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ABSTRACT
In domains such as the Web, sensor networks and social
media, sources often provide conflicting information for the
same data item. Several data fusion techniques have been
proposed recently to resolve conflicts and identify correct
data. The performance of these fusion systems, while quite
accurate, is far from perfect. In this paper, we propose
to leverage user feedback for validating data conflicts and
rapidly improving the performance of fusion. To present the
most beneficial data items for the user to validate, we take
advantage of the level of consensus among sources, and the
output of fusion to generate an effective ordering of items.
We first evaluate data items individually, and then define a
novel decision-theoretic framework based on the concept of
value of perfect information (VPI) to order items by their
ability to boost the performance of fusion. We further de-
rive approximate formulae to scale up the decision-theoretic
framework to large-scale data. We empirically evaluate our
algorithms on three real-world datasets with different char-
acteristics, and show that the accuracy of fusion can be
significantly improved even while requesting feedback on a
few data items. We also show that the performance of the
proposed methods depends on the characteristics of data,
and assess the trade-off between the amount of feedback ac-
quired, and the effectiveness and efficiency of the methods.

1. INTRODUCTION
With the advent of modern information systems and ser-

vices, the amount and diversity of data have been growing
at an unprecedented pace. Moreover, the number of sources
that provide data has significantly increased, spanning well-
known sources, such as top news agencies (e.g., CNN, BBC),
to individual contributors of Wikipedia articles. Unsurpris-
ingly, conflicts among such data sources arise often, e.g., fi-
nancial firms publish different stock prices for the same com-
pany [21], sensors report conflicting measurements [36], on-
line bookstores list different authors for identical books [41]
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ID Data Item S1 S2 S3 S4

O1 Zootopia Howard* Spencer Spencer
O2 Kung Fu PandaStevenson* Nelson
O3 Inside Out leFauve Docter*
O4 Finding Dory Stanton*
O5 Minions Coffin* Renaud
O6 Rio Jones Saldanha*

Table 1: A motivating example. Table shows four
sources providing information about directors of six
movies. Correct claims are marked with a (*).

and so on. Resolving such conflicts is important since inac-
curate information may result in unfavorable consequences
such as a missed flight or financial losses.

Recently, a number of data fusion systems have been pro-
posed to discriminate true and false claims of data items
from multiple conflicting data sources (see [22] for a sur-
vey). Most of the existing fusion techniques automatically
identify correct claims for data items. Although quite accu-
rate, these automated fusion systems are not error-free; in-
correct conclusions about the correctness of claims of a data
item quickly trickle down to other data items. Particularly
for crucial data items where it is imperative to distinguish
correct claims from incorrect ones, we cannot solely rely on
automated data fusion. Feedback should be integrated in
the form of validation from an expert to ensure that the fu-
sion system correctly identifies true claims for most items.
Trusted validation of claims is expected to steer the system
toward a state of higher efficacy.

1.1 Motivation
Consider an example of websites (sources) providing infor-

mation on directors of certain animation movies (Table 1).
Data fusion systems take the table of conflicting claims as in-
put, and output the correctness of each claim (and, in some
cases, the accuracy of each source, i.e., the probability that
a claim provided by the source is correct).

Source S2 provides Howard as the director for the movie
Zootopia whereas sources S3 and S4 claim it to be Spencer.
A data fusion system that outputs Spencer to be the true
claim of Zootopia can benefit from the validation that Howard
is instead correct. With this knowledge, the fusion system
can reconsider the claims provided by sources S2, S3 and S4

and improve its output on other data items.
Validation of claims per se is an expensive task; to guar-

antee effective conflict resolution, it assumes access to highly
accurate feedback (e.g., domain experts). To judiciously uti-
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lize the expert, claims should be presented for validation in
an order that is most beneficial to the effectiveness of fusion.
Assuming we can validate any data item (by asking an ex-
pert or using crowdsourcing), and know which of its claims
is correct, which item should we select for validation?

The task of identifying the best data item for validation is
challenging because we have to deal with a number of issues.
First, we do not possess ground truth and, therefore, need
to develop heuristics to determine the best data item. Sec-
ond, we need to quantify the definition of ‘best’ i.e., what
is the basis for deciding whether or not one data item is
more suitable for validation than another? Third, data fu-
sion typically deals with a large number of claims (hundreds
of thousands), thus limiting the ability to ask questions on
a very small fraction of all claims. Fourth, since the correct-
ness of each claim may potentially influence the correctness
of any other claim, the exhaustive computation of estimat-
ing the impact of validating each data item by re-running
fusion, is prohibitively expensive. For example, to evaluate
data item O1 for validation, we need to assess its impact on
all the (2 + 2 + 2 + 1 + 2 + 2) = 11 distinct claims of six data
items. Similarly checking all data items to select the first
item for validation would require 6 ∗ 11 = 66 computations.
Scaling up this procedure to millions of claims is infeasible.

To this end, there are two major observations. First,
data items have different levels of uncertainty because of
the agreement/disagreement of sources on claims. One may
expect that validating "Minions" would be more advanta-
geous than validating "Zootopia" because S1 and S2 dis-
agree on "Minions" while two of the three sources that vote
for "Zootopia" agree on a common claim. This is because
we expect to learn more from the validation of data items
with disagreement. Second, although a data item may have
conflict over its values, validating it may not be beneficial
if it does not influence enough items. For instance, vali-
dating "Finding Dory" would influence source S4 and that
would have an effect only on "Zootopia" whereas validating
"Zootopia" would impact all other items.

1.2 Problem Formulation
We consider a database instance D, describe the data

model of a data fusion system and formulate the problem
of ordering user feedback for effective conflict resolution in
data fusion. We present the terminology and notations used
in this paper in Table 2.

Data Fusion. The input of data fusion is modeled as
a probabilistic graphical model [19] or, more specifically,
as a Bayesian network. Let S = {s1, . . . , sn} be a set of
sources that provide claims about data items from set O =
{o1, . . . , om}. Each data item oi can have a number of

claims, denoted by Vi = {v1
i , . . . , v

|Vi|
i }. A set of claims

on all data items is denoted by V = {V1, . . . , V|O|}. Sources
provide specific claims for data items (at most one per data
item), modeled as a set of observations Ψ = {ψj,i,k}, where

ψj,i,k =

{
1 if sj votes for claim vki of oi

0 otherwise

Example 1.1. In Table 1, the set of all claims about data
item Rio is V6 = {Jones, Saldanha} and the fact that source
S1 provides claim Jones and not Saldanha is represented by
setting ψ1,6,Jones = 1 and ψ1,6,Saldanha = 0.

Notation Definition

O set of data items
oi the i-th data item
m number of unvalidated data items
S set of sources
sj the j-th source
n number of sources
Vi set of claims for data item oi
vki the k-th claim of data item oi
ψj,i,k observation of claim vki by source sj
S(vki ) set of sources that vote for claim vki
F data fusion system
Aj accuracy of source sj
pki probability that claim vki of oi is true

Θ set of possible actions
θi action denoting the validation of data item oi

Table 2: Terminology used in the paper.

Definition 1. A database,D, is a tuple 〈O,S,Ψ, V 〉 where
O is the set of data items, S is the set of sources, V =
{V1, . . . , V|O|} is the set of claims per data item and Ψ is
the set of observations.

Given all components defined above, we formally introduce
a data fusion system with its input and output structures:

Definition 2. A data fusion system, denoted by F , is a
function that takes database D as input, and outputs a set
of probability assignments (P ), i.e.,

F : D → 〈P 〉

where for each data item oi ∈ O, P (vki ) = pki ∈ [0, 1] is
the correctness of claim vki , i.e., the probability that claim
vki ∈ Vi is true. (In some cases, the output includes source
accuracies (A) where for each sj ∈ S, A(sj) = Aj is the
accuracy of source sj).

Feedback Solicitation. To improve the effectiveness of a
data fusion system, we solicit feedback in the form of vali-
dation of a data item, e.g., we ask the user to provide the
true director of Zootopia.

Action. The validation of a data item oi ∈ O is called an
action and is denoted by θi. The space of possible actions
Θ, is determined by the set of data items that have not yet
been validated.

Problem Statement. Given a data fusion system F and
its output 〈P,A〉, we address the problem of determining the
next action θi from the set of possible actions Θ to solicit
feedback from a user.

1.3 Summary of Contributions
Our main contributions can be summarized as follows:

• We formalize the problem of ordering user feedback ef-
fectively to improve the performance of existing fusion
techniques (Section 1.2).

• We propose strategies to generate an effective ordering
in which claims should be validated (Section 4). Our
item-level ranking strategies consider data items indi-
vidually (Section 4.1) while our novel decision-theoretic
framework, based on the concept of value of perfect in-
formation, evaluates data items holistically(Section 4.2).
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Figure 1: The proposed user feedback framework.

• To scale up the decision-theoretic framework, we derive
approximation formulae that quantify the impact of a
validation by analytically estimating the change it effects
in the correctness of other claims. (Section 4.2.3)

• We conduct an extensive experimental evaluation on real-
world datasets where we demonstrate the efficacy of the
proposed methods in improving conflict resolution, and
present trade-offs between user involvement and effec-
tiveness of the methods. (Section 5)

2. SOLUTION OVERVIEW
Given conflicting data from multiple data sources and a

data fusion system, we focus on the problem of determining
the best data item for the user to validate (Figure 1).

To generate an ordering in which data items should be
validated, we first propose two item-level ranking strategies
that evaluate data items individually based on their local
characteristics. The strategies are based on the idea of un-
certainty inherent in a data item and items with higher un-
certainty are preferred for validation. However, because of
not considering other unvalidated data items, the item-level
ranking approaches have certain limitations.

To address those limitations, we propose a novel decision-
theoretic framework that assesses data items holistically and
considers all other items while determining the benefit of
validating a particular data item. Our decision-theoretic
framework uses the concept of value of perfect information
(VPI) [31] that is based on a utility function to measure
the desirability of the current state of a system for its users.
It then selects a claim validating which maximizes the gain
in utility function. We show that this procedure leads to a
prohibitively expensive computational cost because we need
to fuse data each time we wish to compute the utility gain
of a data item. To scale up our framework to large-scale
datasets, we propose to analytically estimate the impact of
a validation on other unvalidated data items, and select a
claim that has the maximum utility gain over the estimates.

We incorporate the acquired user feedback in the form of
initial truth labels for data fusion.

3. DATA FUSION MODEL
We start with describing the details of data fusion: con-

sider a set of data sources S that provide conflicting claims
on data items in O (see Section 1.2); the goal of data fusion
is to identify the correct claim of each data item.

We assume the model proposed in [7] (AccuNoDep) that
considers the accuracies of sources and assumes sources to
be independent. Because of its ease of understanding and in-
terpretation, this fusion model forms the basis for a number
of other variants of fusion [6, 7, 24]. In this model, there are

ID Probabilities of Claims

O1 Howard (0), Spencer (1)
O2 Stevenson (0.015), Nelson (0.985)
O3 Docter (0.999), leFauve (0.001)
O4 Stanton (1)
O5 Coffin (0.921), Renaud (0.079)
O6 Saldanha (0.985), Jones (0.015)

Table 3: Output of data fusion for the example in
Table 1. Value in parenthesis shows the probability
that a claim is considered correct.

observations (the votes of sources on claims, Ψ), and hidden
variables (the accuracies of sources, A, and the correctness
of claims, pki ); the objective is to infer the hidden variables
given the observations. The true claims of data items are
determined by iteratively inferring the hidden variables:

1. Correctness of a claim. The model uses Bayesian
analysis to compute the correctness of a claim from the
accuracies of sources that support it. The probability of
claim vri of data item oi being true is computed as:

pri = p(vri=true | ψ.,i,.) =

∏
s∈S(vri )

(|Vi| − 1)A(s)

1−A(s)∑
voi ∈Vi

∏
s∈S(voi )

(|Vi| − 1)A(s)

1−A(s)

(1)
where ψ.,i,. represents the observations for data item oi
and S(vri ) is the set of sources that vote on claim vri of
oi. In this model, only one of the claims is considered to
be true and the rest are considered false.

2. Accuracy of a source. Source accuracies are updated
using the current correctness of claims. The accuracy
of source sj is defined as the probability that its claim
about a data item is true, and is computed as the aver-
age correctness of all its claims:

A(sj) =

m∑
i=1

ψj,i,k=1

pki

N(sj)
(2)

where sj provides information about N(sj) data items.

Sources are initially assigned default accuracies. The model
alternates between Steps 1 and 2 until it reaches a steady
state (i.e., the accuracies of sources converge) or attains the
threshold for number of iterations. Table 3 shows the output
of fusion after the model has converged for the example in
Table 1. A claim that has the highest probability of being
true is considered correct by the model.

Note that the described fusion model is not guaranteed
to converge [8]. As shown in Figure 1, we treat the data
fusion model as a black box; we use the output of fusion to
determine the next action which is, thus, independent of the
convergence of the fusion model.

4. RANKING ALGORITHMS
In this section, we propose two broad ranking approaches

that leverage data and the output of fusion to generate the
order in which data items should be validated. The item-
level ranking strategies presented in Section 4.1 consider
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data items individually, while the decision-theoretic feed-
back framework of Section 4.2 evaluates data items based
on their ability to impact the effectiveness of fusion on other
unvalidated data items.

4.1 Item-level Ranking Strategies
This section presents two techniques that assess the local

characteristics of data items to determine the next action.
The techniques presented are built upon the principle of
uncertainty inherent in a data item. Intuitively, an item with
greater uncertainty offers more information to a system.

We propose using entropy [33] to quantify the average
information content in a data item. Entropy is a way to
measure the level of uncertainty in probabilistic objects. In
the context of data fusion, data item oi is a probabilistic
object whose true claim ranges over all of its possible claims
vki ∈ Vi. We define the entropy of data item oi as:

Hi = −
∑
vki ∈Vi

pki log pki (3)

where pki is the probability that claim vki is true.
A data item that has a low entropy has a higher degree

of certainty, i.e., some claim has a high probability of being
true, compared to a data item having claims that are almost
equally likely to be correct. Note that a low entropy also
encapsulates the case when a false claim is considered true

with a high probability.
Using entropy as the uncertainty measure, we determine

the next action as validating the data item that has the
highest entropy, i.e.,

ai = argmax
θi∈Θ

Hi (4)

We now present our item-level ranking algorithms that
elaborate on obtaining pki to use in Equation (3). In Sec-
tion 4.1.1, we present an algorithm based on the disagree-
ment of sources over claims of a data item whereas Sec-
tion 4.1.2 presents an algorithm that ranks data items based
on the output of data fusion.

4.1.1 Disagreement-based algorithm

This section presents Query-by-Committe (QBC), a tech-
nique based on the disagreement of sources over claims of a
data item. QBC is built upon the principle of majority vot-
ing that considers the correct claim of a data item to be the
one supported by a majority of the sources. The intuition
is that an effective data fusion system is less likely to in-
correctly identify the correct claim of an item if most of the
sources agree upon it. In contrast, the true claim of an item
disputed by many sources may be questioned. In such cases,
it might be more beneficial to validate the latter data item.
QBC uses the votes of sources over claims to compute the

correctness of a claim vki ∈ Vi as the fraction of sources
(voting for oi) that support vki :

pki =

n∑
j=1

ψj,i,k

|Vi|∑
r=1

n∑
j=1

ψj,i,r

(5)

This definition of pik, termed as vote entropy, is used in
Equation (3) to evaluate the uncertainty intrinsic to a data
item. QBC, therefore, queries the data item most disagreed
upon by sources that vote for it.

Example 4.1. In Table 1, the vote entropy of O2 is com-
puted as H2 = − 1

2
log 1

2
− 1

2
log 1

2
= 0.693, which is greater

than the vote entropy of O1 (H1 = − 1
3

log 1
3
− 2

3
log 2

3
=

0.637). QBC would validate O2 before it validates O1.

QBC has a low computational cost because it does not need
to recompute entropies after a validation. However, a major
drawback of QBC is that it does not take into account the
dependencies between data items through sources.

4.1.2 Uncertainty-based algorithm

The first and foremost limitation of QBC is that the choice
of the next action is determined solely by distribution of
source votes on claims of a data item. It is agnostic to the
output of fusion, i.e., it does not consider (i) accuracy of
sources, and (ii) probabilities of correctness of claims. For
the example in Table 1, QBC may select O3 for validation even
though its true claim has already been identified (Table 3).

To address this issue, we present Uncertainty Sampling
(denoted by US), an uncertainty-based technique that selects
an action the fusion system is less certain about. US uses
the correctness of claims as output by the fusion system
to compute the entropies in Equation (3). Intuitively, data
items that the fusion system is least certain about are more
suitable for validation, since the more confident predictions
are probably correct.

Example 4.2. The entropy of O5 in Table 1 is computed
using the probabilities in Table 3, is H5 = −(0.079) log(0.079)−
(0.921) log(0.921) = 0.276. H5 is greater than the entropy
of all other data items and, therefore, US considers O5 the
most suitable for validation.

US considers the output of fusion, and therefore, takes
source accuracies into account; the downside is that we need
to run the fusion system for each action.

The item-level ranking algorithms are easy to interpret
and implement. A major drawback, however, is that these
methods aim to resolve conflicts at the site of a single data
item without any regard to the conflicts existing in other
data items. In the following section, we present a frame-
work that assesses data items with the objective of resolving
conflicts in all unvalidated data items.

4.2 Decision-Theoretic Framework
The techniques presented in Section 4.1, although com-

putationally inexpensive, determine actions with the view
of resolving conflicts in one data item at a time. None of
the methods considers possible interdependence among data
items and, therefore, offers no guarantee on the improvement
of fusion over other unvalidated data items.

Our objective is to globally identify the best action that
would benefit fusion on all unvalidated data items. To this
end, we design a decision-theoretic feedback solicitation frame-
work based on the value of perfect information. We define a
utility function to measure the usefulness of current state of
fusion, and identify an action that is most likely to improve
the utility of fusion for all unvalidated data items. To the
best of our knowledge, none of the earlier works incorporates
the value of information for the problem of data fusion.

4.2.1 Background Concepts
We introduce the basic concepts of our framework such

as utility and the value of perfect information. We show
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that in the absence of ground truth, we have to rely on an
alternative utility function based on the idea of uncertainty
reduction (referred to as the entropy utility function).

Utility function. We define the utility function as a func-
tion that measures the usefulness of a data fusion system.
The utility of a system is higher if it is able to identify a
greater number of true claims correctly. Let T : vki →
{true, false} be a truth function that assigns the label
true to a correct claim and false to an incorrect claim.

Definition 3. Given truth function T , database D and
fusion system F : D → 〈P,A〉, the utility function U(D,F , T )
is defined as:

U(D,F , T ) =
1

|V |

∑
Vi∈V

∑
vki ∈Vi

pki δ(T (vki ))

| Vi |


where pki ∈ P and δ(v) =

{
1, if v is correct
0, otherwise

The utility function can be interpreted as measuring the
average correctness of true claims based on the output of
fusion system F . The closer the utility function is to 1, the
higher is the effectiveness of F .

Value of Perfect Information. We measure the useful-
ness of an action θi with respect to our utility function by
using the value of perfect information (VPI). VPI has been
used widely in areas such as economics [27], healthcare [3],
data cleaning [17, 40, 38, 28, 16] and classification [18].

Definition 4. The value of perfect information (VPI) of
action θi is defined as:

V PI(θi) =
∑
vki ∈Vi

U(D,F , T | T (vki )=true)pki − U(D,F , T )

The VPI of action θi is the expected gain in the utility
function earned by validating data item oi. To compute
U(D,F , T | T (vki )=true), we consider claim vki to be true
and input this information to the data fusion system as prior
knowledge by setting pki=1 and pfi=0 ∀ vfi ∈ Vi \ {v

k
i }.

A set of all possible actions, denoted by Θ, consists of an
action θi for each unvalidated data item oi ∈ O. Our goal is
to identify the action that has the highest VPI, i.e.,

θi = argmax
θi∈Θ

V PI(θi) (6)

4.2.2 Maximum Expected Utility

Real-world applications prevent us from using the utility
function from Definition 3 because we do not possess the
truth function T , i.e., ground truth is not available. To this
end, we define an entropy utility function to identify actions
that reduce the uncertainty associated with the output of
fusion. This idea, known as uncertainty reduction, has been
extensively used in the past [37, 28, 16, 2, 42].

Definition 5. Given database D and data fusion system
F : D → 〈P,A〉, the entropy utility function is defined as
the sum of entropies across all data items in D, i.e.,

EU(D,F) = −
∑
oi∈O

Hi = −
∑
oi∈O

∑
vki ∈Vi

pki log pki

where pki ∈ P is the probability that claim vki ∈ Vi is true.

Algorithm 1: MEU Algorithm

1: for each unvalidated data item oi do
2: for each claim vki ∈ Vi do
3: Compute EU(D,F | vki = true)
4: end for
5: Compute ∆EUi as in Equation (7)
6: end for
7: Select the action with the maximum ∆EUi

The entropy utility function measures the average uncer-
tainty in the correctness of claims; the closer the entropy
utility is to 0, the higher is the effectiveness of fusion.

We present Maximum Expected Utility (denoted by MEU),
a framework that integrates the entropy utility function with
the concept of VPI. MEU uses EU(D,F) as the utility func-
tion in Definition 4 instead of U(D,F , T ) to compute the
expected entropy utility gain of action θi as:

∆EUi = EU(D,F)− EU(D,F | vki = true)pki (7)

(Note the change in order of the terms in Equation (7) and
Definition 5. This is because our goal is to reach a state of
lower uncertainty than before, i.e., we ideally want the first
term in Equation (7) to be greater than the second term.)
MEU considers the one-step lookahead state of fusion after

a potential action and identifies one that has the highest
expected entropy utility gain, i.e.,

θi = argmax
θi∈Θ

∆EUi (8)

This kind of validation strategy is myopic in nature be-
cause we look only one step ahead each time we make a
decision. It is possible that some action may not lead to the
highest VPI at the current step but validating it can result
in a higher VPI in subsequent validations. Sequential val-
idations are challenging and often computationally expen-
sive [17]; the present work focuses only on myopic strategies.

Example 4.3. For the example in Table 1, we use the
output of fusion (as in Table 3) to compute EU(D,F) =
0.437. Considering O3 for validation, Table 4 shows the
output of fusion when Docter is true and Table 5 shows the
output when leFauve is true. (For ease of display, we rep-
resent the columns to be claims as they appear in Table 3,
e.g., for O3, p0 represents the correctness of claim Docter

and p1 the probability of leFauve.)

ID p0 p1

O1 0.002 0.998
O2 0.043 0.957
O3 1 0
O4 1
O5 0.95 0.05
O6 0.957 0.043

Table 4: Docter=true.

ID p0 p1

O1 0.151 0.849
O2 0.55 0.45
O3 0 1
O4 1
O5 0.433 0.567
O6 0.45 0.55

Table 5: leFauve=true.

Using Tables 4 and 5, MEU computes EU(D,F|Docter =
true) = 0.568, and EU(D,F|leFauve = true) = 2.485. The
expected utility of O3 = 0.999(0.568)+0.001(2.485) = 0.570.

Table 6 shows the expected utility (EU*) of all data items.
MEU decides to validate O4 because its utility gain ((EU(D,F)−
EU∗4 ) = 0) is the highest among all items.
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ID O1 O2 O3 O4 O5 O6

EU* 0.564 0.743 0.570 0.437 1.342 0.743

Table 6: Expected utility of data items in Table 1.

In the absence of ground truth, maximum expected util-
ity (MEU) [31] is considered to be the best alternative to
ground truth utility. The main drawback of MEU is its lack
of efficiency. To determine the next action, MEU re-runs fu-
sion F on database D for each claim of every data item
o ∈ O. The time complexity of MEU is O(mκtF ) where m
is the number of unvalidated data items in D, κ is the av-
erage number of unique claims per data item and tF is the
time needed to run F on one instance of data. A typical
run of the data fusion model described in Section 3 iterates
over all data items and all sources until convergence. This
contributes to an O(mκI(m + n)) complexity where I is
the average number of iterations to convergence and n is
the number of sources. With data items far outnumbering
sources, the result is a complexity of O(m2κI). Concluding,
MEU can tackle datasets a few hundred data items in size in
a reasonable amount of time. Our objective is to be able to
process datasets with at least a few thousands of data items.

4.2.3 Approximate-MEU

MEU describes a general decision-theoretic framework for
the problem of ordering conflicts for user feedback in data
fusion. However, the extreme computational cost of MEU

makes it infeasible for large-scale datasets.
To this end, we present Approx-MEU, a method that lever-

ages the structure of interactions between data items and
sources to estimate the impact of a validation on the cor-
rectness of other unvalidated data items.

This approach is built on the intuition that an action
would alter the correctness of claims of not only the vali-
dated data item but also of its neighbors (as in Figure 2).
The idea is based on principles inherent in Bayesian net-
work inference methods such as belief propagation [19], vari-
ational message passing [39] and incremental expectation-
maximization [26]. These methods decompose the compu-
tation into local data item calculations and pass them to
other items via messages. We consider a validation to be a
local update of the correctness of claims of a data item.

Consider data items oi and oj . The goal of Approx-MEU

is to estimate the correctness of claims of oj after oi has
been validated. This computation involves the following
two steps: (i) measuring the change in correctness of claims
of the validated item oi, and (ii) estimating the change in
correctness of claims of oj as a function of the change in
probabilities of oi. We estimate the correctness of claims of
unvalidated data items using the method of linear approxi-
mation by differentials in the following steps.

Change in probabilities of claims of oi
We assume an arbitrary claim vti ∈ Vi to be true. Upon
validating oi, the change in probability of vti is: ∆pti = (1−
pti). This validation ensures that the remaining claims in Vi
are false. The change in probability of vfi ∈ Vi \ {v

t
i} is :

∆pfi = (0− pfi ) = −pfi .

Propagation of changes from oi to oj

We consider data items oi and oj to be connected either
through a source that votes for both of them or through a

O4 O1

O2 O3

O5O6

Figure 2: Graph of data items in Table 1: an edge
implies there is at least one source that provides
information for the connecting data items.

path consisting of alternating sources and items. As seen in
the graph in Figure 2, O1 and O2 are connected (because
source S3 votes for both) whereas O2 and O4 are connected
via the 〈O2, S3, O1, S4, O4〉 path. We present an analysis of
both the cases:

1. oi and oj have at least one common source. We
first examine how the change in correctness of claims in
Vi impacts the accuracies of sources that vote for both oi
and oj (because change is propagated to oj through these
sources).

Updates in source accuracies. The intuition behind
the effect of changes in oi to sources that vote on it is
straightforward: we reward sources that support the cor-
rect claim vti ∈ Vi by trusting it more on information it
provides on other data items. Similarly, our model penal-
izes sources that vote on some other claim vfi by discount-
ing its information on other data items as well. From
Equation (2), the change in accuracy A(s) of a source s
is computed as:

∆A(s) =

{
∆pti/N(s), if s votes for vti

∆pfi /N(s), if s votes for vfi ∈ Vi \ {v
t
i}

(9)
where N(s) is the number of data items for which s votes.

Propagation of updates in sources to oj. Our next
task is to measure further propagation of changes from
the sources to oj . This part of the analysis involves a
short sequence of basic calculus over the formulae de-
scribed in Section 3.

We compute the change in correctness of claim vrj ∈ Vj
attributable to the change in probabilities of claims of oi
by the method of approximation by differentials (details
of the derivation in Appendix A.1).

∆prj = −(prj )
2

∑
v∈Vj


∏

s∈S(v)

(|Vj | − 1)A(s)

1−A(s)∏
s∈S(vrj )

(|Vj | − 1)A(s)

1−A(s)

 .

 ∑
s∈S(v)

∆A(s)

A(s)(1−A(s))
−

∑
s∈S(vrj )

∆A(s)

A(s)(1−A(s))


(10)

For each of the sources s that vote for oj , the term ∆A(s)
in Equation (10) takes a value as noted in Equation (9)
depending on whether: (i) s supports vti , (ii) s supports a
claim other than vti , or (iii) s does not provide any infor-
mation on oi. Clearly, if s belongs to the third category,
it will not be affected by the validation of oi.

With ∆prj , the approximate change in correctness of claim
vrj , the updated correctness of claim vrj is computed as:

(prj )
′ = prj + ∆prj (11)
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Algorithm 2: Approx-MEU Algorithm

1: for each unvalidated data item oi do
2: for each claim vki ∈ Vi do
3: Assume vki is true

4: for each unvalidated data item oj 6= oi do
5: for each claim v ∈ Vj do
6: Estimate updated correctness of v
7: end for
8: end for
9: Compute entropy utility of updated probabilities

10: end for
11: Compute ∆EUi as in Equation (13)
12: end for
13: Select next action according to Equation (8)

2. oi and oj have no source in common. We know that
any change in oi reaches data items connected to it via
at least one source, i.e., through data items that are one-
hop away from oi in the graph of data items. The changes
in these data items then reach data items one-hop away
from them, and so on.

Theorem 4.1. The change in correctness, ∆prj , of claim

vrj ∈ Vj attributable to the change in correctness, ∆pki , of

claim vki ∈ Vi is inversely proportional to the minimum
number of data items a source votes for, raised to the
power of d, the number of hops oj is away from oi.

∆prj ∝
(

1

Nd

)
∆pki

Proof. Details of the proof are in Appendix A.2. 2

Real-world datasets typically consist of few sources pro-
viding claims about a large number of data items. As a
result, most of the items are connected to each other in
the graph of data items. Through Theorem 4.1, we ob-
serve an exponential decay in the change in correctness
of claims as we move away from the validated item.

Deciding the next action. Using Equation (11), Approx-
MEU estimates first-order approximations of correctness of
claims of data items within one hop of oi attributable to
validating claim vki ∈ Vi.

We compute the entropy of data item oj over the esti-
mated correctness of its claims, i.e.,

Hj = −
∑
vkj ∈Vj

(pkj )′ log (pkj )′ (12)

The expected utility gain of action θi is then expressed as:

∆EUi = EU(D,F)−
∑
vki ∈Vi

pki
∑
oj∈O

Hj (13)

and the next action is determined as in Equation (8).

Example 4.4. Consider O3 for validation in Table 1. Ta-
ble 7 shows the estimated correctness of claims obtained us-
ing Equation (11) considering Docter correct and Table 8
shows the estimated probabilities when leFauve is correct.
The expected utility of O3 = 0.999(0.401)+0.001(0) = 0.401.

Table 9 shows the expected utility (EU*) of all data items
using the approximate correctness of claims. Approx-MEU

validates O2 because it has the highest expected utility gain.

ID p0 p1

O1 0 1
O2 0.019 0.981
O3 1 0
O4 1
O5 0.931 0.069
O6 0.99 0.01

Table 7: Docter=true.

ID p0 p1

O1 0 1
O2 1 0
O3 0 1
O4 1
O5 1 0
O6 1 0

Table 8: leFauve=true.

ID O1 O2 O3 O4 O5 O6

EU* 0.437 0.184 0.401 0.437 0.235 0.313

Table 9: Expected utility of data items in Table 1.

Complexity. For each unvalidated data item, Approx-MEU
assumes each of the claims to be true (one at a time) and
estimates the first-order approximate correctness of claims
of data items one-hop away from it. By eliminating the
bottleneck iterative computation in MEU, Approx-MEU has a
complexity of O(mκd) where m is the number of unvalidated
data items, d is the average number of data items connected
to a data item through a source and k is the number of
claims per item. In the worst case, d = m, when every data
item is directly connected to every other data item.

4.3 Further Optimizations
We now describe further optimizations to effectively scale

up our ranking strategies. We briefly elaborate on bounding
the number of data items to consider for validation and the
effect of batch size on the performance of fusion.

1. Shrinking the search space. In datasets where all
data items are connected to each other through one ore
more sources, the complexity of Approx-MEU blows up to
O(κm2). To efficiently scale up the approximation for-
mulae for such dense data, we propose a hybrid approach
that takes the best insights from QBC, US and MEU:

(a) Data items with high vote entropy (QBC) are the most
disputed ones and, therefore, suitable for validation;

(b) Data items with low uncertainty over output of fusion
are less suited to validation (similar to US);

(c) Among the high-entropy items, our goal (as in MEU)
is to validate one with a greater expected utility gain.

We denote by Approx-MEUk, the method that ranks un-
validated data items by their vote entropies and consid-
ers the top k% data items for the impact computation
step. By tuning the value of k, we improve the complex-
ity of Approx-MEU to O(κk2).

2. Batch of Actions. The present work deals with one
action at a time. If we have a budget of, say, twenty
actions in total, one may argue that the most effective
method should identify the set of best twenty actions
that would result in the maximum expected utility gain.
The task of finding an optimal set of twenty actions,
however, is not efficient: it is computationally expensive
because the algorithm would need to consider all possible
subsets of twenty actions. It is also not effective: by
soliciting validation of twenty data items at once, we lose
out on the opportunity to integrate earlier actions before
deciding the next action. Our framework could be easily
extended to solicit the top twenty actions that have the
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highest expected utility gain. While slashing run-time
by reducing the number of iterations, this approach is
expected to converge to ground truth slower than when
we validate one data item at a time. (We present the
results of this approach in Appendix B.4).

4.4 Feedback Errors
So far, we have assumed access to accurate feedback from

an expert. Real-world applications, however, are often faced
with two major concerns: (1) Experts are expensive and
often vary across domains; (2) Users (experts and otherwise)
often give erroneous feedback.

To address these issues, in light of the recent advances
in crowdsourcing [14], applications often turn to collecting
feedback from a crowd of readily-available workers. Note
that workers add a third dimension to the problem of data
fusion previously governed by data items and sources; worker
errors are independent of source (extraction) errors. Prior
research that deal with non-experts [34, 9] jointly estimate
user quality and true labels of data items, and query only the
more trustworthy users in subsequent feedback rounds. The
present work focuses on true labels of data items and does
not address modeling the quality of users in a crowd setting.
We assume that the crowd provides us either a single claim
considered (partially) correct or probabilities representing
correctness of claims of a data item.

Consider the case when a user (or, crowd) provides feed-
back for the data item that our ranking algorithm has de-
termined to be the most beneficial for fusion. In the best
case, all feedback is correct. To integrate erroneous input
into our framework, we translate imperfect feedback to cor-
rectness of claims and leverage this prior knowledge, along
with the observations, to estimate the correctness of claims
for rest of the data items.

1. Feedback confidence. In some cases, users express
confidence in their feedback, e.g., ‘80% certain that vki is
the correct claim for data item oi’. We incorporate this
knowledge into our model by assigning the confidence to
correctness of the claim, i.e., pki = 0.8 and the rest as 0.

2. Incorrect feedback. This case pertains to quality of
the user (or, crowd) providing feedback. In case of a
crowd, we assume that the crowdsourcing system pro-
cesses conflicting answers from workers and provides the
most accurate label.Knowing the user’s (or, crowd’s) error-
rate ε, e.g., on 4 out of 6 instances, the feedback is incor-
rect, we compute the expected utility gain over correct
and incorrect feedback. If the provided claim vki is cor-
rect, we set pki = 1 and the rest as 0. Otherwise, we set
pki = 0 and set a uniform probability distribution for rest
of the claims, i.e., pri = 1/|claims| whenever r 6= k.

3. Conflicting feedback. We also consider the case when,
instead of providing a single correct claim for a data
item, the crowd simply presents the answers from differ-
ent workers. For example, say for data item oi having
three claims (vAi , v

B
i , v

C
i ), 6 workers agree on vAi being

correct, 3 agree on vBi and 1 says claim vCi is correct.
We summarize this information in the form of probabili-
ties either by counting or some other mechanism, i.e., we
conclude that (pAi , p

B
i , p

C
i ) = (0.6, 0.3, 0.1) and feed this

knowledge to the data fusion model.

5. EXPERIMENTAL EVALUATION
This section presents an empirical evaluation of the pro-

posed solutions on two real-world datasets. Our objectives
are: (1) To assess the effect of acquiring feedback in improv-
ing the performance of data fusion, (2) To evaluate the pro-
posed ranking algorithms, and (3) To analyze the trade-offs
between effectiveness and efficiency offered by the various
approaches. Moreover, we study the behavior of the meth-
ods on data with different characteristics and with respect
to parameters such as batch size and erroneous feedback.

Datasets
To validate the proposed methods, we conducted experi-
ments on the following real-world datasets (Table 10):

Books FlightsDay Population Flights

Items 1263 5836 40696 121567
Sources 894 38 2545 38
Claims 24303 80452 46734 1931701

Table 10: Statistics of real-world datasets.

Books: We used the books dataset from [7] that contains a
listing of computer science books and their authors as pro-
vided by different bookstores registered at abebooks.com.

Flights: We used the flights dataset from [21] that contains
status information for flights over an entire month as re-
ported by 38 sources. A data item is an attribute (such
as scheduled arrival time) of a particular flight. We permit
slightly different reported values (to a maximum difference
of 10 minutes) in flight times that might have arisen due to
slight lag in updates, or error in estimating times.

FlightsDay: We used a one-day snapshot of Flights (for
the day of 12/1/2011); this dataset is representative of the
Flights dataset that spans over a month’s time.

Population: We used the city population dataset from [29]
that contains Wikipedia edit histories of the populations of
certain cities in a given year. To account for unreasonably
large values and to have a source provide a single claim per
data item, we adopt preprocessing steps similar to [20].

For simplification, we consider only those flight and popu-
lation data items that have up to two contesting values. In
Books, we consider the top two author sets per book.

Data Characteristics: We notice that our real-world data-
sets exhibit interesting properties: (i) Most of the data items
in the flights datasets are connected to each other because
the small number of sources provide information on almost
all data items, (ii) Both Books and Population exhibit long-
tail characteristics (Appendix B.1, Figure 8) where more
than 90% sources provide information on fewer than 4%
data items. Such varied characteristics of data allow us to
evaluate our approaches in different scenarios.

Feedback Simulation. We simulated user feedback for
data items by providing feedback as determined by the ground
truth. We used the silver standard provided in [7] as the
ground truth for Books. For Flights, we considered data
provided by each of the carrier websites, American Airlines,
United Airlines and Continental, to be the ground truth.
We manually identified the true claim for data items in Pop-
ulationthat have more than one claim.
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Figure 3: Effectiveness of different ranking strategies measured as the reduction in distance_to_ground_truth

against number of items validated. The VPI-based framework (GUB, MEU, Approx-MEU) is seen to demonstrate
superior performance compared to the item-level ranking strategies (QBC, US) and the näıve strategy (Random).

Competing Methods
We compared the following ranking approaches:

1. QBC (Section 4.1.1): This item-level ranking method
uses the distribution of claims to rank data items.

2. US (Section 4.1.2): An item-level ranking method that
uses correctness of claims as output by the fusion system
to rank data items.

3. Greedy Upper Bound (GUB) (Section 4.2.1): As-
suming that ground truth is known, this method selects
an action that results in the highest ground truth utility
gain according to Definition 4.

4. MEU (Section 4.2.2): In the absence of ground truth,
this method selects the action that has the maximum
expected utility gain.

5. Approx-MEU (Section 4.2.3): A decision-theoretic ap-
proach that ranks data items according to their approxi-
mate impact on other unvalidated data items.

6. Random: This näıve method selects an action at ran-
dom; all data items are considered equally beneficial.

We implemented all the algorithms in Java, and ran exper-
iments on a Macbook Pro with 8GB RAM, 2.7 GHz Intel
Core i5 processor, and OSX El Capitan 10.11.5.

Performance Metrics
Effectiveness: To evaluate the effectiveness of the pro-
posed methods, we conducted a sequential validation of all
data items having conflicting claims (in the order determined
by a given method) and obtained an assignment of true and
false claims using a truth function T . We report the fol-
lowing metrics on the results:

1. Distance to ground truth: We report the improve-
ment in output of data fusion after an action as the re-
duction in distance of probabilities of claims to ground
truth defined as:

distance_to_ground_truth =

|O|∑
i=1

∑
vki ∈Vi

δ(T (vki ))(1− pki )

|O|

where δ(T (vki )) = 1, if vki = true. Intuitively, the dis-

tance_to_ground_truth can be seen as the average er-
ror of data fusion. The smaller the distance_to_ground

_truth, the more accurate is the output of fusion.

2. Uncertainty: We report the reduction in uncertainty
over output of data fusion defined as the entropy across
all data items:

uncertainty = −
|O|∑
i=1

|Vi|∑
k=1

−pki log(pki )

where pki is the probability that claim vki ∈ Vi is correct.
A higher value of uncertainty indicates less confidence
in the output of data fusion.

Once a data item is validated, we retain the validation
result and therefore, observe a cumulative gain of all valida-
tions. Figure 3 presents example curves for the effectiveness
metrics that start at 0 (when no data item is validated) and
gradually approach −100% (when all items are validated).
A plot closer to the axes indicates a better method.

Efficiency: To evaluate the efficiency of an approach, we
report the average time it takes to determine the next action.

5.1 Evaluation of ranking strategies
In this section, we evaluate effectiveness of the item-level

ranking strategies (Section 4.1) and the decision-theoretic
framework (Section 4.2) in improving the performance of
data fusion. Our best-case decision-theoretic mechanism in-
volves a utility function based on the ground truth.

Effectiveness. Assuming the availability of a ground truth
utility function, we demonstrate in Figure 3, the gradual im-
provement in distance to ground truth for increasing number
of validated data items for all the validation methods.

As illustrated in Figure 3, all the approaches improve
the distance of the output of fusion to ground truth, al-
beit by various degrees. Random almost linearly decreases
the distance to ground truth indicating that only the num-
ber of actions determines its effectiveness. QBC and US,
through guided selection of data items, converge to ground
truth faster than Random; QBC consistently performs better
than US. Specifically, in the long-tail datasets, because the
adopted data fusion model assigns either very high or low
probabilities to claims, most of the data items have very
low uncertainties and therefore, US is unable to distinguish
them. On the other hand, true quality of the sources in
dense datasets is aptly reflected in their accuracies and cor-
rectness of claims. The data items selected by US are also
ones that the data fusion model has not been able to resolve,
indicating that these items are probably not well-connected
to other data items. Validating these data items, therefore,
does not have much impact on the accuracy of other items.

We notice that MEU is consistently superior to US, indi-
cating that we benefit from a method that aims at reducing
uncertainty across all data items instead of resolving a single
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time (sec) QBC US MEU Approx-MEU

Books 0.01 0.001 11.73 0.231
FlightsDay 0.045 0.002 90.00 4.401
Population 0.14 0.011 > 5 min 9.728

time (sec) QBC US Approx-MEU5 Approx-MEU10

Flights 7 4 146 348

Table 11: Time taken to determine the next action.

uncertain data item. We also observe that MEU and QBC have
contrasting performances in long-tail datasets and in dense
data. This behavior is attributable to the structure of the
datasets: each source in dense data (e.g., FlightsDay) pro-
vides information on a large number of items. The change
in accuracy of a source upon a validation is, therefore, not
large enough to propagate to other items. It is useful in such
cases to validate items with higher vote entropies first.

Not surprisingly, GUB has the steepest initial curve among
all the methods. GUB takes advantage of the ground truth
information and, therefore, theoretically, has the best per-
formance in reporting the distance_to_ground_truth.

Interestingly, we observe that after GUB, Approx-MEU has
the best performance in FlightsDay and Books – the method
estimates expected correctness of claims from a validation
and aims to reduce uncertainties in the estimates across all
data items, thus outperforming both the item-level rank-
ing algorithms (QBC, US). However, in Population, the room
between QBC, Approx-MEU and MEU is not very large. This
similarity in performance of the methods is due to sparsity
of the data (|V |/(|O|× |S|) = 0.04%) which results in a very
small portion of data items (∼ 2.5%) having more than one
claim. The idea then is to identify among these items, those
that are the most beneficial to others. Both Approx-MEU

and MEU, therefore, have an advantage over QBC that does
not take into account the holistic impact of an action.

To scale up Approx-MEU to large dense data (Flights), we
set k = 10 in Approx-MEUk. With as few as a tenth of the to-
tal number of data items considered for validation, Approx-
MEUk is seen to achieve higher quality fusion results than QBC

and has significantly better performance than US. Although
Approx-MEU and QBC are comparable in early validations,
Approx-MEU displays a notably rapid rate of convergence to
ground truth as more items are validated. The results fur-
ther confirms effectiveness of the decision-theoretic frame-
work over item-level ranking methods. However, considering
both effectiveness and efficiency, in such large dense data,
QBC might be a better choice than Approx-MEUk if k << |O|.

Efficiency. In Table 11, we report the average time taken
by the methods for one validation (recall that we cannot
compare GUB on real data, and we cannot scale MEU to large
dense data). The item-level ranking algorithms (QBC, US)
are observed to be significantly faster than the decision-
theoretic framework (MEU, Approx-MEU); QBC makes a single
pass over all data items and US ranks them after each valida-
tion whereas MEU and Approx-MEU fuse data with each claim
of an item separately considered as prior knowledge. The
high numbers for MEU motivate the need for a cheaper (but
effective) alternative. Approx-MEU, while still slower than
QBC and US, is faster than MEU by almost two orders of mag-
nitude. Our goal for efficiency is to provide an interactive
validation time for users of a data fusion system. We con-
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Figure 4: Comparing methods based on entropy
utility function (MEU, Approx-MEU) against ground-
truth-based method (GUB). Both MEU and Approx-MEU

have comparable reductions in uncertainty (which is
better than that of GUB).

clude that MEU cannot be used for datasets typical to data
fusion. From a theoretical standpoint, the time for MEU is
based on time for the fusion system since it runs the system
for all claims of each data item.

Practicability of Entropy Utility. The strength of GUB

lies in its access to a ground truth utility function. However,
real datasets provide the ground truth for a small subset of
data items. In this experiment, we assess the feasibility of
entropy utility function as a substitute to the ground truth
utility function by comparing the performance of entropy-
utility-based methods (MEU, Approx-MEU) against that of
the ground-truth-based method (GUB).

As shown in Figure 4, MEU and Approx-MEU achieve a
greater reduction in uncertainty than GUB. This mechanism
comes at the price of MEU converging to ground truth at
a rate slower than GUB (Figures 3a and 3b). Interestingly,
the rate of convergence to ground truth of Approx-MEU is
better than MEU and is almost identical to GUB. Practically,
however, GUB is infeasible; MEU and Approx-MEU are our best
viable alternatives.

Takeaways. (1) Active feedback improves data fusion bet-
ter than a passive approach (Random). (2) The decision-
theoretic framework (MEU, Approx-MEU) exhibits effectiveness
superior to that of the item-level ranking approaches (QBC,
US); in practice, however, the latter are significantly faster
methods. (3) The entropy utility function is a suitable al-
ternative to the ground-truth utility function. (4) MEU has
an extreme computation cost and cannot be used for vali-
dation on large datasets. (5) Approx-MEU is a cheaper, and
also effective, substitute to MEU.

5.2 Feedback Errors
To evaluate our ranking approaches in the presence of im-

perfect feedback, we perform experiments that study effec-
tiveness of the methods in different error scenarios as dis-
cussed in Section 4.4. We perform experiments on Books
and FlightsDay because results were the most promising for
these datasets in the previous experiments. Due to space
constraints, we present only few of the experiment results.

Conflicting feedback. In this experiment, we assume ac-
cess to feedback from a crowd of workers who provide cor-
rectness of all claims instead of providing a single correct
label. We consolidate conflicts of the crowd by varying (1)
the fraction of data items that it disagrees on (i.e., the crowd
provides correctness of all claims of say, 5% data items), and
(2) their consensus on the correct claim for a data item (i.e.,
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(c) Approx-MEU: 10% conflicts.
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(d) QBC: 30% conflicts.
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(e) US: 30% conflicts.
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(f) Approx-MEU: 30% conflicts.
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(g) QBC: 50% conflicts.
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(h) US: 50% conflicts.
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(i) Approx-MEU: 50% conflicts.

Figure 5: Conflicting feedback (Books). Each row compares methods when x% of items have conflicting
feedback. Lines in a plot compare a method when correctness of the correct claim varies from 0.9 to 0.1.

70% probability that the true claim is indeed correct). We
vary the first parameter from 10% − 50% and the second
from 10% − 90% and report the results of this experiment
in Figure 5. As expected, as the crowd varies its consen-
sus on the correct claim from 90% to 10%, the performance
of all the methods consistently deteriorates. QBC and US

start falling apart as the crowd’s consensus degrades. The
methods with 90% consensus, however, exhibit comparable
performance to their no-error counterparts even when the
fraction of data items with conflicting feedback increases.
On the other hand, Approx-MEU demonstrates substantial
improvement in fusion even when the consensus goes to 50%
on 30% of all data items. It only starts to worsen when the
crowd assigns really low probability to the correct claim for
50% of all data items.

Feedback Confidence. We simulate the confidence in
feedback as a probability attached to it. This could also
be likened to worker (or, crowd) quality, e.g., there is only
80% probability that any feedback provided by Worker A

on a data item is correct. We assume the confidence to be
varying from 80%− 100% and report the results of this ex-
periment in Figure 6. We notice that performance of the
methods consistently deteriorates as confidence decreases
from 100% to 80%. While with even 90% conviction in
feedback, QBC and US no longer improve fusion on Books,

Approx-MEU is the most resilient to such feedback errors.
Even at 80% confidence, Approx-MEU adaptively integrates
erroneous input and continues to improve fusion in initial
validations (although with diminished power) before taper-
ing off and worsening after ∼ 8% of the data items have
been validated. Approx-MEU.9 almost levels out after 10%
items are validated, and with Approx-MEU.8, soliciting feed-
back after 5% validations does not boost fusion. The net
improvement with Approx-MEU.8 after 15% of items are val-
idated, however, is comparable to that achieved in QBC and
US without any feedback errors.

Incorrect Feedback. We assume the hypothetical case
when we have an ineffective user that (either knowingly or
unknowingly) provides incorrect answers. We further con-
sider the user to be wrong on 0% − 30% of data items and
report the results in Figure 7. With slight abuse of notation,
the subscript with a method is used to represent the fraction
of data items that the user is wrong about. We notice that
as the fraction of erroneous data items increases, the meth-
ods essentially worsen fusion. However, even with 10% of
data items judged incorrectly by the user, QBC and approx-

MEU exhibit better performance than US without incorrect
feedback. This demonstrates that on dense data, identify-
ing items that have high entropy is more beneficial and more
resilient to feedback errors than selecting items with US.
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Figure 6: Feedback con-
fidence (Books). Sub-
script is user confidence
(or, worker quality).
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Figure 7: Incorrect Feed-
back (FlightsDay). Sub-
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Takeaways: (1) Among all the approaches, Approx-MEU is
most robust in the presence of feedback errors. (2) Approx-
MEU continues to improve fusion even when the feedback is
close to incorrect for a small fraction of data items. (3) On
dense data, QBC is resilient to completely incorrect feedback
on a small fraction of all data items.

6. RELATED WORK
Data fusion. The problem of conflict resolution has been
extensively studied in the past and a number of techniques
have been proposed (see [22] for a survey). Most of the ex-
isting fusion systems use Bayesian analysis [41, 7, 15, 36],
optimization techniques [23], or probabilistic graphical mod-
els [30] to infer correct claims and source reliabilities.

The present work provides a general framework to effec-
tively solicit feedback from a user; the item-level ranking al-
gorithms and the general decision-theoretic algorithm (MEU)
are applicable to any generic data fusion system. To scale up
the framework, we proposed estimating change propagation
across data items. While this idea of change propagation
is applicable to other variants of fusion, the approximate
formulae derived to scale up the framework are specific to
the data fusion model; deriving the formulae for other vari-
ants would be specific to the details of the particular fusion
technique, and is considered future work.
Leveraging user interaction. Concepts from decision
theory and active learning have previously been used for
user feedback in various data management problems such
as schema matching [28, 5], dataspaces [17], entity resolu-
tion [13], classification [18], data cleaning [40, 10] and crowd-
sourcing [4]. Active learning [32] has a close semblance to
the present work; however, as in [4], our goal is to iden-
tify the correct claims for most data items whereas in active
learning, the objective is to learn a good classifier using as
few labels as possible.

Solicitation of user feedback has been studied before in
the context of conflict resolution [11, 10, 12] where the fo-
cus is to primarily use master data along with editing rules
and integrity constraints. In contrast, we propose a user
feedback framework to be integrated with a standard data
fusion algorithm where we focus on minimizing user interac-
tion. The algorithms that constitute the framework do not
assume any domain-knowledge constraints and rely only on
the structure of interactions between data items. Moreover,
by considering <source, item, claim> triples, we lose infor-
mation on relations among the attributes of a single item.
However, by leveraging the dependencies among data items
and sources through the structure of their graph, we are able

to predict true values of unknown data items from known
true values. Besides, master data could be considered a form
of user input for our problem; the benefit from incorporating
such pre-meditated user input could, however, be less than
that achieved when the user is actively involved.

Prior research on estimating parameters in Bayesian net-
works [35] proposes using a decision-theoretic framework in
the active learning setting. Our problem (data fusion) deals
with observed and hidden variables, and approximate solu-
tions from [35] cannot be directly applied to our setting.
Crowdsourcing. Ongoing research in collecting input from
a crowd of workers [14, 25, 16] is related because of the char-
acteristics of users in the feedback framework. The problem
of noisy labels has been extensively studied in [34, 9] that
deal with jointly estimating true labels and user quality.

The present work is orthogonal to crowdsourcing in that
we do not focus on modeling user behavior to deal with im-
perfect feedback. In the presence of noisy feedback from
a crowd of workers, any of the existing crowdsourcing ap-
proaches can be used to obtain the most accurate label for
data items and plugged into our feedback framework.
Propagation of changes. The idea of propagating up-
dates has been used in the past for collective entity reso-
lution [1] where similarity between pairs of entities is dy-
namically updated as evidence from a classification result is
propagated to other dependent entities. Such propagation
of changes is captured in two stages in the present work: (1)
The specific data fusion model studied in the paper itera-
tively updates correctness of claims and trustworthiness of
sources to generate an assignment of correct claims, and (2)
To scale up the decision-theoretic framework, Approx-MEU

explicitly computes the changes in sources from a validation
and updates claims that depend on the affected sources.

7. CONCLUSION
This paper proposed a novel pay-as-you-go approach for

effectively soliciting feedback from users to resolve conflicts
and improve the performance of existing data fusion tech-
niques. To the best of our knowledge, the present work is the
first to leverage user feedback in Bayesian-based data fusion
models. To judiciously utilize the user, we proposed gen-
erating effective ordering of data items for validation. We
presented algorithms that assess data items individually by
considering their local characteristics, and also proposed a
novel decision-theoretic framework that evaluates data items
holistically by their ability to improve the performance of fu-
sion. We further devised approximation formulae to scale up
the decision-theoretic framework to large-scale datasets, and
also explored scenarios in the presence of imperfect feedback.

Our experimental evaluation on real-world datasets con-
firmed that guided feedback rapidly increases the effective-
ness of data fusion. The proposed methods exhibited differ-
ent behavior for data with different characteristics, and also
offered trade-off between effectiveness and efficiency, and the
amount of feedback acquired.
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APPENDIX
A. DETAILS OF APPROX-MEU

A.1 Detailed derivation of the change in cor-
rectness of claims of oj due to the change
in correctness of claims of oi

Given the change in accuracies of sources because of the
validation of data item oi, our objective is to estimate the
changes propagated from the sources to data item oj . This
part of the analysis involves a short sequence of basic cal-
culus over the formulae described in Section 3 where we
estimate the changes at each step by the method of approx-
imation by differentials.

We first rewrite Equation (1) as:

1

prj
=
∑
v∈Vj

∏
s∈S(v)

(|Vj | − 1)A(s)

1−A(s)∏
s∈S(vrj )

(|Vj | − 1)A(s)

1−A(s)

(14)

We then represent each summation term as a function f as
described below:
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f(vrj , v) =

∏
s∈S(v)

(|Vj | − 1)A(s)

1−A(s)∏
s∈S(vrj )

(|Vj | − 1)A(s)

1−A(s)

(15)

Equation (14), therefore, simplifies to:

1

prj
=
∑
v∈Vj

f(vrj , v) (16)

To compute the change in prj , we estimate the approximate
change in each f(vrj , v) through a series of steps: take the
logarithm of f(vrj , v) and obtain the derivative with respect
to A(s), thus presenting ∆f(vrj , v) as:

∆f(vrj , v)

f(vrj , v)
=
∑
s∈S(v)

∆A(s)

A(s)(1−A(s))
−

∑
s∈S(vrj )

∆A(s)

A(s)(1−A(s))

(17)

For each of the sources s that vote for oj , the term ∆A(s)
in Equation (17) takes a value as noted in Equation (9) de-
pending on whether: (i) s supports vti , (ii) s supports a claim
other than vti , or (iii) s does not provide any information on
oi. Clearly, if s belongs to the third category, it will not be
affected by the validation of oi.

We compute the change in probability of claim vrj ∈ Vj
attributable to the change in probabilities of claims of oi by
taking the derivative of Equation (16):

∆prj = −(prj )
2
∑
v∈Vj

∆f(vrj , v) (18)

The change in probability of claim vrj ∈ Vj because of the
validation of data item oi can, therefore, be expressed as:

∆prj = −(prj )
2

∑
v∈Vj


∏

s∈S(v)

(|Vj | − 1)A(s)

1−A(s)∏
s∈S(vrj )

(|Vj | − 1)A(s)

1−A(s)

 .

 ∑
s∈S(v)

∆A(s)

A(s)(1−A(s))
−

∑
s∈S(vrj )

∆A(s)

A(s)(1−A(s))

 (19)

The updated probability (prj )
′ of claim vrj ∈ Vj is:

(prj )
′ = prj + ∆prj (20)

A.2 Proof of Theorem 4.1
Consider data items oi and oj that are more than one

hop away from each other, i.e., they are connected via an
alternating path of sources and other data items. In this
section, we compute through a sequence of steps, the change
in probabilities of oj attributed to the validation of oi.

First, the change in probabilities of oi are propagated to
sources that provide claims about it. This changes the ac-
curacies of sources: by boosting the accuracy of those that
provide a true claim and decreasing the accuracy of those
that provide an incorrect claim. From Equation (9), if source
s provides claim vli about data item oi, then the accuracy of
the source changes as:

∆A(s) =
∆pli
N(s)

Change in probabilities of oj. We represent Equation (1)
for data item oj as prj = q/t to obtain:

prj t = q =
∏

s∈S(vrj )

(|Vj − 1|)A(s)

1−A(s)
(21)

We apply the logarithm function to both sides of Equa-
tion (21) to simplify the representation for further compu-
tation as:

log q =
∑

s∈S(vrj )

log
(|Vj − 1|)A(s)

1−A(s)
(22)

Next, to compute the change in quantity q, we obtain the
first derivative of the expressions in Equation (22) as:

dq

q
=

∑
s∈S(vrj )

d

(
log

(|Vj − 1|)A(s)

1−A(s)

)
=

∑
s∈S(vrj )

dA(s)

A(s)(1−A(s))

and express dq in a cleaner form as:

dq = q

 ∑
s∈S(vrj )

dA(s)

A(s)(1−A(s))

 (23)

We express the change in probabilities of oj by computing
the first derivative of Equation (21):

prj (dt) + (dprj )t = dq (24)

where t can be expressed as a sum of terms, tk, similar to
q for each vkj ∈ Vj . Using Equation (23), Equation (24) can
thus be rewritten as:

prj

 ∑
vkj ∈Vj

tk
∑

s∈S(vkj )

dA(s)

A(s)(1−A(s))

+ (dprj )t =

q

 ∑
s∈S(vrj )

dA(s)

A(s)(1−A(s))


We now rearrange the terms appropriately and replace q/t
by prj , to express dprj as:

dprj = prj

 ∑
s∈S(vrj )

dA(s)

A(s)(1−A(s))

−
prj

 ∑
vkj ∈Vj

tk
t

∑
s∈S(vkj )

dA(s)

A(s)(1−A(s))

 (25)

We are interested in analyzing the upper bound on dpj to
get an estimate of the maximum change that oi would effect
upon oj . We present a step-by-step conclusion of the same.
It follows from Equation (25) that:

|dprj | ≤ prj

∣∣∣∣∣∣
∑

s∈S(vrj )

dA(s)

A(s)(1−A(s))

∣∣∣∣∣∣
≤ prj

∑
s∈S(vrj )

∣∣∣∣ dA(s)

A(s)(1−A(s))

∣∣∣∣
≤ prj |S(vrj )|

∣∣∣∣ dA(s)

A(s)(1−A(s))

∣∣∣∣
max

≤ prj |S(vrj )|
∣∣∣∣ dpti
N(s)A(s)(1−A(s))

∣∣∣∣
max

≤ prj |S(vrj )|
∣∣∣∣ dpti
N ′A′(1−A′)

∣∣∣∣
max
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where N ′ ≤ N(s) is the least number of data items any
source votes for and A′ is the accuracy of a source that
yields the minimum for function A(s)(1−A(s)).
Real datasets are often faced with the situation of few sources
providing information about far too many data items. As a
result, N ′ is usually more than half the number of items in
the dataset. This, coupled with pj , dp and A′(1−A′), con-
tributes to the change in probabilities of a data item one-hop
away being much less than the change in the probabilities
of the validated data item.

For a data item, ok, two hops away from the validated
node, following similar analysis, if ok is reachable from oi
through oj , we reach the conclusion that:

|dplk| ≤
(
plk|S(vlk)|

∣∣∣∣ dprj
N ′A′(1−A′)

∣∣∣∣
max

)
≤ dpti
N ′2

(∣∣∣∣∣plkprj |S(vlk)||S(vrj )|
(A′(1−A′))2

∣∣∣∣∣
max

)
We observe an exponential decay of the changes in probabil-
ity distributions as we move away from the validated node.
More specifically, the changes in probability distributions in
the first hop are significantly higher than those from the sec-
ond hop and so on. This is attributed to the sole reason that
a typical source provides information about a large number
of data items in the dataset.

B. EXPERIMENTAL EVALUATION

B.1 Dataset Characteristics
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Figure 8: Long-tail characteristics in real data.

As seen in Figure 8, both Books and Population exhibit
long-tail characteristics (following the power law phenomenon)
where most of the sources provide information on a small
fraction of all data items and few sources provide informa-
tion on a large number of items.

B.2 Relation between performance metrics
In Section 5.1, we conducted experiments to study the fea-

sibility of entropy utility function, in terms of effectiveness
and efficiency, as an alternative to the ground-truth-based
utility function. We notice that the plots representing the
distance to ground truth and those representing the reduc-
tion in uncertainty follow the same trend, i.e., as the distance
to ground truth decreases, the uncertainty is also reduced.
Moreover, the rate of reduction in these two metrics ap-
pears to be comparable for GUB and MEU. Theoretically, we
can explain this behavior in one direction: as the database
gets closer to ground truth, the data fusion system becomes
more certain in its predictions. Therefore, the uncertainty

of the database is expected to decrease. On the other hand,
as uncertainty decreases, there is no guarantee that the fu-
sion system would fare better in predicting correct claims;
it simply might be more certain in wrong predictions.

To better understand the relation between the two met-
rics, we conducted an experimental study of the metrics
for the fundamental methods, GUB and MEU (since these are
our gold standards), on synthetic datasets generated using
a number of parameters.

Synthetic Data Generation. Our objective in generat-
ing synthetic data is to replicate dense real-world data with
|O| >> |S| (typical datasets for data fusion systems, e.g.,
see [21]). We model most of the sources to be of good qual-
ity with few very good and few poor sources. Source accu-
racies, A(sj), can therefore be assumed to follow a normal
distribution:A(sj) ∼ N(amean, asd) where amean is the aver-
age accuracy and asd is the standard deviation of the source
accuracies. Density of the data, i.e. the probability that
a source votes for a data item, is specified by d. The de-
fault values for the parameters, amean = 0.8, asd = 0.1 and
d = 0.4, correspond to the characteristics of real datasets.
Source Sj provides a claim for data item oi with probability
d and the claim is correct with a probability A(Sj).
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Figure 9: Scatter plot showing relation between the
performance metrics.

Observation. As seen in Figure 9, we observe empiri-
cally that the distance to ground truth and uncertainty are
strongly correlated. This study is further supported by the
Pearson’s correlation coefficient, ρ = 0.86. For FlightsDay,
ρ = 0.71 and for Books, ρ = 0.72, indicating a moderately
positive correlation. Specifically, uncertainty in the fusion
predictions and their distance to ground truth go hand in
hand. This additionally confirms the suitability of entropy
utility as an alternative to ground truth utility function.

B.3 Exploring Approx-MEU
As mentioned in Section 4.2.3, in the worst case, Approx-

MEU mandates an all-pairs computation of the impact of data
items on each other — still expensive in datasets where all
data items are connected to each other. In Section 4.3, we
discussed optimizations to reduce the computation cost by
shrinking the search space for the impact computation step;
we now explore the effect of this approach i.e., the role of k
in Approx-MEUk, on the improvement in data fusion.

Effectiveness. Figure 10 demonstrates the various degrees
of improvement offered by Approx-MEUk as k varies. Sub-
script k denotes the fraction of all data items considered for
impact computation. When k = 5, we consider only the top
5% data items ranked first according to their vote entropies
and then, in the order of their entropies over probabilities of
claims. We compute only the impact of these 5% data items
on each other; evidently, the line ends when 5% of all data

617



-60

-40

-20

 0

 0  4  8  12

∆
 d

is
ta

n
c
e

_
to

_
g

ro
u

n
d

_
tr

u
th

 (
%

)

data items validated (%)

Approx-MEU5
Approx-MEU15
Approx-MEU30

Approx-MEU

(a) Books.

-60

-40

-20

 0

 0  4  8  12

∆
 d

is
ta

n
c
e

_
to

_
g

ro
u

n
d

_
tr

u
th

 (
%

)

data items validated (%)

Approx-MEU5
Approx-MEU10
Approx-MEU15

Approx-MEU

(b) FlightsDay.

Figure 10: Hybrid approach combining QBC and
Approx-MEU. Figures depict the effect of expanding
the set of candidates for validation in Approx-MEU.

items are validated. We observe that as k increases, more
data items are considered in the impact computation step
and the system converges to ground truth faster. Approx-

MEU, while less effective in the beginning, gradually surpasses
the improvement in fusion achieved by the Approx-MEUk
methods. The plots indicate that for early validations (less
than 8% of items validated), choosing as small a value as
k = 30 (Books) or k = 15(FlightsDa y) results in better
conflict resolution than Approx-MEU; by tuning k, we can
effectively scale up the decision-theoretic framework with
estimated probabilities to large datasets.

Efficiency. We report in Table 12 the time taken for one
validation on the three datasets by QBC, US and Approx-MEUk
with different values of k. As expected, with an increase in
k, as more data items are considered for impact computa-
tion, Approx-MEUk takes longer to determine the next action.
However, for the large-scale Flights data, Approx-MEU has a
significantly rapid convergence to ground truth than QBC and
US in slightly more than 5 minutes.

time(sec) Books FlightsDay Flights
QBC 0.08 0.07 6.0
US 0.09 0.12 1.8

Approx-MEU5 0.04 0.23 156
Approx-MEU10 0.09 0.73 323
Approx-MEU15 0.15 0.98 475

Table 12: Time taken (in seconds) by QBC, US and
Approx-MEUk with different values of k.

Takeaways: (1) By limiting the fraction of data items for
the impact computation step, Approx-MEU can be efficiently
scaled up to large datasets. (2) Different values of k offer
trade-offs between effectiveness and efficiency. Specifically,
the smaller the value of k, the faster it takes to determine
the next action although a method with a higher k rapidly
converges to ground truth.
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Figure 11: Effect of batch size on effectiveness of the
methods and time taken to validate 200 claims from
FlightsDay.

B.4 Effect of Batch Size
Based on our intuitions about batch size (Section 4.3),

we now study the effect of validating multiple data items
simultaneously on the performance of our methods.

Effectiveness. As shown in Figure 11a, performance of QBC
is not affected by batch size because by selecting data items
based on their vote entropies, at the end of 200 actions, the
set of validated data items remains unchanged.

With an increase in the batch size, the distance to ground
truth steadily increases for US because by validating multiple
data items at once, it loses the opportunity to adaptively
integrate the acquired feedback.
Approx-MEU displays an interesting behavior: the method

converges to ground truth faster with an initial increase
in batch size, and after batchSize= 50, its performance
worsens. The initial improvement is because with smaller
batches, the algorithm selects data items having high en-
tropy (e.g., entropy > 0.67); as the batch size increases, the
algorithm selects data items with a mix of high and medium
entropies (e.g. entropy > 0.6). By not ordering data items
with medium entropies correctly, the performance of the
method deteriorates with an increase in batch size.

Efficiency. We observe in Figure 11b that the time taken
by QBC and US, after sorting, is effectively the time taken to
fuse the data. As more data items are validated together, the
fusion system reaches a steady state faster and the methods
have almost flat gain in the time for all validations. Go-
ing from a batchSize of 1 to 200, the runtime of Approx-

MEU, however, reduces by more than one order of magnitude.
Specifically, for FlightsDay, we observe that a batchSize= 50
achieves the best improvement in fusion in about one-sixth
the time taken by validating individual data items.

Takeaways: Increasing the batch size: (1) has no effect
on QBC while it typically degrades performance of US and
Approx-MEU (although the latter shows improvement with
smaller increase in batch size), and (2) drastically reduces
the time taken for validations by Approx-MEU.
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