GPU

Candomblé UIOptimizer

Figure 2: The Voodoo System Architecture

preter Backend (which provides interactive debugging but
inferior performance).

To effectively optimize a Voodoo program, the attendants
need a basic understanding of our operator model. For the
demo, we will provide a poster that briefly explains the op-
erators. Fortunately, as we illustrate in the next section, the
operator model is very simple.

2.1 The Voodoo Algebra
The goal of the Voodoo Vector Algebra is to expose a max-

imum amount of control to the optimizers while abstracting
away hardware specifics. To achieve this level of control, we
follow an approach that differs from most “classic” database
algebras: Traditional algebras start with a a high-level alge-
bra (usually relational algebra) and carefully lower the level
of abstraction by a) introducing multiple alternatives for
a given logical operator, b) introducing designated physical
operators such as partitioning or sorting and c) annotating
operators with auxiliary information such as sizes of hash-
buckets or the number of sorted runs to generate. The goal
of these algebras is to introduce just as many physical con-
cepts as necessary to perform the desired optimizations while
maintaining a plan that is as high-level as possible.

In contrast, Voodoo is designed using a different approach:
we start with low-level design concepts that are similar to
those found in computer architecture design (RISC, SIMD,
...) and carefully raise the level of abstraction. The design
goal is to abstract the specifics of the hardware to allow
efficient reasoning about the plan without obstructing the
potential for hardware-specific optimization. By that we
make every intermediate step of the query execution process
explicit and, thus, tunable. This is captured in three guiding
principles in our design of Voodoo:

No Implicit State The key design decision in Voodoo is
the lack of hidden operator state. Where existing data-
flow models, such as Spark RDDs and most database
kernels, have hidden per-operator state, Voodoo ex-
poses all generated data structures. This makes Voodoo
both portable and tunable. It is tunable because if the
optimizer decides that a certain step in a complex op-
erator is unnecessary or shared with other operators,
it can simply remove it or share the code that creates

2150

it. It is portable, because all state needs to be de-
clared up front, which allows Voodoo to run plans in
execution environments that prevent dynamic memory
(re-)allocation such as GPUs.

Leanness Voodoo follows the design principle of Reduced
Instruction Set (RISC) [4]. This decision is strongly
tied to the previous: complex operators are prone to
maintain implicit state which violates the first prin-
ciple. We also aspired to keep the language free of
redundancy: there should not be more than one way
of expressing the same algorithm.

Static Critical Path The third distinguishing property of
Voodoo is a Static Critical Path. In Voodoo, runtime
decisions about operator execution (such as schedul-
ing or load balancing) is outside the control of the
optimizer. For our purposes the main advantage of
this approach is that it provides portability and per-
formance: by making the critical path of the program
entirely static, we keep it free from hazards such as
function calls or preemption. This allows good (and
predictable) performance on classic CPUs as well as
the efficient execution of Voodoo code on massively
parallel processors that suffer significant performance
degradation when execution paths diverge at runtime.

2.1.1 Primitive Operators
The Voodoo primitive operators are similar to SIMD CPU

operations albeit on variable sized vectors: like CPUs, Voodoo
implements operators that only create a single output of
known size and no auxiliary data structures. Additionally,
Voodoo operators have no side effects and variables can only
be assigned once. Voodoo contains two kinds of data pro-
cessing operations: the first kind are data-parallel operations
such as arithmetics and logics but also scatter (write data
values to specified positions) and gather (read values from
specified positions). The second kind are fold operations
that are not fully data parallel. This comprises all operations
in which an output value depends on more than one value
of the input vector. Naturally, this includes aggregations
but also others such as order preserving selections or par-
titioning. While not entirely data-parallel, Fold operations
can still be parallelized by logically partitioning the input.
To designate logical partitions, Voodoo allows the creation
of Control Vectors: virtual vectors that are merely used as
partition ids when operating on data vectors. When compil-
ing the plan, Voodoo maintains metadata about the Control
Vectors and uses it as tuning hints (much like #pragmas in
imperative languages). Control Vectors are never translated
into executable code.

2.1.2 Macros
In addition to the primitive operators, Voodoo allows the

definition of macros: complex operators that are comprised
of primitives. Macros can be expanded in the UI to perform
optimization of their implementation. While users can de-
fine their own macro operators, Voodoo comes with a library
of standard operators for common data processing opera-
tions such as nested-loop joins, hash-building and -probing
as well as partitioning. Since these operators are expand-
able, attendees are free to investigate and even optimize the
Voodoo Standard Library.

3. DEMONSTRATION
A Voodoo query plan can be interpreted as a dataflow

DAG where the vertices represent operators and edges rep-
resent data dependencies between operators.

We believe that the most approachable way to interact
with such query plan DAGs is through a graphic interface.
Consequently, we implemented Candomblé a touch-based
user interface providing a plan visualizer (see Figure 3) that
allows both the manipulation of operator parameters as well
as the manipulation of the plan shape by adding, removing
and reconnecting operators. Operators can be added to the
plan by dragging an edge from an existing operator to an
operator-class in the roster (on the right of the screens in
Figure 3). Since most operators take more than one input,
the user may have to draw more than one line before an
operator is instantiated.

To familiarize the attendee with the Voodoo algebra be-
fore letting him explore freely, we divide our demonstration
into two parts: a guided tour through the user interface by
means of an example followed by a challenge.

3.1 The Guided Tour
To demonstrate the usage of the Candomblé UI for har-

dware-conscious optimization, we start by walking the user
through the steps our rule-based optimizer takes.

Starting with an initial sequential plan that is generated
from an SQL query we guide the user to speed up an aggre-
gation through parallelization. The work flow in Figure 3
shows the steps the user needs to take. The initial plan
contains a selection and a global sum operator over the se-
lected values. To speed up the computation of this sum,
we can split the sum into two hierarchical phases: The first
will partition the input into multiple independent chunks
(introduced Fig. 3a), and compute their subtotals (Fig. 3b)
in parallel. In the final stage a global sum operator will se-
quentially merge the results from the separate chunks into
one final answer (in Fig. 3c). However, since the optimal
performance of the plan usually depends on size of the par-
titions, the user can drill into the partition-step (Fig. 3d),
and tune the partition size (Fig. 3e). The system will pro-
vide live update on the performance (see Fig. 3d) as well as
result correctness.

3.2 The Challenge
While we believe that the guided tour provides an insight

into the difficulties of hardware-conscious optimization, we
hope to entice attendants to try to beat our rule-based opti-
mizer by tuning plans using our UI. However, the challenge
is not as simple as it sounds: since Voodoo has the ability
to run queries on different hardware platforms with varying
costs for synchronization, materialization and even arith-
metics on different datatypes3, an optimal query plan for one
platform may not translate to an optimal one for another.
The attendants can experiment with tuning techniques such
as a) eliminate redundant computation in an existing plan
by sharing intermediates, b) replacing multiplications with
bit shifts, c) pushing aggregations through joins (in Voodoo-
terms: replacing Add(Gather(A,X), Gather(B,X)) with
Gather(Add(A,B),X)) or d) switch a selection from branch-
ing to branch-free or vice-versa.

3On GPUs, for example, floating point arithmetic is usually
cheaper than integer arithmetic

2151

Partition

Range

Scatter

Arithmetics

Gather

Fold

Quick-Sort

Hash

Radix-Partition

Group

Lookup

Ma
cro

Pr
im
itiv
e

PartitionHorizontally

l_shipdate

va
lue

value

mark -> partition

po
siti

on
s

.quantity

 foldSum(.l_returnflag)

 = Gather

.positions = foldSelect

 = Zip

.mark = Range(1)

.value = Greater

.value = Range(0)

load(lineitem)

(a) Introducing Partitioning

Partition

Range

Scatter

Arithmetics

Gather

Fold

Quick-Sort

Hash

Radix-Partition

Group

Lookup

Ma
cro

Pr
im
itiv
e

PartitionHorizontally

l_shipdate

va
lue

value

mark -> partition

po
siti

on
s

.quantity
 foldSum(.l_returnflag)

 = Gather

.positions = foldSelect

 = Zip

.mark = Range(1)

.value = Greater

.value = Range(0)

load(lineitem)

PartitionHorizontally

(b) Summing per Partition

Partition

Range

Scatter

Arithmetics

Gather

Fold

Quick-Sort

Hash

Radix-Partition

Group

Lookup

Ma
cro

Pr
im
itiv
e

PartitionHorizontally

l_shipdate

va
lue

value

mark -> partition

po
siti

on
s

.quantity

 foldSum(.l_returnflag)

 = Gather

.positions = foldSelect

 = Zip

.mark = Range(1)

.value = Greater

.value = Range(0)

load(lineitem)

PartitionHorizontally

(c) Global Summing

Partition

Range

Scatter

Arithmetics

Gather

Fold

Quick-Sort

Hash

Radix-Partition

Group

Lookup

Ma
cro

Pr
im
itiv
e

PartitionHorizontally
l_shipdate

va
lue

value

mark -> partition

po
siti

on
s

.quantity

 foldSum(.l_returnflag)

 = Gather

.positions = foldSelect

 = Zip

.mark = Range(1)

.value = Greater

.value = Range(0)

load(lineitem)

PartitionHorizontally

 foldSum(.l_returnflag)

.quantity.quantity

(d) Drill into Partition

Partition

Range

Scatter

Arithmetics

Gather

Fold

Quick-Sort

Hash

Radix-Partition

Group

Lookup

Ma
cro

Pr
im
itiv
e

PartitionHorizontally.positions = Partition

.id = BitShift

.partitionSize = Range(0)

.tupleIds = Range(1)

= Scatter

Input

Output

(e) Select Partition Size Control Vector

Partition

Range

Scatter

Arithmetics

Gather

Fold

Quick-Sort

Hash

Radix-Partition

Group

Lookup

Ma
cro

Pr
im
itiv
e

PartitionHorizontally.positions = Partition

.id = BitShift

.partitionSize = Range(0)

.tupleIds = Range(1)

= Scatter

Input

Output

.PartitionSize

Start

Step

10

0

(f) Tune Partition Size

Ti
m

e
in

 m
s

0

50

100

150

200

Partition Size
1 2 4 8 16 32 64 128 256 512 10242048 4096

(g) Impact of the Partition Size (on CPU)

Figure 3: The Interaction Flow: Introducing a 2 level hierarchical aggregation

3.3 Further exploration of rule based optimiza-
tions

In addition to manually changing sections of the graph,
we allow the user to define new simple, i.e., wild-card free,
rule-based optimizations and apply them to the full plan
DAG as well as other queries. She does so by selecting a
set of adjacent operators through a circling gesture which is
then used as an example for a more generic pattern. The
sytem hightlights other matches of this pattern throughout
the DAG. The user can then continue to refine the pattern or
move on to specify a transformation for that pattern through
the Voodoo UI similar to Figure 3e. In the latter case, the UI
compiles the proposed transformation into a pass over the
expression DAG, executes it and displays the transformed
graph as well as the new performance results.

4. CONCLUSION & FUTURE BENEFIT
We believe that Voodoo is a good abstraction of exe-

cutable machine code for the purpose of implementing and
tuning data-intensive algorithms. It provides a simple op-
erator model that allow efficient examination, optimization
and evaluation of a physical query plan. However, it also
gives fine grained control over virtually every (static) aspect
of the query plan.

In addition to these benefits, we feel that the Candomblé

UI is well suited to educate students, engineers and even
non-experts about the challenges and benefits of hardware-
conscious optimization. To facilitate this, both Voodoo and
the Candomblé UI will be available in open source upon
demonstration. We hope and invite others to use Voodoo as
well as the Candomblé UI for teaching and prototyping.

5. REFERENCES

[1] Crotty, A., Galakatos, A., Dursun, K., Kraska,
T., Cetintemel, U., and Zdoni, S. Tupleware:” big”
data, big analytics, small clusters. In CIDR (2015).

[2] Klonatos, Y., Koch, C., Rompf, T., and Chafi, H.
Building efficient query engines in a high-level
language. PVLDB (2014).

[3] Neumann, T. Efficiently compiling efficient query
plans for modern hardware. PVLDB (2011).

[4] Patterson, D. A., and Ditzel, D. R. The case for
the reduced instruction set computer. SIGARCH
Comput. Archit. News (October 1980).

[5] Pirk, H., Moll, O., Zaharia, M., and Madden, S.
Voodoo - a vector algebra for portable database
performance on modern hardware. In Submitted for
Review (2016).

2152

