
Querying and reasoning over large scale building data
sets: an outline of a performance benchmark

Pieter Pauwels
Department of Architecture

and Urban Planning
Ghent University

J. Plateaustraat 22
B-9000 Ghent, Belgium

pipauwel.pauwels@ugent.be

Tarcisio Mendes
de Farias
Active3D

Dijon, France
tarcisio.mendesde-
farias@checksem.fr

Chi Zhang
Department Built Environment

Eindhoven University of
Technology

P.O. Box 513
NL-5600 MB Eindhoven,

The Netherlands
c.zhang@tue.nl

Ana Roxin
Checksem, Laboratory LE2I

(UMR CNRS 6306)
University of Burgundy

Dijon, France
ana-maria.roxin@u-

bourgogne.fr

Jakob Beetz
Department Built Environment

Eindhoven University of
Technology

P.O. Box 513
NL-5600 MB Eindhoven,

The Netherlands
j.beetz@bwk.tue.nl

Jos De Roo
Agfa HealthCare NV

Moutstraat 100
B-9000 Ghent, Belgium
jos.deroo@agfa.com

ABSTRACT
The architectural design and construction domains work on
a daily basis with massive amounts of data. Properly man-
aging, exchanging and exploiting these data is an ever on-
going challenge in this domain. This has resulted in large
semantic RDF graphs that are to be combined with a sig-
nificant number of other data sets (building product cata-
logues, regulation data, geometric point cloud data, simula-
tion data, sensor data), thus making an already huge dataset
even larger. Making these big data available at high perfor-
mance rates and speeds and into the correct (intuitive) for-
mats is therefore an incredibly high challenge in this domain.
Yet, hardly any benchmark is available for this industry that
(1) gives an overview of the kind of data typically handled in
this domain; and (2) that lists the query and reasoning per-
formance results in handling these data. In this article, we
therefore present a set of available sample data that expli-
cates the scale of the situation, and we additionally perform
a query and reasoning performance benchmark. This results
not only in an initial set of quantitative performance results,
but also in recommendations in implementing a web-based
system relying heavily on large semantic data. As such, we
propose an initial benchmark through which new upcoming
data management proposals in the architectural design and
construction domains can be measured.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

SBD’16, July 01 2016, San Francisco, CA, USA
c© 2016 ACM. ISBN 978-1-4503-4299-5/16/07. . . $15.00

DOI: http://dx.doi.org/10.1145/2928294.2928303

CCS Concepts
•Computing methodologies → Knowledge represen-
tation and reasoning; •Information systems → Se-
mantic web description languages; Information retrieval
query processing; •Theory of computation → Semantics
and reasoning; •Applied computing → Computer-aided
design;

Keywords
big data; benchmark; reasoning; semantic web; building in-
formation modeling; built environment; IFC; OWL

1. INTRODUCTION
With the advent of Building Information Modelling (BIM)

tools [14], fundamentally new processes evolve in order to al-
low large amounts of building information to be managed.
Building information management occurs in many forms.
For example, information needs to be modeled comprehen-
sively and visually by the architect; information needs to be
handed over from architect to engineering office and to con-
tractors and subcontractors; information modeled by a sub-
contractor is used for automated energy performance check-
ing and other kinds of building performance checking (acous-
tics, structural analysis, cost calculation, planning, ...); and
so forth. In all of these cases, the building information needs
to be made available in another form (language, syntax, se-
mantics, level of detail).

To make this possible, many of the BIM-related initia-
tives rely on a neutral, interoperable representation of the
BIM model, namely the Industry Foundation Classes (IFC)
standard [17], which is developed and maintained by the
international buildingSMART organization. However, it is
far from straightforward to map from this neutral represen-
tation, which is defined using the EXPRESS information
modeling language [15], to the diverse data models used in
contexts as diverse as the examples outlined above. It has

1

been proposed that such a mapping task is easier to imple-
ment by relying on semantic web techniques [22, 10, 12].

The IFC standard is now also available as a Web Ontology
Language (OWL) ontology (ifcOWL [20, 7]), joining existing
ontologies for the built environment. As a result, building
information is more commonly made available using RDF
and OWL. One example application aims at accommodat-
ing acoustic regulation compliance checking for BIM mod-
els [23]. An indication is made of the way in which rules
(RBox) can be represented and used in combination with a
domain ontology (TBox) and an instance model (ABox), so
that an inference engine can immediately indicate whether a
building model is compliant or not with the European acous-
tic regulations. In the area of Health and Safety (HS) mea-
sures, the Job Hazard Analysis (JHA) application proposed
by [25] provides another use case. The authors propose to
combine an RDF representation of the building model with
a number of ontologies and SWRL rules that allow analyzing
the construction project in terms of jobs, tasks, safety pro-
cedures, and resources required to allow the safe execution
of these job steps. Many similar examples are available.

A number of these examples rely on semantic data enrich-
ment or schema and data transformations. Namely, the in-
formation needs to be used in a syntax and semantics that is
different from the one provided (typically IFC). Data trans-
formation processes are for example proposed in [23] and [4]
to transform IFC data into regulatory data models. These
kinds of transformation are to some extent similar to what
was proposed in [22] regarding the automatic transforma-
tion of IFC data to X3D data and to STL data (and back).
Furthermore, the usage of SWRL rules was also proposed in
combination with the ifcOWL ontology [10, 12], thus allow-
ing to automatically transform data patterns (subset graphs)
into parallel and in this case less complex data patterns. In
this last case, it is explicitly proposed to transform the build-
ing data at query time, using SWRL rules that are triggered
on request.

At the core of the above approaches are three key compo-
nents: (1) a schema (OWL ontology) that defines what kind
of information is used by the rule checking process and how it
is structured (the TBox), (2) a set of instances (RDF graphs)
asserting facts based on the concepts defined in the TBox
(the ABox), and (3) a set of rules (e.g. IF-THEN statements)
that can be directly combined with the schema (the RBox).
Declarative data transformation procedures are then acces-
sible as soon as all the data and all the rules are available
in a complete and consistent shape: inferences are gener-
ated by generic reasoning engines, the results are asserted
as new facts into the graph, after which they are used in
specific applications (e.g. simple visualisation in a graphical
user interface; job hazard analysis; acoustic building per-
formance checking). Depending on the rules that are being
triggered, one set of information then has the potential to
be made available in a diverse number of forms (see [11]),
bringing an entirely new form of interoperability for an in-
dustry that has always relied heavily on the combination
of an agreed standard with many intransparent import and
export procedures that were implemented using procedural
programming languages. Namely, with its logical basis in
Description Logics (DL) [2], a logic-based semantic big data
publishing approach emerges.

The three components listed above (RBox, TBox, ABox)
can be realized in various ways, however, depending on the

approach taken and the software systems used. Diverse rea-
soning engines are available, diverse query processing tech-
niques are available, queries can be handled at various mo-
ments in time, the size as well as the complexity of the data
varies, and so forth. Any of these choices typically impacts
on expressiveness versus performance. In order to make in-
formed choices in real-world use case scenario’s, there is a
high need for an appropriate rule and query execution per-
formance benchmark in the direct context of the data, on-
tology, rules and queries used in this particular industry,
which is precisely the aim of this paper. A solid benchmark
or reference point is aimed at, illustrating at least an ini-
tial outline of (1) the kind of data that is typically available
in this industry, (2) as well as an initial assessment of the
performance results for accessing these large scale building
data. Although we have to limit here to an overview position
statement, we do aim to further extend this study, to make
full data available and provide in-depth documentation of
the results.

2. CONSTRUCTING A PERFORMANCE
BENCHMARK

Although various semantic applications have been pro-
posed in the architectural design and construction industry,
no indications are typically given about the performance of
the system. We aim to remedy this situation with the per-
formance benchmark proposed in the remainder of this ar-
ticle. We will hereby consider three approaches that allow
to transform data (RBox rules) and make them available
(queries), namely SPIN and Jena [1], EYE [13] and Star-
dog [9]. In order to properly evaluate the three semantic
data access procedures, we have set up a test environment
(TBox, RBox, ABox) that allows to compare the test re-
sults in a quantitative manner. This test environment con-
sists of a TBox, namely the ifcOWL ontology (Sect. 2.1); an
ABox, namely a set of 369 ifcOWL-compliant building mod-
els (Sect. 2.2); an RBox, namely a set of 68 data transforma-
tion rules (Sect. 2.3); and a set of simple queries (Sect. 2.4).
All public data for this test is made available online [19].

2.1 Presentation of the ifcOWL ontology
In our test environment, all building models are encoded

using the ifcOWL ontology. This ontology has been built
up under the impulse of numerous initiatives during the last
ten years [24, 5, 3]. The most complete overview of the
key decisions in constructing this ifcOWL ontology is doc-
umented in [20]. The ontology that was used for this test
is the one that is made publicly available by the buildingS-
MART Linked Data Working Group (LDWG) [8].

2.2 Building models used for testing
The test environment has one common set of building

models following the ifcOWL ontology. These are build-
ing information models that were modelled by people out-
side the current research team. They have been modelled
in different BIM modelling environments, including most
prominently Tekla Structures (Trimble) and Autodesk Re-
vit, which are both BIM authoring tools commonly used in
construction industry. The models were exported to IFC and
made available for this project. A number of BIM models
are publicly available [18], whereas other models are not dis-
closed (private models). The test models can be categorised

2

in a number of dimensions: BIM authoring tool, model size
and IP level. In total, our test set includes 5 undisclosed IFC
models and 364 publicly available models (IP level). The 5
restricted IFC models were modelled using Autodesk Revit
2012. The publicly available IFC models were modelled us-
ing a range of different BIM authoring tools. Table 1 gives
an overview of how many public files were available for each
BIM environment found (retrieved from IFC file metadata).
Most public IFC files were modelled using Tekla Structures
(227 out of 369 - 61.5%), followed by unknown or manual
(38 out of 369 - 10.3%) and Autodesk Revit (27 out of 369
- 7.3%).

BIM environment # files
Tekla Structures 227
unknown or manual 38
Autodesk Revit 27
Xella BIM 15
Autodesk AutoCAD 12
iTConcrete 9
SDS 8
Nemetschek AllPlan 7
GraphiSoft ArchiCAD 5
Various others 21

Table 1: Number of public files available for each
software environment.

The test files are also quite different in terms of model size.
In this regard, we have set an arbitrary distinction between
small models (0 to 500,000 IFC instances), medium models
(500,000 to 2 million IFC instances), and large models (more
than 2 million IFC instances). Most models are relatively
small, but a number of larger models were tested as well in
this performance benchmark. Table 2 gives an overview of
the number of IFC files for each model size range, private
as well as public. An indication is also given of the average
associated file size (in MB). Note that the 321 small-sized
IFC models follow an exponential curve. In fact, 222 IFC
models have less than 30,000 IFC instances (av. equivalent
of 1.5MB). In total, the test set contains 85,209,175 IFC
instances.

IFC instances av. file size # files
0 - 500,000 0 - 30MB 321
500,000 - 2,000,000 30 - 100MB 37
> 2,000,000 > 100MB 11

Table 2: Number of files for each model size (small,
medium, large).

Each building model was originally available in IFC2X3.
These building models were converted to ifcOWL-compliant
RDF graphs using the software made available at [18]. This
conversion is done prior to the actual performance bench-
mark test. The conversion resulted in an RDF graph (TTL
syntax) for each of the IFC files considered. The 85,209,175
IFC instances result in at least as many RDF instances in
the ABox.

2.3 Rules used for testing
The performance benchmark experiment relies not only

on a representative set of building models and ontology, but
also on a representative set of rewrite rules. For this exper-
iment, we have therefore manually built a set of 68 rewrite
rules. These 68 rules can be classified in a number of types,

depending on their content, as illustrated by Table 3. All
rules are inspired by the work on simplification of ifcOWL
graphs, as suggested and initially documented in [10, 12, 21,
6].

Rule
set

Description

RS1 Contains 2 rules for rewriting property set
references into additional property statements
sbd:hasPropertySet and sbd:hasProperty. This
is a small, yet often used rule set.

RS2 Includes 31 rules, all involving subtypes of the
IfcRelationship class.

RS3 Contains 3 rules related to handling lists in IFC.
RS4 Contains one rule that allows wrapping simple

data types.
RS5 Consists of 20 rules for inferring single prop-

erty statements sbd:hasPropertySet and
sbd:hasProperty.

RS6 Extends Rule Set 5 and Rule Set 1 with 6 addi-
tional rules for inferring whether an objet is inter-
nal or external to a building.

RS7 Contains 7 rules dealing with the (de)composition
of building spaces and spatial elements.

Table 3: Description of the Rule Sets considered for
testing.

2.4 Queries used for testing
We have built a limited list of 60 queries, each of which is

able to trigger at least one of the available rules. As the focus
of this article is primarily on execution performance in com-
bination with data transformation, the considered queries
are entirely based on the right-hand sides of the rules in
Sect. 2.3. For this article, we limit ourselves to the 3 queries
that are listed in Table 4: a simple query with little results
(Q1), a simple query with many results (Q2), and a complex
query that triggers a considerable number of rules (Q3).

Query Query contents
Q1 ?obj sbd:hasProperty ?p

Q2
?point sbd:hasCoordinateX ?x .
?point sbd:hasCoordinateY ?y .
?point sbd:hasCoordinateZ ?z

Q3 ?d rdf:type sbd:ExternalWall

Table 4: List of queries considered for testing.

2.5 Test environment
Each of the queries in Table 4 is run over each of the avail-

able building models, while taking into account the ontology
and the available rules. This occurs in one central server
that serves as the test environment. This server was sup-
plied by the University of Burgundy, research group Check-
Sem, and had the following specifications: Ubuntu OS, Intel
Xeon CPU E5-2430 at 2.2GHz, 6 cores and 16GB of DDR3
RAM memory. Three Virtual Machines (VMs) were set up
in this central server and managed as separate test environ-
ments. Each of these VMs had 2 cores out of 6 allocated
and each contained the above resources (ontologies, data,
rules, queries). A first VM (SPIN VM) implemented Jena
TDB [1], a second VM (EYE VM) used EYE inference en-
gine [13], and finally a third VM (STARDOG VM) used a
Stardog triplestore [9].

3

2.5.1 SPIN VM
The SPIN VM is implemented based on the open source

APIs of Topbraid SPIN (SPIN API 1.4.0) and Apache Jena
(Jena Core 2.11.0, Jena ARQ 2.11.0, Jena TDB 1.0.0) [16,
1]. Rules listed in Sect. 2.3 are written in SPARQL with
Topbraid Composer Free version, and they are exported as
RDF Turtle files used in the test environment. A small
Java program is implemented to read RDF models, schema,
rules from the TDB store and query data. All the SPARQL
queries are configured using the jena.sparql.algebra package
to optimize the processing sequence of their triple patterns
in order to achieve a better performance.

Rules are written in two ways using the SPIN framework.
Forward SPIN rules are firstly preprocessed by the SPIN
engine. These rules which assert SPIN functions or rules in
OWL ontologies will fire them using the SPIN engine and
the Jena engine respectively. This process continues recur-
sively until no SPIN function is called. Generated triples
will go through this process iteratively until no new facts
are generated in one round. In the query run time, the
SPARQL query instances also fire SPIN functions or OWL
rules if they are related to the query.

To avoid unnecessary reasoning processes, in this test en-
vironment the RDF instances and ifcOWL are combined
as an object of org.apache.jena.ontology.OntModel with the
specification of OntModelSpec.RDFS MEM RDFS INF. It
means that, although the ifcOWL ontology has used the
OWL DL profile, only the RDFS vocabulary is supported.

2.5.2 EYE VM
In this test, we used ‘EYE-Winter16.0302.1557’, which re-

lies on ‘SWI-Prolog 7.2.3 (amd64): Aug 25 2015, 12:24:59’.
EYE is a semibackward reasoner enhanced with Euler path
detection [13]. Semi-backward reasoning is backward rea-
soning for EYE components, i.e. rules using <= in N3, and
forward reasoning for rules using => in N3. As our rule set
currently contains only rules using =>, forward reasoning
will take place. Except for the building models (data) and if-
cOWL ontology (IFC2X3 TC1.ttl), only N3 statements were
used. Individual commands have been fired towards the rea-
soning engine, thus mimicking user interaction (cfr. API
calls, query statements). Each command is executed five
times to allow calculating the average query execution time.
Each command includes the full ontology, the full set of rules
and the RDFS vocabulary, as well as one of the 369 building
model files and one of the 3 query files. In this approach, no
triple store is used: triples are processed directly from the
considered files.

2.5.3 Stardog VM
This approach is implemented using a 4.0.2 Stardog se-

mantic graph database [9]. Stardog implements an OWL
reasoner associated to a rule engine. Stardog supports SWRL
rules, allows backward-chaining reasoning and is a large-
scale triple store. Using backward-chaining reasoning allows
avoiding triple materialization, thus saving query execution
time. Stardog 4.0.2 is implemented in Java 8, and supports
the RDF 1.1 graph data model, OWL2 profiles and SPARQL
1.1. Stardog allows using user-defined rules for inference,
along with closed-world reasoning capabilities. Stardog per-
forms reasoning by applying a query rewriting approach. In
this approach, SWRL rules are taken into account during
the query rewriting process.

3. RESULTS AND CONCLUSIONS
Each of the three procedures tested in this paper has its

own specifics and characteristics. As all three procedures
rely on components that are implemented in very diverse
ways (commercial application versus Prolog implementation
versus an approach relying on the Jena software libraries),
the performance results for the three procedures are not di-
rectly comparable. Although we do present indicative query
execution times, the creation of a full benchmark will require
further work. The main focus of the work presented here is
to give an initial indication of the performance differences
that can be obtained for three example implementation ap-
proaches. Our conclusion outlines an unprecedented list of
key decisions and choices for anyone willing to implement a
semantic rule-checking process based on semantic web tech-
nologies in construction industry.

It is impossible to outline results for all 369 building mod-
els, 68 rules, and 60 queries. Hence, we limit ourselves to
6 hand-picked building models of varying size for listing the
average query execution times (AQT) for each of the three
procedures (Table 5). In addition, the graphs in Fig. 1 and
2 plot the query execution times in this Table with the cor-
responding result counts, for Q1 and Q2 respectively. Note
that the table only lists query execution times. In the SPIN
approach, this means that for Q1 and Q2, the execution
times are given for a backward-chaining inference process
plus actual query execution time; whereas for Q3, the ex-
ecution times are given for the query execution time itself,
as the forward-chaining inference process takes place before-
hand. In the EYE approach, this means that time required
for network traffic, which can be compared to the time re-
quired to load the resources into a triple store, is not taken
into account. In the Stardog approach, the displayed execu-
tion times include the backward-chaining inference process
as well as the actual query execution time.

query model SPIN (s) EYE (s) Stardog (s)
Q1 Model1 135.36 37.11 13.44
Q1 Model2 1.47 0.29 0.17
Q1 Model3 24.01 4.87 1.4
Q1 Model4 41.28 12.95 3.55
Q1 Model5 4.99 1.05 0.33
Q1 Model6 0.55 0.16 0.08
Q2 Model1 46.17 2.10 6.82
Q2 Model2 92.03 4.20 15.83
Q2 Model3 82.68 4.12 15.28
Q2 Model4 19.93 1.04 2.81
Q2 Model5 3.69 0.21 1.36
Q2 Model6 0.74 0.045 1.00
Q3 Model1 0.001 0.001 0.07
Q3 Model2 0.006 0.003 0.12
Q3 Model3 0.002 0.003 0.31
Q3 Model4 0.005 0.001 0.20
Q3 Model5 0.006 0.013 0.20
Q3 Model6 0.001 0.001 0.13

Table 5: Query performance results for 3 queries, 6
models, and 3 systems.

A considerable number of findings can be made from this
test. Many of these findings return in each of the three
considered approaches. Hence, we summarise them here, in
order of impact on performance, to indicate key aspects in
implementing a system that provides access to large seman-
tic data sets, while also allowing to transform the data on
demand using rules.

4

20 40 60 80 100 120
0

1

2

3
·106

Figure 1: Plot showing the linear relation between
query time (x-axis) and result count (y-axis) for
query Q1 in each of the three implementation pro-
cedures (green = SPIN; blue = EYE; black = Star-
dog).

1. Indexing algorithms, query rewriting techniques, and
rule handling strategies
The overall strategy in which rules, queries and data
are actually handled by the software systems (triple
store, inference engine, software components) obviously
has the highest impact on performance. In this regard,
the three considered procedures are quite far apart
from each other, explaining the considerable perfor-
mance differences, not only between the procedures
(Table 5), but also between diverse usages within one
and the same system. For each of the three approaches,
it is not entirely known which algorithms and opti-
misation techniques are used, apart from the limited
amounts of information communicated in the system
documentation files. As a result, it is not really possi-
ble to make a fair comparison between the considered
approaches concerning differences in indexation algo-
rithms, query rewriting techniques and rule handling
strategies used.

2. Forward-chaining versus backward-chaining
The difference between a forward-chaining and a back-
ward-chaining approach is very important. The impact
in making this choice is most notably seen in the first
column in Table 5, which shows the same procedure
(SPIN) both in backward-chaining (Q1 and Q2) and
forward-chaining (Q3) mode. For Q1 and Q2, the in-
ference engine thus still needs to process the rules at
query execution time. However, as it only needs to pro-
cess those rules that are relevant considering the pro-
vided query, this can occur relatively fast. Depending
on the engine (see first item above), speed can be fur-
ther increased, as is shown in the performance results
for Q1 and Q2 by Stardog (column 3 in Table 5). These
queries trigger backward-chaining reasoning processes
in Stardog as well, but they finish more rapidly. The
disadvantage of forward-chaining reasoning process is
that millions of triples could be materialised, which

20 40 60 80

1

2

3

4

·105

Figure 2: Plot showing the linear relation between
query time (x-axis) and result count (y-axis) for
query Q2 in each of the three implementation pro-
cedures (green = SPIN; blue = EYE; black = Star-
dog).

is the case for the tested building models in the EYE
VM.

3. The dependency on the kind of data available in the
models
A relation exists as well between query execution time
and the kind of data that is queried for. This can be
found in the performance differences between Q2 and
Q3. Query Q3 triggers a rule that in turn triggers
several other rules in the rule set. If the first rule does
not fire, however, the process stops early. Query Q2,
however, fires relatively long rules. It takes more time
to make these matches in all three approaches.

4. The effect of using a triple store
The usage of a triple store considerably increases query
execution time performance. Loading files in memory
at query execution time leads to considerable delays.
This is not displayed in Table 5, as this table only
takes into account the actual query execution times,
not loading times.

5. The dependency on the number of output results
All three approaches indicated that there is a direct
relation between query execution time and the number
of results that is eventually retrieved (see also Fig. 3
and 3. Indeed, as more results are available, more
triples need to be matched, leading to more assertions.
The relation between query execution time and the
number of results is linear.

Future work consists of further elaborating this initial per-
formance benchmark with additional data and rules and
comparing results on a wider scale for the individual ap-
proaches separately, as well as with other approaches not
considered here.

4. ACKNOWLEDGMENTS

5

The authors would like to acknowledge the Special Re-
search Fund (BOF) of Ghent University, the China Schol-
arship Council (CSC), the Burgundy Regional Council, and
the French company ACTIVe3D (http://www.active3d.net/).

5. ADDITIONAL AUTHORS
Christophe Nicolle, Checksem, Laboratory LE2I (UMR

CNRS 6306), University of Burgundy, email: cnicolle@u-

bourgogne.fr.

6. REFERENCES
[1] Apache. Jena, 2015. https://jena.apache.org/.

[2] F. Baader and W. Nutt. Basic description logics. In
Description Logic Handbook: Theory, Implementation,
and Applications, pages 47–100. Cambridge University
Press, Cambridge, MA, USA, 2003.

[3] R. Barbau, S. Krima, S. Rachuri, A. Narayanan,
X. Fiorentini, S. Foufou, and R. D. Sriram.
OntoSTEP: Enriching product model data using
ontologies. Computer-Aided Design, 44(6):575–590,
2012.

[4] T. H. Beach, Y. Rezgui, H. Li, and T. Kasim. A
rule-based semantic approach for automated
regulatory compliance in the construction sector.
Expert Systems with Applications, 42:5219–5231, 2015.
http://dx.doi.org/10.1016/j.eswa.2015.02.029.

[5] J. Beetz, J. Van Leeuwen, and B. de Vries. IfcOWL: a
case of transforming EXPRESS schemas into
ontologies. Artificial Intelligence for Engineering
Design, Analysis and Manufacturing, 23(1):89–101,
2009.

[6] S. Borgo, E. M. Sanfilippo, A. Sojic, and W. Terkaj.
Ontological analysis and engineering standards: an
initial study of IFC. In Ontology Modeling in Physical
Asset Integrity Managemen, pages 17–43. Springer,
2015.

[7] BuildingSMART International. Overview page for the
linked data working group. http:
//www.buildingsmart-tech.org/future/linked-data/.

[8] BuildingSMART International. IFC2X3 TC1 - OWL
ontology for the IFC conceptual data schema and
exchange file format for Building Information Model
(BIM) data, 2015.
http://www.buildingsmart-tech.org/future/
linked-data/ifcowl/20150925 latest/IFC2X3 TC1.owl.

[9] Complexible Inc. Stardog 4: The manual.
http://docs.stardog.com/.

[10] T. M. de Farias, A. Roxin, and C. Nicolle. A rule
based system for semantical enrichment of building
information exchange. In CEUR Proceedings of
RuleML (4th Doctoral Consortium), volume 1211,
pages 2–9, 2014.

[11] T. M. de Farias, A. Roxin, and C. Nicolle. FOWLA, a
federated architecture for ontologies. In RuleML 2015,
volume 9202 of Lecture Notes in Computer Science
(LNCS), pages 97–111. Springer, 2015.

[12] T. M. de Farias, A. Roxin, and C. Nicolle. IfcWoD,
semantically adapting IFC model relations into OWL
properties. In Proceedings of the 32rd International
CIB W78 Conference, pages 175–185, Eindhoven, NL,
2015.

[13] J. De Roo. Euler Yet another proof Engine.
http://eulersharp.sourceforge.net/.

[14] C. M. Eastman, P. Teicholz, R. Sacks, and K. Liston.
BIM handbook: a guide to building information
modeling for owners, managers, architects, engineers,
contractors, and fabricators. John Wiley & Sons,
Hoboken, NJ, USA, 2008.

[15] International Organization for Standardization. ISO
10303-11: Industrial automation systems and
integration - Product data representation and
exchange - Part 11: Description methods: The
EXPRESS language reference manual, 2004.

[16] H. Knublauch, J. A. Hendler, and K. Idehen. SPIN -
Overview and Motivation - W3C Member Submission
22 February 2011.
http://www.w3.org/Submission/spin-overview/.

[17] T. Liebich, Y. Adachi, J. Forester, J. Hyvarinen,
S. Richter, T. Chipman, M. Weise, and J. Wix.
Industry Foundation Classes IFC4 official release,
2013. http://www.buildingsmart-tech.org/ifc/IFC4/
final/html/index.htm.

[18] P. Pauwels. IFC repository.
http://smartlab1.elis.ugent.be:8889/IFC-repo/.

[19] P. Pauwels, T. Mendes de Farias, C. Zhang, A. Roxin,
J. Beetz, J. De Roo, and C. Nicolle. Semantic Big
Data (SBD) Workshop at ACM SIGMOD 2016 -
additional data. http://users.ugent.be/˜pipauwel/
SBD2016 PerfBench/SBD2016 additionaldata.html.

[20] P. Pauwels and W. Terkaj. EXPRESS to OWL for
construction industry: Towards a recommendable and
usable ifcOWL ontology. Automation in Construction,
63:100–133, 2016.

[21] P. Pauwels, W. Terkaj, T. Krijnen, and J. Beetz.
Coping with lists in the ifcowl ontology. In Proceedings
of the 22nd EG-ICE International Workshop, pages
113–122, Eindhoven, Netherlands, 2015.

[22] P. Pauwels, D. Van Deursen, J. De Roo, T. Van
Ackere, R. De Meyer, R. Van de Walle, and J. Van
Campenhout. Three-dimensional information
exchange over the semantic web for the domain of
architecture, engineering, and construction. Artificial
Intelligence for Engineering Design, Analysis and
Manufacturing, 25(4):317–332, 2011.

[23] P. Pauwels, D. Van Deursen, R. Verstraeten, J. De
Roo, R. De Meyer, R. Van de Walle, and J. Van
Campenhout. A semantic rule checking environment
for building performance checking. Automation in
Construction, 20(5):506–518, 2011.

[24] H. Schevers and R. Drogemuller. Converting the
Industry Foundation Classes to the Web Ontology
Language. In Proceedings of the First International
Conference on Semantics, Knowledge and Grid, pages
556–560, Washington, DC, 2005. IEEE Computer
Society.

[25] S. Zhang, F. Boukamp, and J. Teizer. Ontology-based
semantic modeling of construction safety knowledge:
Towards automated safety planning for job hazard
analysis (JHA). Automation in Construction,
52:29–41, 2015.

6

