
Parallel I/O Aware Query Optimization

Pedram Ghodsnia
University of Waterloo
200 University Ave E

Waterloo, Canada
pghodsnia@uwaterloo.ca

Ivan T. Bowman
SAP AG

445 Wes Graham Way
Waterloo, Canada

ivan.bowman@sap.com

Anisoara Nica
SAP AG

445 Wes Graham Way
Waterloo, Canada

anisoara.nica@sap.com

ABSTRACT

New trends in storage industry suggest that in the near fu-
ture a majority of the hard disk drive-based storage subsys-
tems will be replaced by solid state drives (SSDs). Database
management systems can substantially benefit from the su-
perior I/O performance of SSDs.
Although the impact of using SSD in query processing has

been studied in the past, exploiting the I/O parallelism of
SSDs in query processing and optimization has not received
enough attention. In this paper, at first, we show why the
query optimizer needs to be aware of the benefit of the I/O
parallelism in solid state drives. We characterize the benefit
of exploiting I/O parallelism in database scan operators in
SAP SQL Anywhere and propose a novel general I/O cost
model that considers the impact of device I/O queue depth
in I/O cost estimation. We show that using this model, the
best plans found by the optimizer would be much closer to
optimal. The proposed model is implemented in SAP SQL
Anywhere. This model, dynamically defined by a calibra-
tion process, summarizes the behavior of the I/O subsystem,
without having any prior knowledge about the type and the
number of devices which are used in the storage subsystem.

Categories and Subject Descriptors

H.2.4 [Database Management]: Systems—Query process-
ing ; H.2.2 [Database Management]: Physical Design—
Access methods

Keywords

Parallel I/O; Query Optimization; SSD; I/O Cost Model;
Access Path;Index Scan;Full Table Scan; Prefetching

1. INTRODUCTION
For decades hard disk drives have been the dominant so-

lution for storage subsystem in database systems. By ad-
vent of flash based solid state drives (SSDs) a revolution-
ary advancement in storage technology has happened in re-

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full cita-

tion on the first page. Copyrights for components of this work owned by others than

ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-

publish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from Permissions@acm.org.

SIGMOD’14, June 22–27, 2014, Snowbird, UT, USA.

Copyright 2014 ACM 978-1-4503-2376-5/14/06 ...$15.00.

http://dx.doi.org/10.1145/2588555.2595635.

0

20

40

60

80

100

120

1 2 4 8 16 32R
e

a
d

 T
h

ro
u

g
h

p
u

t
 (

M
B

/
S

)

Queue Depth

Seq. Vs. Random Read on HDD

0

100

200

300

400

500

600

1 2 4 8 16 32R
e

a
d

 T
h

ro
u

g
h

p
u

t
 (

M
B

/
S

)

Queue Depth

Seq. Vs. Random Read on SSD

Non-parallel sequential readRamdom 4KB read

Figure 1: Throughput on non-parallel sequential
reads vs. parallel 4KB random reads for different
queue depths on HDD and SSD

cent years. As predicted correctly by Jim Grey in 2006,
“tape is dead, disk is tape, and flash is disk” [11]. Com-
pared to HDDs, SSDs benefit from a much lower latency
and much higher throughput for random I/O. SSDs con-
sume significantly less power and produce much less heat.
Due to all these outstanding properties, it can be clearly seen
that HDDs are getting gradually replaced by SSDs. Due to
the extraordinary business impact of SSDs, in recent years,
application of SSDs in I/O intensive applications such as
database systems has been studied extensively [2, 7, 8, 12,
13, 14, 16, 17, 18, 23].

Although the performance impact of SSDs on different
database operators has been studied in the past, the impact
of exploiting the I/O parallelism in SSDs has been vastly
overlooked. Modern SSDs can substantially benefit from
I/O parallelism. The substantial impact of parallelism in
I/O performance of SSDs has been studied in [5]. A mod-
ern SSD is capable of utilizing multiple levels of parallelism;
namely, plane level, channel-level, package level, and die
level parallelism. Almost all modern SSDs support com-
mand queuing mechanisms (NCQ and TCQ). These mech-
anisms allow the SSD to accept multiple concurrent I/O
requests or a burst of successive I/O requests from the op-
erating system. The received I/O requests are queued up
and the host interface will reorder them to make a favor-
able I/O pattern for the internal parallel organizations in
the SSD. In other words, increasing the I/O queue depth
of the modern SSDs will result in a significant increase in
I/O throughput of the random I/O. The I/O queue depth is
the average number of outstanding I/Os in the I/O queue
at any point of time. The I/O queue depth can be increased
by issuing multiple I/O requests at the same time or issuing
I/O requests with a rate faster than the rate of handling I/O
requests by device.

349

By increasing the I/O queue depth, the outstanding par-
allel I/O capability of the device can be exploited. Con-
sequently, the performance of random I/O can potentially
become very close to the performance of sequential I/O.
Therefore, by careful design of the I/O access pattern of
the database operators, a parallel random I/O pattern can
perform almost as well as a sequential I/O pattern. Fig. 1
shows the difference between the I/O performance of sequen-
tial I/O and parallel random I/O. On SSD, by increasing the
queue depth to 32 the performance of random I/O becomes
about 51.7% of the performance of sequential I/O. However,
on HDD, by using a queue depth of 32, the performance of
random I/O would be only about 1.3% of the performance
of sequential I/O. In this experiment a consumer level PCIe-
based SSD and a commodity 7200RPM HDD is used.
Traditionally, most query optimizers are designed by tak-

ing into account the substantial disparity between the run-
time of random and sequential I/O in HDDs. Moreover,
conventionally, query optimizers assume that there is no con-
siderable performance difference between parallel and non-
parallel I/O. These assumptions have been proved to work
very well for decades of using HDD-based storage subsys-
tems. However, by moving from HDD to SSD, relying on
the same assumptions will result in suboptimal optimiza-
tion decisions.
In this paper we study the impact of exploiting I/O par-

allelism in query processing and optimization. The contri-
butions of our work can be summarized as follows.

1. We characterize the impact of using I/O parallelism in
scan operators in SAP SQL Anywhere. We show how
the optimal decision made by query optimizer can be
affected when parallel I/O is employed. In [19], it is
argued that an SSD-oblivious query optimizer is un-
likely to make significant errors in choosing optimal
access methods. We show that, when the I/O paral-
lelism is employed in execution of the access methods,
this argument is no longer true. In other words, our
experiments show that the query optimizer needs to
be SSD-aware, and in general, it needs to be aware of
the benefit of I/O parallelism in storage device.

2. We perform experiments similar to those performed by
others [15, 19] on a different DBMS and over different
configurations. We use our experiments to validate the
earlier results and compare them to new conditions.

3. Lee et al. [15] studied the impact of inter-query paral-
lelism in exploiting the parallel I/O capability of SSDs.
Roh et al. [21] proposed a new approach for executing
multiple index scans at the same time. It is shown that
their proposed method increases the I/O queue depth
of the SSD and consequently improves the performance
of the execution of the index scan. We show that intra-
query parallelism and effective use of prefetching are
two alternative approaches for exploiting the I/O par-
allelism of SSDs in index scans. We will discuss how
these two alternatives eliminate the limitations of the
existing approaches.

4. While there are some studies showing approaches to
improve I/O parallelism, the query optimization prob-
lem has not been fully addressed. In particular, a
query optimizer that operates on a range of storage

technologies (HDD, RAID HDD, SSD, and even future
technologies) must have a principled way to determine
what the likely benefit is when using I/O parallelism
in order to distribute parallelism opportunities among
query operators. We propose a novel, general, and dy-
namic I/O cost model for accurate I/O cost estimation
of those database operators which can benefit from I/O
parallelism. The proposed model, dynamically defined
by a calibration process, accurately summarizes the
behavior of the storage device, no matter how much it
can benefit from I/O parallelism. The proposed model
is implemented in SAP SQL Anywhere. Our experi-
ments show that leveraging the new model in the query
optimizer results in selecting execution plans with up
to 20 times shorter runtime, compared to the time the
new model is not employed. In other words, when the
optimizer is aware of the benefit of the I/O parallelism
on SSD, it can make better optimization decisions. We
also discuss how the proposed model can be initialized,
calibrated and used efficiently.

The remainder of the paper is organized as follows. Sec-
tion 2 reviews the database access methods and their I/O
patterns. Section 3 studies the impact of exploiting parallel
I/O in access methods over different configurations. Sec-
tion 4 describes our proposed I/O cost model in details and
shows the impact of the model on query optimizer in SAP
SQL Anywhere and Section 5 concludes the paper.

2. DATABASE ACCESS METHODS
Choosing the optimal access method for a given query is

one of the fundamental and classic problems in database
systems. This problem has been studied since 1970 [9, 22].
Index scan and full table scan (hereafter, IS and FTS, re-
spectively) are two traditional access methods which are im-
plemented in all database systems. When a relevant index
is available, the database engine traverses the index to find
and fetch only the required rows that satisfy the given scan
predicate. Unlike IS, in FTS all rows within a table are
fetched and scanned one-by-one to find those rows which
satisfy the given predicate.

FTS suffers from unnecessary I/Os because it must read
all table pages, no matter whether they are relevant or not.
In addition, for any retrieved page, all rows within the page
must be evaluated against the given predicate. This results
in execution of extra CPU instructions. This problem gets
more important when there are a large number of rows which
are rejected by the predicate. However, FTS benefits exten-
sively from an efficient sequential I/O pattern. Unlike FTS,
in IS, with the guidance of an index, only relevant table
pages are fetched. In addition, it is not necessary to scan
all rows within every fetched page. Therefore, the num-
ber of CPU instructions executed for an index scan could
be significantly smaller. However, index scan suffers from
an expensive random I/O pattern. Due to the substantial
disparity between sequential and random I/O in hard disk
drives, the significantly more expensive I/O in index scan
plays an important role in preferring FTS over IS over a
large selectivity range. Another disadvantage of the index
scan is that in this method when the selectivity is large,
not only the entire table pages might be fetched but also
it is very likely that the same table pages be retrieved over
and over again. When the memory buffer pool is small this

350

Figure 2: Parallel full table scan (PFTS) in SAP
SQL Anywhere. Each color represents a different
worker.

Leaf NodeLeaf Node

Index

Figure 3: Parallel index scan (PIS) in SAP SQL
Anywhere. Each color represents a different worker.

repetitive retrievals result in extra disk I/Os. Therefore, for
a large enough selectivity the total number of pages fetched
using IS can be potentially even more than the number of
pages fetched using FTS.
Traditionally, it is known that the selectivity break-even

point between IS and FTS occurs at around 10 percent [20].
It means that when less than 10 percent of the rows in a
table satisfy a given predicate, then it is better to use an
IS to scan the table. However, recent studies as well as
our own experiments show that on todays modern hardware
this number is much smaller than 10 percent. The selec-
tivity break-even point depends on two major parameters:
the size of memory buffer pool, and the number of records
per page. Having larger memory buffer pool improves the
performance of the index scan as it is more likely that the
re-referenced table pages can be fetched from memory buffer
pool rather than disk. If the number of rows per page in-
creases (or equivalently the row size gets smaller) the perfor-
mance of index scan becomes worse, hence, the break-even
point shifts toward smaller selectivities. When a page con-
tains only a single row, the number of rows retrieved is equal
to the number of fetched pages. However, as the number of
rows per page increases, even at small selectivity, the num-
ber of pages that must be fetched quickly approaches 100%
of the table pages. When the available memory is small, this
number goes beyond 100% of table as some pages might be
fetched multiple times. In [26] an analytical formula for the
expected number of pages retrieved given the size of the ta-
ble, number of rows per page, and selectivity is proposed.
Many commercial optimizers use their own formulas for the
cost model of IS and FTS.
Some modern database management systems like SAP

SQL Anywhere support intra-query parallelism [10, 25]. Intra-
query parallelism involves having more than one CPU core
handle a single query simultaneously, so that portions of the
query are computed in parallel on multi-processor hardware.
Parallel full table scan and parallel index scan (hereafter,
PFTS and PIS, respectively) are two basic algebraic oper-
ators that can execute in parallel in SAP SQL Anywhere.
Parallel hash join, parallel nested loop join, parallel hash
filter and parallel hash groupby are some other operators
in SQL Anywhere for which intra-query parallelism is sup-
ported. The focus of our study is on PIS and PFTS.
Fig. 2 and Fig. 3 show a schematic view of PFTS and

PIS operators, respectively. In PFTS, each worker fetches a
table page and starts processing the rows within that page.

The workers fetch table pages one by one. As soon as a
worker finished processing all rows within a page, it fetches
the next available page and starts processing it. A prefetch-
ing mechanism is employed that guarantees prefetching up
to n blocks ahead of the page which is being currently pro-
cessed, asynchronously. Therefore, when a worker requests
the next available page the page may be already in mem-
ory buffer pool. To improve the I/O performance, instead of
prefetching pages one by one a large block consists of several
consecutive pages is read at a time. In practice, since full
table scan is a CPU intensive operator, by employing the
prefetching mechanism, usually the CPU computations do
not block for I/O, unless the maximum sequential I/O band-
width of the underlying storage device becomes a bottleneck.
Note that the I/O pattern of the table scan is sequential.
Thus, even in a commodity hard drive the throughput of
the I/O in table scan is very reasonable.

In PFTS, especially on SSD, the I/O queue depth would
be usually smaller than the number of workers. That is be-
cause in PFTS the speed of processing pages is usually lower
than the speed of fetching pages from disk into memory. In
other words, to increase the I/O queue depth more CPU
cores are required.

In PIS, one worker traverses the index from root to leaf
level and finds the range of leaf pages which must be ac-
cessed. Then, leaf pages are retrieved and processed by
multiple workers one by one. Each leaf page consists of
(key, row id) tuples. Each thread, after retrieving an in-
dex leaf page, goes over all row ids one by one and retrieves
corresponding table page for each row id. By profiling the
I/O queue depth of the SSD during the execution of the PIS
operator using n workers, a queue depth of n is clearly ob-
servable. Since the time interval between issuing consecutive
I/O request by each worker is much shorter than the I/O la-
tency of the storage device, at any point of time, during the
execution of PIS, the number of outstanding I/Os would be
n. This pattern is observable in all cases except in very se-
lective queries in which the number of leaf pages which are
required to be retrieved is smaller than the number of work-
ers. Thus, the I/O pattern of PIS with parallel degree n is
the parallel random I/O with constant queue depth of n.

3. CHARACTERIZING THE IMPACT OF I/O

PARALLELISM IN SCAN OPERATORS
In this section we characterize the impact of using I/O

parallelism in scan operators in SAP SQL Anywhere.We will
demonstrate how the query optimizer choice for the best
access method is affected by the exploitation of the parallel
I/O by the IS, FTS, PIS, and PFTS access methods. In
particular, we explore the magnitude of the shift from non-
parallel to parallel selectivity break-even points in different
configurations. Non-parallel and parallel selectivity break-
even points refer to particular points in the selectivity range
in which the runtime curve of the IS access method crosses
the FTS runtime curve, and the runtime curve of the PIS
access method crosses the PFTS runtime curve, respectively.

The main goal of the experiments presented in this section
is to show why the query optimizer must be aware of the
benefit of I/O parallelism for the underlying storage device.
As discussed in Sec. 2, intra-query parallelism in PIS and
PFTS is one way to increase the I/O queue depth. We will
also demonstrate how an effective prefetching mechanism
can increase the I/O queue depth in index scans.

351

Table 1: Experimental configurations
Experiment Table Rows per page Device

E1-HD T1 1 HDD
E1-SSD T1 1 SSD
E33-HDD T33 33 HDD
E33-SSD T33 33 SSD
E500-HDD T500 500 HDD
E500-SSD T500 500 SSD

3.1 Experimental Setup
As mentioned in Sec. 2, the number of rows per page

and the size of the available memory buffer pool are two
important factors in determining the position of the selec-
tivity break-even point. In order to consider the impact of
the number of rows per page, we performed three sets of
experiments. The first set of experiments will be performed
on a table in which there is only a single row in each table
page. This table is named T1. T1 represents an extreme
case which is not common in practice but it is a good can-
didate for observing the impact of very large row size on
performance of access methods. The second set of experi-
ments will be performed on a table in which there are 33
rows in each table page. This table is named T33. T33
represents a typical case. The third set of experiments will
be performed on a table which has 500 rows per page. This
table is named T500. T500 represents another extreme case
which is not very common in real workloads but it is a good
candidate to study the impact of very small row size in per-
formance of access methods. Each set consists of 2 experi-
ments. The first one is done on HDD and the second one is
done on SSD. In order to factor out the impact of memory
buffer pool a very small memory buffer pool with size 64MB
is used in all experiments. The configuration summary of
all experiments has been listed in Table 1.
In all experiments the following query is used:

Q: SELECT MAX(C1) FROM Ti
WHERE C2 BETWEEN low AND high

where low and high are used to control the selectivity. Ta-
bles T1, T33, and T500 include columns C1 and C2 plus
some additional columns. The additional columns are used
as padding to adjust the target row size. A non-clustered
index is created on C2. No index is created on C1. The
data type of all columns is integer and the inserted values
in each column follow a uniform random distribution. All
experiments have been done on a machine with a quad-core
Xeon W3530 2.80GHz CPU (with hyper-threading enabled),
a 7200 RPM hard disk drive, and a consumer level PCIe SSD
drive. The maximum advertised sequential throughput for
read and write of the SSD drive are about 1.5GB/s and
1.3GB/s, respectively. The maximum random throughput
for read and write of our SSD drive are 230K IOPS and
140k IOPS, respectively. Note that these numbers are the
maximum possible numbers while in reality the random per-
formance depends mainly on parameters like queue depth,
band size (physical address range in which the random I/Os
are issued), compressibility of data, rate of I/O and the size
of free space on SSD. In all our experiments the data is ran-
dom (non-compressible). Band size and queue depth are the
variable parameters in our experiments. Free space of the
SSD does not have any impact on our experiments as there
is no random writes in our experiments.

Some databases support a variation of index scan in which
before fetching table pages, row identifiers are sorted in the
order of page id [6, 24]. In this way, each table page will be
fetched at most once. This access method is usually called
sorted index scan. Although this method does not preserve
the index key order and needs an additional sorting stage
but it can be the optimal choice in a particular selectiv-
ity range. Since SAP SQL Anywhere does not support this
operator, we could not consider it in our experiments. How-
ever, the T1-related experiments will partially make up for
this omission.

3.2 Experimental Results
In Fig. 4, in all diagrams (a) to (f) the x-axis represents

a selectivity range. Note that the selectivity range and the
scale of the selectivity range in each diagram is different; the
selectivity range was chosen to contain all break-even points
for that specific experiment. In each diagram the y-axis
represents the total runtime of the execution of the query
Q. Each curve is related to the execution of the query with
a different access method. PISi and PFTSi refer to PIS and
PFTS with a parallel degree of i, respectively. To improve
the readability of the diagrams, the curves related to parallel
degrees 2, 4, 8, and 16 are emitted from all diagrams.

Fig. 4(a) shows the results of the experiment E1-HDD (see
Table 1). As mentioned before, this experiment represents
an extreme case in which there is only a single large row per
table page. Increasing the parallel degree gives an improve-
ment in runtime; however, the amount of this improvement
is only moderate. In average the runtime of PIS32 is about
2.37 times faster than the runtime of IS (non-parallel IS).
Increasing the parallel degree has almost no effect on per-
formance of PFTS. As expected, HDD does not show any
performance improvement with parallel I/O.

Fig. 4(b) shows the results of the same experiment on
SSD, E1-SSD. Increasing the parallel degree results in a sig-
nificant runtime improvement in PIS. The runtime of PIS32
is on average 16.6 times faster than the runtime of IS. For
some selectivity ranges this ratio goes up to 21.6 times. Even
in FTS, increasing the parallel degree results in improving
the runtime: the performance of PFTS32 is in average 3.5
times better than that of FTS. In general, FTS is a CPU in-
tensive operator. However, in this extreme case, there is
only one row per page. Therefore, by reading every ta-
ble page only one row must be processed. That is why
even by increasing the parallel degree to a number larger
than 8, which is the number of logical processor cores in
our machine we can still see some improvements in perfor-
mance. Unlike in E1-HDD in which we can see a small shift
from the non-parallel break-even point to the largest paral-
lel break-even point, i.e., from 0.55% for IS/FTS, to 1.4%
for PIS32/PFTS32, in E1-SSD the magnitude of this shift is
significantly larger. In E1-SSD the break-even point shifts
from 8% to 48%. This shows how important the impact of
parallel I/O could be in deciding between PFTS and PIS.
Note that, in all experiments, whenever we speak about par-
allel break-even point, we are referring to the crossing point
of the curves PIS32 and PFTS32.

Fig. 4(c) shows the results of experiment E33-HDD. This
experiment has been performed on HDD and represents a
typical number of rows per page, in this experiment 33. In
average only 2.5 times improvement is observable when we
compare PIS32 with IS. Here again increasing the paral-

352

(a)Experiment E1-HDD, one rows per page (b)Experiment E1-SSD, one row per page

(c)Experiment E33-HDD, 33 rows per page (d)Experiment E33-SSD, 33 row per page

(e)Experiment E500-HDD, 500 rows per page (f)Experiment E500-SSD, 500 row per page

Figure 4: Runtime of query Q using the IS, FTS, PIS and PFTS access methods over tables T1, T33 and
T500 on HDD and SSD

353

lel degree in FTS does not show any improvement. Both
parallel and non-parallel break-even points are significantly
smaller than their counterparts in E1-HDD. The magnitude
of shift in break-even point is also much smaller, i.e., from
0.02% for IS/FTS to 0.05% for PIS32/PFTS32.
Fig. 4(d) shows the results of the experiment E33-SSD.

This experiment is the same as the previous experiment but
on SSD. A very significant improvement from IS to PIS32 is
clearly observable. The average improvement is about 19.9
times with a maximum of 34 times in some specific selectiv-
ity ranges. Unlike on HDD, on SSD, even in PFTS, increas-
ing the parallel degree results in better performance. We
observed that PFTS8 is about 3.13 times faster than FTS
in average. Increasing parallel degree to a number larger
than 8 does not have any impact on performance. That
is because in this experiment we have 33 rows per table
page. Therefore, FTS is much more CPU intensive than in
E1-SSD. Thus, increasing the parallel degree to a number
larger than the number of logical cores would not be helpful
anymore.
Fig. 4(e) shows the result of the experiment E500-HDD.

This experiment represents another extreme case in which
there are a large number of rows per table page. It is ex-
pected that in a case like this we observe a very CPU inten-
sive FTS and a very small break-even point. Similar to E33-
HDD, in E500-HDD the average improvement of PIS32 over
IS is only about 2.5 times. However, unlike in E33-HDD, in
this experiment PFTS2 is about 2 times faster than FTS.
No more improvement is observable by increasing the par-
allel degree to a number larger than 2. In this experiment
FTS is extremely CPU intensive because a large number of
rows, i.e. 500, must be processed after reading every page.
Increasing the parallel degree from 1 to 2 gives FTS more
CPU power. However, when parallel-degree is 2, the max-
imum bandwidth of HDD (110MB/s) is already saturated.
Therefore, the CPU must wait for I/O. That is why a par-
allel degree larger than 2 will not help more. In E33-HDD,
since the number of rows per page was much smaller than
in E500-HDD, even a single CPU core was able to saturate
the maximum bandwidth of HDD. Therefore, in E33-HDD
we cannot observe any improvement from I/O parallelism.
As we expected in this extreme case, both parallel and non-
parallel break-even points are extremely small (0.005% and
0.0045%, respectively).
Fig. 4(f) shows the results of the experiment E500-SSD.

The average improvement of PIS32 over IS in this experi-
ment is 22.5 times which is even larger than in E33-SSD.
Compared to E1-SSD and E33-SSD, in E500-SSD we ob-
served a larger average improvement of PFTS8 over FTS.
PFTS8 is in average 4.4 times better than FTS. However,
by increasing the parallel degree to a number larger than
8, the PFTS will need more logical CPU cores to be able
to saturate the maximum bandwidth of SSD. In this experi-
ment the maximum utilized bandwidth of SSD is only about
250MB/s. This number is much smaller than the maximum
bandwidth of our SSD (1.5GB/s). It shows that in this ex-
treme case by increasing the number of CPU cores a smaller
runtime would be easily possible. It is expected that even in
E33-SSD increasing the number of CPU cores will result in
better performance in PFTS. The maximum utilized band-
width of the SSD in E33-SSD is about 581MB/s.
Table 2 shows the summary of shifts in break-even point

in different experiments. As you see the magnitude of shift

Table 2: Summary of shifts from non-parallel to par-
allel break-even points on HDD and SSD in different
experiments. NP- refers to the crossing point of IS
and FTS, and P- refers to the crossing point of PIS32
and PFTS32
Rows per page NP-HDD P-HDD NP-SSD P-SSD

1 0.55% 1.4% 8% 48%
33 0.02% 0.05% 0.4% 2.1%
500 0.0045% 0.005% 0.15% 0.5%

Table 3: Summary of I/O throughput in PFTS32
and FTS over different experiments.

PFTS32 I/O
throughput

FTS I/O
throughput

E1-HDD 100.45MB/s 96.80MB/s
E1-SSD 849.25MB/s 263.33MB/s
Ratio 8.45X 2.72X

E33-HDD 106.47MB/s 100.59MB/s
E33-SSD 581.46MB/s 192.16MB/s
Ratio 5.46X 1.91X

E500-HDD 110.94MB/s 50.77MB/s
E500-SSD 250.69MB/s 57.63MB/s

Ratio 2.25X 1.13X

exposed by SSD is much bigger than that exposed by HDD.
For parallel break-even points the crossing point of the PIS
and PFTS with maximum parallel degree, i.e., 32, is re-
ported. We repeated all the mentioned experiments with a
large memory buffer pool as well and again we observed that
the magnitude of shift exposed by SSD is much bigger than
that exposed by HDD. Compared to small-memory experi-
ments, in large-memory experiments in some cases, e.g. in
RPP=500, the amount of shift in break-event point on SSD
even increases by a factor of 2 while on HDD it remains al-
most constant. This shows that larger memory buffer pool
even amplifies the magnitude of shift in break-even point on
SSD. At the beginning of each experiment we flushed the
memory buffer pool to factor out the impact of pages which
are already in memory. Due to the lack of space we omitted
the details of the repeated experiments from the paper.

Table 3 summarizes the average I/O throughput of PFTS32
and FTS on SSD and HDD. As mentioned before, full table
scan is a CPU intensive operator. By increasing the number
of rows per page, the number of CPU instructions needed
to process a single page would be increased. In other words,
when the number of rows per page is small, CPU can quickly
process a page and request the next page. In this case the
CPU must wait for I/O because the processing time would
be smaller than I/O latency. In contrast, when there are
many rows per page, the time it takes for CPU to process
all those rows would be longer than the time it needs to fetch
the next page. In this case, I/O must wait for CPU. There-
fore, the I/O throughput of the underlying storage device
can potentially be underutilized.

In Table 3 the maximum I/O throughput of SSD can be
observed in PFTS in E1-SSD. In this extreme-case exper-
iment, since there is only one row per page, the CPU can
better utilize the I/O throughput of SSD. By increasing the
number of rows per page, as you see in E33-SSD and E500-
SSD, the I/O throughput of SSD would be reduced. That
is because we do not have enough CPU power to keep the

354

Figure 5: Index scan runtime with different parallel
degrees when prefetching is enabled in each worker.
Each curve represents a different parallel degree

number of outstanding I/Os in I/O queue of SSD high. By
increasing the number of CPU cores or by using more pow-
erful cores the I/O throughput of SSD in PFTS can be im-
proved. By comparing FTS and PFTS on HDD on E1-HDD
and E33-HDD no significant improvement in I/O through-
put is observable. That is because the maximum possible
I/O throughput of our HDD is about 110MB/s. This I/O
throughput can be achieved using a single core. Therefore,
increasing the parallel degree on HDD does not make any
improvement. However, in E500-HDD it can be noticed that
the I/O throughput of PFTS on HDD is almost 2 times bet-
ter than that of FTS. That is because in E500-HDD the
PFTS is extremely CPU intensive. Therefore, a single core
can utilize up to only about 50MB/s of the I/O through-
put. In order to utilize the maximum capacity of the I/O
throughput we need at least one additional core. After that,
the maximum capacity is reached. Thus, adding more cores
would not have any further impact.

3.3 Employing Prefetching
So far we showed that we can increase the I/O queue

depth in index scans using intra-query parallelism. However,
worker threads are limited resources and synchronization of
threads introduces extra overhead. A non-parallel plan is
usually preferable to a parallel plan when their estimated
costs are close to each other. As mentioned before, index
scan is not CPU intensive because of the low performance
of random I/O. While we would like to generate a high queue
depth to exploit I/O parallelism, doing so with a large num-
ber of worker threads is wasteful. An alternative is to employ
asynchronous prefetching. We implemented prefetching in
index scan of the SAP SQL Anywhere with each of M work-
ers prefetching up to n pages that are expected to be needed
in the near future. The expected peak queue depth is Mn.
For the sake of simplicity, we only prefetch table pages ref-
erenced by a single index leaf page. As a worker gets closer
to the last page which is referenced by a leaf index page, the
number of prefetched table pages for that worker is reduced
until it moves to another index leaf page. Since the number
of (key, row id) tuples in each index page is typically large,
this simplification does not have a large impact in the overall
runtime of the index scan.
Fig. 5 shows the impact of prefetching in index scans

with different parallel degrees (the number of workers used

to execute the PIS). In this experiment a range index scan
over a large table with 80M rows has been performed. The
number of rows in each page is 33. Each curve represents
the execution of the index scan with a different parallel de-
gree. The x-axis indicates n (the prefetch requests issued
by each worker) and the y-axis shows the total runtime. In
this experiment the selectivity of the predicate is 0.03As you
can see in Fig. 5, our proposed prefetching mechanism has
a significant impact in improving the runtime of the index
scan. However, prefetching n pages with 1 worker does not
give the same performance as using n workers due to simpli-
fications in the prefetching implementation which prevent it
from achieving an average queue depth of n and imperfect
overlapping of I/O and CPU resources. Nevertheless, by
combining prefetching with intra-query parallelism we can
get the maximum with fewer workers. For example, with
only 4 workers and a prefetching degree of 32, we can achieve
a performance even 35% better than using 32 workers and
no prefetching at all . This gives us an excellent perfor-
mance without the negative impacts of using a large number
of workers. Improving the proposed prefetching mechanism
can potentially result in even more improvements. Although
index scan can extensively benefit from prefetching, the im-
pact of prefetching in table scan is somewhat limited since,
the table scan is a CPU intensive operator and usually more
threads are needed to keep up with the higher data rate.
The experiments related to the impact of prefetching and
using larger block reads in table scan are omitted for space.

3.4 Summary of Conclusions
From the experiments presented in this section we can

conclude the following facts.

1. Exploiting parallel I/O can have a significant impact
on performance of the database operators. This con-
firms that the I/O queue depth can play an important
role in the I/O cost estimation of database operators.

2. The impact of exploiting parallel I/O is more pro-
nounced for SSD than HDD.

3. Parallel I/O on SSD can result in a considerable shift
in selectivity break-even point. Therefore, it is not
enough to simply use the parallel version of the existing
IS and FTS access methods with a constant prefetching
degree. The query optimizer must be aware of the
impact of the parallel I/O on the selectivity break-
even point and adjust its decision about selecting the
optimal access method accordingly.

4. Intra-query parallelism and prefetching are two mech-
anisms to generate higher I/O queue depths and com-
bination of these methods can result in better improve-
ment with a lower impact in the degree of inter-query
parallelism in database server.

4. QUEUE DEPTH AWARE DISK TRANS-

FER TIME MODEL
From the experimental results in the previous section we

observed that the selectivity break-even point faces a sig-
nificant shift when parallel access methods are employed on
SSD. Now, the question is how we can employ a mechanism
to make the query optimizer aware of the potential benefit

355

0

2000

4000

6000

8000

10000

12000

1 200 800 3200 2M 4M 8M

C
o

s
t
 (

m
ic

r
o

s
e

c
o

n
d

)

Band Size

DTT on HDD

0

50

100

150

200

250

300

350

1 200 800 3200 2M 4M 8M

C
o

s
t
 (

m
ic

r
o

s
e

c
o

n
d

)

Band Size

DTT on SSD

Figure 6: A sample DTT model for HDD and SSD.

of I/O parallelism and its impact on the I/O cost estima-
tion of the query plans. Based on this knowledge, the cost
model should correctly cost parallel access methods such
that the optimal access method using the optimal parallel
degree would be chosen as the best access method.

4.1 DTT Model
SAP SQL Anywhere employs an I/O cost model called

disk transfer time (DTT) model to estimate the cost of I/O
[1, 3, 4]. The DTT model is typically calibrated on the
customer’s specific hardware and it summarizes disk sub-
system behavior with respect to an application (in this case,
the DBMS). The DTT function models the amortized cost
of reading one page randomly over a band size area of the
disk. If the band size is 1, the I/O is sequential, otherwise it
is random. Band size is basically the size of a disk area (in
number of pages) from/to which the random I/Os are going
to be issued. In a DTT model calibrated for a hard disk
drive, increasing the band size results in significant increase
of the I/O cost. When the band size is larger it will span
over more cylinders on disk. Therefore, it is more likely that
for every retrieval the disk arm needs to be moved from one
cylinder to another, resulting in higher overall seek time.
By calibrating and using the DTT model, just by knowing
the band size in which a database operator is going to per-
form its I/Os, we can have a fairly accurate estimate of the
amortized cost of each individual page I/O. Fig. 6 shows the
calibrated DTT model of a hypothetical SSD and HDD. One
of the interesting properties of the DTT model is that it can
be calibrated easily for any particular hardware at any time.
This allows the database optimizer to be adapted to the new
hardware at any point of time and perform more accurately
after calibration. This eliminates the trouble of using in-
accurate hardcoded parameters which are tuned ahead of
time and used for any deployment of the database. This is
important because SAP SQL Anywhere was designed from
the outset to offer self-management features permitting its
deployment as an embedded database system.

4.2 QDTT Model
Although the DTT model works very well for modeling

the I/O cost of the commodity hard disk drives, it is not ac-
curate enough for modeling the behavior of modern storage
devices such as solid state drives. These storage devices will
benefit extensively from parallel I/O. Increasing the number
of outstanding I/Os in the I/O queue of these storage de-
vices results in a significant improvement in I/O throughput.
Therefore, for those database operators which are able to ex-
ploit I/O parallelism, the existing DTT model will overesti-
mate the I/O cost because it does not distinguish between
parallel and non-parallel I/O. Thus, it is assumed that the
cost of parallel I/O is similar to the cost of non-parallel I/O,

0

2000

4000

6000

8000

10000

12000

1 200 800 3200 2M 4M 8M

C
o

s
t
 (

m
ic

r
o

s
e

c
o

n
d

)

Band Size

QDTT on HDD
1

2

4

6

16

32

0

50

100

150

200

250

300

350

1 200 800 3200 2M 4M 8M

C
o

s
t
 (

m
ic

r
o

s
e

c
o

n
d

)

Band Size

QDTT on SSD1

2

4

8

16

32

Figure 7: A sample QDTT model for HDD and SSD.

which is true for commodity hard drives. Consequently, the
optimizer will not prefer a parallel plan to a non-parallel
plan while the real cost of a parallel plan is much cheaper
for solid state drives.

Even if we force the optimizer to always choose a parallel
plan over its non-parallel version (assuming that in terms of
CPU cost the benefit of parallelism is more than its over-
head) it may still choose a suboptimal plan. Suppose for
plans P1 and P2 both parallel and non-parallel versions are
available. Suppose the optimizer is forced to always prefer a
parallel plan over a non-parallel plan but it uses the current
DTT model for I/O cost estimation. It is possible that the
estimated cost of the non-parallel version of P1 using the
DTT model is cheaper than that of P2 while the real cost of
the parallel version of P1 is more than the parallel version
of P2. In this case the optimizer will choose the parallel
version of P1 while the parallel version of P2 is the optimal
choice. For example, for a specific selectivity, non-parallel
full table scan might be a cheaper access plan compared to
non-parallel index scan. However, it is possible that for the
same selectivity, parallel index scan be cheaper than par-
allel full table scan. These inaccurate optimizer decisions
are possible because the DTT model does not consider the
benefit of doing I/O in parallel at all.

In order to solve this problem, we introduce an extension
of the DTT model which considers the I/O queue depth as
well as band size. The new model is called queue-depth-
aware disk transfer time (QDTT). The DTT model is basi-
cally a function that takes the band size as an input param-
eter and returns the amortized cost of reading randomly a
single page within the given band size. Unlike DTT model,
the QDTT model is a function that takes two parameters
band size and queue depth and returns the amortized cost of
a random I/O within the given band size, when the queue
depth of the storage device is equal to queue depth. For
database operators which can benefit from I/O parallelism
this new model provides a much more accurate estimation
of the I/O cost. It is clear that this model will be more ben-
eficial when the data is located on a storage device that can
benefit from I/O parallelism (i.e., high queue depth). Solid
state drives and multiple-spindle hard disk drives are exam-
ples of such devices. Moreover, for single spindle hard disk
drives, the QDTT model maintains the same functionality
of the DTT model. Therefore, the new QDTT model can
be considered as a generalization of the DTT model.

Fig. 7 shows a calibrated QDTT model of an SSD drive
and a single spindle HDD drive. Each curve represents a
different queue depth. As you see by increasing the queue
depth the amortized cost of one I/O (in microsecond) de-
creases significantly. In a solid state drive there are no mov-
ing parts. Therefore, it is expected that band size must
not have a considerable impact on I/O performance. How-

356

ever, it can be seen that in many modern solid state drives
the band size is still an important parameter in estimating
the cost of random I/O. Nevertheless, this impact is not as
serious as what we can see on calibrated models for single-
spindle hard disk drives. Moreover, in SSD, as you see, by
increasing queue depth, the impact of band size in I/O cost
is reduced. In any case, a calibrated QDTT model helps
the optimizer to get rid of the internal complexities of the
underlying storage subsystem for I/O cost estimation. The
only things the optimizer needs to know are band size and
queue depth. The QDTT model will take care of the rest.

4.3 Experimenting with QDTT Model
Here we would like to perform some experiments to see the

impact of using the new model in the query optimizer. In the
cost estimation function of PIS and PFTS operators there
is a call to DTT function. The cost estimation function first
estimates the band size on disk from which the physical I/O
fetches would be issued. This band size would be sent to the
DTT model as an input parameter and the DTT model will
return the amortized cost of reading a page randomly within
the given band size. Then the number of pages needed to be
retrieved during the scan is estimated. By multiplying this
number with the amortized cost of reading a single page the
total I/O cost is calculated. We changed the cost estima-
tion functions of PIS and PFTS such that they use QDTT
model instead of DTT model. This time, in addition to band
size, parallel degree of the operator would be passed to the
model as well. The calibrated QDTT model must know the
parallel degree and it will return an accurate cost estimate.
By having a more accurate estimation of the I/O cost, the
optimizer would be able to make a closer to optimal choice
between PIS and PFTS operators. When the optimizer is
using DTT model, it would not realize that there might be
some benefits (in terms of I/O cost) from executing the oper-
ator in parallel. From the perspective of optimizer, the I/O
cost of a parallel and non-parallel access method would be
similar. Consequently, the optimizer would prefer a paral-
lel access method over a non-parallel access method only in
cases in which the CPU cost benefit of doing things in par-
allel will surpass the overhead of parallelism. By using the
new QDTT model, the optimizer will consider the benefit of
parallelism not only in CPU cost but also in I/O cost.
Fig. 8 shows the runtime of Q before and after using

QDTT model for experiments E1-SSD, E33-SSD and E500-
SSD. In each diagram, the old optimizer curve represents
the runtime of the query when the DTT model is used by
optimizer, the new optimizer curve represents the runtime
of the query when the QDTT model is employed by the op-
timizer, and the speedup curve indicates how many times
the query runtime has improved after utilizing the QDTT
model. The y-axis in right side of each diagram represents
the amount of speedup. As you see by using the new model
a significant improvement in runtime of the optimizer is ob-
servable. The maximum speedups in E1-SSD, E33-SSD and
E500-SSD are 19.7, 16.9, and 13.7, respectively.
The old optimizer uses DTT model and since it does not

realize the benefit of parallel I/O it always prefers a non-
parallel method over a parallel one for these experiments.
Note that in all of the above experiments the optimizer has
the knowledge that none of the table pages or index pages
is in the memory buffer pool (SQL Anywhere maintains
statistics on how many table and index pages are currently

Figure 8: Comparing the performance of DTT-
based and QDTT-based optimizers

cached). Since the estimated I/O cost is much more than the
estimated CPU cost, and because the parallel plan evolves
some extra overhead cost for synchronization and coordi-
nation, the CPU benefit of parallel plans does not have any
impact on the decision of the optimizer. Therefore, the opti-
mizer prefers a non-parallel plan. By employing the QDTT
model, the optimizer would be aware of the benefit of par-
allel I/O for the SDD used in these experiments. Therefore,
parallel plans would be preferred to non-parallel plans based
on the correct cost estimations.

In these experiments the maximum allowable parallel de-
gree for a parallel access method is set to 32. In fact after
using QDTT in all three experiments a parallel plan with
parallel degree 32 is selected. In all three experiments, the
amount of improvement for low selectivities is high, then it
starts to drop and finally it gets constant. When the amount
of improvement gets constant both new and old optimizers
are choosing full table scan. By using QDTT, for a very
large range of selectivities we can observe at least 3 to 5
times improvement while for a small range of selectivities
we can achieve up to 20 times improvement.

In all the performed experiments a single query is running
on the system at a time. Therefore, in all cases, in addition
to the estimated band size, the optimizer simply needs to
pass the maximum beneficial queue depth(here 32), to the
QDTT model. When multiple queries are running on the
system concurrently, the optimizer needs to pass a lower
queue depth number to the QDTT model. The optimal
decision of the optimizer about the queue depth parameter
depends on the concurrency level of the system and the type
of database operators in the query plans. Studying the role

357

(a) GW method (b) AW method

Figure 9: Calibrated QDTT model using GW (a)
and AW (b) methods on SSD

of these factors in choosing the proper queue depth is out of
the scope of this paper and is considered as a future work.

4.4 Calibrating QDTT Model
In order to calibrate the QDTT model for a band size of

b and queue depth of qd we need to measure the amortized
cost of a single page I/O, when the I/Os are randomly is-
sued, within a band size of b when the average queue depth
is qd. The amortized cost of a single page I/O will then
be calculated by dividing the total measured I/O time by
the number of issued I/Os. One way of increasing the I/O
queue depth is to use multiple threads. Each thread issues a
synchronous page I/O and as soon as that synchronous I/O
finished, it issues another synchronous I/O. Since the pages
are just read, the total CPU time for processing a page is
almost zero; hence the CPU time compared to the I/O la-
tency is negligible. Therefore, by using n threads we can
keep the average I/O queue depth constantly equal to n.
Another method for increasing queue depth is using a sin-

gle thread and prefetching pages using asynchronous I/Os.
In order to use prefetching to increase the I/O queue depth
we have proposed two methods. The first method is called
group waiting (GW). In GW, at first n I/O requests would
be issued asynchronously. Then the thread would wait for
all of them to finish. As soon as all of them are finished, an-
other group of n asynchronous I/Os would be issued. This
process would be continued until all pages which are sched-
uled to be read from within a band size of b are read.
The second proposed method is called active waiting (AW).

In AW, n buffers are used. At first a group of n asyn-
chronous I/Os are issued by the thread into the buffers 1
to n. Then, the thread would wait for the I/O associated to
the first buffer to finish. As soon as that I/O was finished,
the thread issues another asynchronous I/O into buffer 1
and then immediately waits for the I/O associated to the
buffer 2 to finish. As soon as the I/O associated to buffer
2 was finished, the thread issues another asynchronous I/O
into buffer 2 and then immediately waits for the I/O asso-
ciated to the buffer 3. This process continues until the I/O
associated to nth buffer is finished. Then, the thread issues
another I/O into buffer n and then waits for associated I/O
to buffer 1 to finish. This circular process continues until all
pages are read.
In order to reduce the calibration time for any given cali-

bration point we need to restrict the number of page reads
during the calibration. The maximum number of pages read
during the calibration is defined by a threshold called M .
Currently M is equal to 3200 pages. No matter how big the
file or band size are, the total number of page reads for any
calibration point would be at most equal to M.

Figure 10: Differences between the costs computed
by AW and GW methods on SSD

Figure 11: Difference between the costs computed
by AW and GW methods on RAID (8-spindles)

If b is smaller than M, then the file would be divided into
multiple blocks of size b. In this case the number of blocks
would be equal to min(M, (numberofpagesinfile)/b), and
the number of reads per block would be equal to b.

If b is larger than M then we will have only a single block
with size b. In this case, the number of reads from that single
block is equal to M and the block size is b and the starting
offset of reads is selected randomly. Note that before start-
ing to read from each block a sequence of P non-repetitive
random numbers from 0 to b are generated. P is equal to
the number of pages read from the block and in practice it is
equal to the minimum of b and M. The I/Os would be issued
to each block in the same order as the random numbers in
the generated sequence. When there are multiple blocks the
I/Os would be issued to one block at a time until all blocks
are processed.

Fig. 9 (a) and (b) show the calibrated QDTT model on
SSD based on GW and AW methods, respectively. In each
diagram, each point represents the average of 50 repetitions
of the calibration process for that point. It can be clearly
seen that the times obtained using GW and AW methods
are very similar.

Fig. 10 shows the differences between the costs computed
by AW and GW methods on SSD. The maximum observed
difference is about 7 microseconds. Compared to standard
deviations in each individual method which in some points
are up to 40 microseconds, the difference between the costs
in the diagrams generated by AW and GW methods is quite
negligible. We can conclude that the AW and GW methods
show very similar output on SSD. Therefore, either of them
can be used for calibrating the QDTT model on SSD.

The similarity between the AW and GW methods on SSD
cannot be observed on an HDD. On HDD, AW calibration
points are generally smaller than their counterparts obtained
using the GW method. Fig. 11 shows the differences be-
tween costs obtained by GW and AW methods on a RAID
array with eight 15000RPM drive. As you see this time AW
shows significantly smaller costs.

358

The differences between the results using the GW and AW
methods on SSD and those obtained by the same methods
on HDD can be explained as follows. On SSD, the I/O la-
tency is much lower than on HDD. In addition, due to the
SSD high parallel I/O capability, the latency of non-parallel
and parallel I/Os (up to a particular parallel degree) are al-
most the same. For example, the maximum beneficial par-
allel degree of our SSD is 32. On this SSD, if we issue 32
I/Os, the latency of all 32 I/Os would be almost the same.
In other words, on SSD, up to a particular parallel degree,
increasing the queue depth does not have any considerable
negative impact on I/O latency. Therefore, when using the
GW method we wait for the first I/O in a group to be fin-
ished, after finishing that I/O, the next I/Os in the group
are already finished as well. Therefore, waiting time for the
next I/O would be almost zero. Although we wait for the
next I/Os, when using the GW method, the waiting time is
almost zero. Thus the GW will behave like the AW method
on SSDs. On HDD, by increasing the queue depth, although
the throughput improves, the latency increases. Therefore,
in that case the GW method will not behave like the AW
method. Thus, GW would not be able to simulate an I/O
queue depth equal to the size of the group. Therefore, in a
general calibration method which is supposed to be used on
all devices, the AW method must be the method of choice.

4.5 Bilinear Interpolation
Calibrating the QDTT model for all queue depths from 1

to 32 will increase the calibration time substantially. This
would be a more serious issue when the model is calibrated
on a HDD drive. Therefore, we need to somehow reduce the
number of calibration points and use a proper interpolation
method to estimate the value of non-calibrated points.
For the original DTT model, a linear interpolation method

is used to calculate the cost associated to band sizes for
which there is no calibration point in the computed model.
We decided to use the same approach to calculate the cost
associated with the queue depths for which there is no cal-
ibrated point in the QDTT model. Namely, we will first
interpolate linearly on the band size and then on the queue
depth. This method is also known as bilinear interpolation.
Now, the question is, from 1 to 32, which queue depths

can be used by the linear interpolation more accurately. We
assumed that queue depths 1, 2, 4, 8, 16, and 32 are the
best candidates. In other words, increasing the queue depth
in an exponential fashion during calibration will result in a
reasonably accurate model for which bilinear interpolation
will be used for missing points. To prove the validity of our
assumption we performed an extensive set of experiments
on different drives.
In Fig. 12 each diagram represents the cost of a random

read for a given band size over different queue depths on
an 8-spindle RAID. The red square-shaped points represent
the observed I/O times associated to queue depths 1, 2,
4, 8, 16 and 32. As you see, calibrating for these points
and employing linear interpolation for other points (blue
diamond points in Fig. 12) is a fairly accurate approach.
This confirms the validity of our assumption. We repeated
the same experiments on RAID arrays of different sizes as
well as on SSD and observed the same results. The only
exception is a single 7200RPM HDD drive. As discussed in
Sec. 4.6, for this drive there is no need for interpolation as
the calibration will be done only for queue depth 1.

Figure 12: QDTT on RAID (8 spindles). The x-axis
represents the queue depth and the y-axis represents
the cost of reading a single page in microsecond

4.6 Improving the Calibration Time
Compared to DTT model in the QDTT model calibration

time is much longer. That is because there are more calibra-
tion points in the QDTT model. For devices which cannot
benefit from parallel I/O, performing calibration for high
queue depths is pointless. That is because the optimizer will
never use the costs associated to those high queue depths.

In order to reduce the calibration time we can take ad-
vantage of the mentioned fact and propose a control mech-
anism that stops calibration when continuing calibration is
not beneficial. The mechanism works as follows. The cali-
bration starts from queue depth 1. After calibrating all band
sizes for queue depth 1 the queue depth is doubled and the
calibration will be performed for queue depth 2. For each
queue depth the calibration is done from the largest to the
smallest band size. After that the calibration of the largest
band size in queue depth 2 is finished, we check the calibra-
tion point associated to the largest band size in queue depths
1 and 2. If increasing queue depth has resulted in at least T
percent improvement we will continue the calibration. Oth-
erwise, the calibration will be stopped and a default value
slightly larger than the measured costs for queue depth one
is assigned to the remaining calibration points. If the cali-
bration did not stop, after calibrating the largest band size
in next queue depth we check the stop condition again. This
approach results in a significant improvement in calibration
time especially for devices with weak parallel I/O capability.

Another benefit of this approach is that it adjusts the
calibration runtime dynamically based on the parallel I/O
capability of the device. We found experimentally that 20 is
a reasonable value for T. Reducing the calibration time also
increases the feasibility of automatic frequent calibrations
during the idle I/O cycles of the system. Investigating the
possibility of automatic frequent calibrations during the idle
I/O cycles of the system is an interesting avenue for future
research.

359

5. CONCLUSIONS
Previous work (outlined in Section 1) has investigated

query execution for data stored on SSDs; however, the im-
pact on query optimization has not been sufficiently ex-
plored. In this paper we showed how important it is for
the query optimizer to be aware of the benefit of I/O par-
allelism and we proposed a practical approach to make the
query optimizer parallel I/O aware. The QDTT model can
be efficiently calibrated and it allows the optimizer to ac-
curately choose among execution alternatives on a range of
storage devices.
In the current paper we consider choosing between IS,

FTP, PIS and PFTS. Investigating the behavior of more
complex database operators and more complex queries is an
interesting topic for further research, as is consideration of
concurrent requests.

6. REFERENCES

[1] M. Abouzour, I. T. Bowman, P. Bumbulis,
D. DeHaan, A. K. Goel, A. Nica, G. N. Paulley, and
J. Smirnios. Database self-management: Taming the
monster. IEEE Data Eng. Bull., 34(4):3–11, 2011.

[2] D. Bausch, I. Petrov, and A. Buchmann. On the
performance of database query processing algorithms
on flash solid state disks. In Database and Expert
Systems Applications (DEXA), 2011 22nd
International Workshop on, pages 139–144. IEEE,
2011.

[3] I. T. Bowman, P. Bumbulis, D. Farrar, A. K. Goel,
B. Lucier, A. Nica, G. N. Paulley, J. Smirnios, and
M. Young-Lai.

[4] I. T. Bowman, P. Bumbulis, D. Farrar, A. K. Goel,
B. Lucier, A. Nica, G. N. Paulley, J. Smirnios, and
M. Young-Lai. Sql anywhere: An embeddable dbms.
IEEE Data Eng. Bull., 30(3):29–36, 2007.

[5] F. Chen, R. Lee, and X. Zhang. Essential roles of
exploiting internal parallelism of flash memory based
solid state drives in high-speed data processing. In
High Performance Computer Architecture (HPCA),
2011 IEEE 17th International Symposium on, pages
266–277. IEEE, 2011.

[6] J. Cheng, D. Haderle, R. Hedges, B. Iyer,
T. Messinger, C. Mohan, and Y. Wang. An efficient
hybrid join algorithm: a db2 prototype. In Data
Engineering, 1991. Proceedings. Seventh International
Conference on, pages 171–180, Apr 1991.

[7] J. Do and J. M. Patel. Join processing for flash ssds:
remembering past lessons. In Proceedings of the Fifth
International Workshop on Data Management on New
Hardware, pages 1–8. ACM, 2009.

[8] J. Do, D. Zhang, J. M. Patel, D. J. DeWitt, J. F.
Naughton, and A. Halverson. Turbocharging dbms
buffer pool using ssds. In Proceedings of the 2011
ACM SIGMOD International Conference on
Management of data, pages 1113–1124. ACM, 2011.

[9] P. Gassner, G. M. Lohman, K. B. Schiefer, and
Y. Wang. Query optimization in the ibm db2 family.
IEEE Data Eng. Bull., 16(4):4–18, 1993.

[10] G. Graefe. Volcano-an extensible and parallel query
evaluation system. Knowledge and Data Engineering,
IEEE Transactions on, 6(1):120–135, 1994.

[11] J. Gray and B. Fitzgerald. Flash disk opportunity for
server applications. Queue, 6(4):18–23, 2008.

[12] W.-H. Kang, S.-W. Lee, and B. Moon. Flash-based
extended cache for higher throughput and faster
recovery. Proceedings of the VLDB Endowment,
5(11):1615–1626, 2012.

[13] I. Koltsidas and S. D. Viglas. Flashing up the storage
layer. Proceedings of the VLDB Endowment,
1(1):514–525, 2008.

[14] I. Koltsidas and S. D. Viglas. Data management over
flash memory. In Proceedings of the 2011 ACM
SIGMOD International Conference on Management of
data, pages 1209–1212. ACM, 2011.

[15] E.-M. Lee, S.-W. Lee, and S. Park. Optimizing index
scans on flash memory ssds. ACM SIGMOD Record,
40(4):5–10, 2012.

[16] S.-W. Lee, B. Moon, and C. Park. Advances in flash
memory ssd technology for enterprise database
applications. In Proceedings of the 2009 ACM
SIGMOD International Conference on Management of
data, pages 863–870. ACM, 2009.

[17] S.-W. Lee, B. Moon, C. Park, J.-M. Kim, and S.-W.
Kim. A case for flash memory ssd in enterprise
database applications. In Proceedings of the 2008
ACM SIGMOD international conference on
Management of data, pages 1075–1086. ACM, 2008.

[18] X. Liu and K. Salem. Hybrid storage management for
database systems. Proceedings of the VLDB
Endowment, 6(8):541–552, 2013.

[19] S. Pelley, T. F. Wenisch, and K. LeFevre. Do query
optimizers need to be ssd-aware? ADMS’11, 2011.

[20] R. Ramakrishnan and J. Gehrke. Database
management systems. Osborne/McGraw-Hill, 2000.

[21] H. Roh, S. Park, S. Kim, M. Shin, and S.-W. Lee.
B+-tree index optimization by exploiting internal
parallelism of flash-based solid state drives.
Proceedings of the VLDB Endowment, 5(4):286–297,
2011.

[22] P. G. Selinger, M. M. Astrahan, D. D. Chamberlin,
R. A. Lorie, and T. G. Price. Access path selection in
a relational database management system. In
Proceedings of the 1979 ACM SIGMOD international
conference on Management of data, pages 23–34.
ACM, 1979.

[23] D. Tsirogiannis, S. Harizopoulos, M. A. Shah, J. L.
Wiener, and G. Graefe. Query processing techniques
for solid state drives. In Proceedings of the 2009 ACM
SIGMOD International Conference on Management of
data, pages 59–72. ACM, 2009.

[24] P. Valduriez. Join indices. ACM Trans. Database
Syst., 12(2):218–246, June 1987.

[25] Y. Wang. Db2 query parallelism: Staging and
implementation. In Proceedings of the 21th
International Conference on Very Large Data Bases,
pages 686–691. Morgan Kaufmann Publishers Inc.,
1995.

[26] P. Yue and C. Wong. Storage cost considerations in
secondary index selection. International Journal of
Computer & Information Sciences, 4(4):307–327, 1975.

360

