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ABSTRACT
As the use of machine learning (ML) permeates into diverse
application domains, there is an urgent need to support a
declarative framework for ML. Ideally, a user will specify an
ML task in a high-level and easy-to-use language and the
framework will invoke the appropriate algorithms and sys-
tem configurations to execute it. An important observation
towards designing such a framework is that many ML tasks
can be expressed as mathematical optimization problems,
which take a specific form. Furthermore, these optimiza-
tion problems can be efficiently solved using variations of
the gradient descent (GD) algorithm. Thus, to decouple a
user specification of an ML task from its execution, a key
component is a GD optimizer. We propose a cost-based GD
optimizer that selects the best GD plan for a given ML task.
To build our optimizer, we introduce a set of abstract oper-
ators for expressing GD algorithms and propose a novel ap-
proach to estimate the number of iterations a GD algorithm
requires to converge. Extensive experiments on real and syn-
thetic datasets show that our optimizer not only chooses the
best GD plan but also allows for optimizations that achieve
orders of magnitude performance speed-up.

1. INTRODUCTION
Can we design a Machine Learning (ML) system that can

replicate the success of relational database management sys-
tems (RDBMs)? A system where users’ needs are decoupled
from the underlying algorithmic and system concerns? The
starting point of such an attempt is the observation that,
despite a huge diversity of tasks, many ML problems can be
expressed as mathematical optimization problems that take
a very specific form [6, 10, 22]. For example, a classification
task can be expressed as

f(w) =
∑

i∈data

`(xi, yi,w) +R(w) (1)

where xi is the assembled feature vector, yi is the binary
label, w is the model vector, ` is the loss function that we
seek to optimize, and R is the regularizer that helps guiding
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Figure 1: Motivation.

the algorithm to pre-defined parts of the model space. A key
(but now well-known) observation is that if ` and R are con-
vex functions then a gradient descent (GD) algorithm can
arrive at the global optimal solution (or a local optimum for
non-convex functions). One can apply GD to most of the su-
pervised, semi-supervised, and unsupervised ML problems.
For example, we can apply GD to support vector machines
(SVM), logistic regression, matrix factorization, conditional
random fields, and deep neural networks.

The left-side of Figure 1 shows the general workflow when
treating ML tasks as an optimization problem using GD.
Even if one maps an ML task to an optimization problem
to solve it with GD, she is still left with the dilemma of
which GD algorithm to choose. There are different GD al-
gorithms proposed in the literature, with three fundamental
ones: batch GD (BGD), stochastic GD (SGD), and mini-
batch GD (MGD). Each of them has its advantages and
disadvantages with respect to accuracy and runtime perfor-
mance. For example, BGD gives the most accurate results,
but requires many costly full scans over the entire data.
In addition, in contrast to the current understanding (that
SGD is always fastest) there is no single algorithm that out-
performs the others in runtime. The right-side of Figure 1
shows that indeed: (i) for the adult dataset MGD takes less
time to converge to a tolerance value of 0.01 for SVM; (ii)
for the covtype BGD is faster for SVM and tolerance 0.01;
and (iii) for the rcv1 dataset SGD is the winner for logistic
regression to converge to a tolerance of 10−4. In particular,
we observe that a GD algorithm can be more than one order
of magnitude slower than another. This is the case for batch
and SGD in Figure 1. Thus, building an optimizer able to
choose among these GD algorithms is a clear need.

We initiate research towards that goal: how can we de-
sign a cost-based optimizer for ML systems that takes an ML
task (specified in a declarative manner), evaluates different
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ways of executing the ML task using a GD algorithm, and
chooses the optimal GD execution plan? We caution that
there are substantial differences between query optimizers
for RDBMSs and ML systems that make the above goal
quite challenging. Query optimizers used in RDBMs collect
statistics about tables and query workload to generate cost
estimates for different query execution plans. In contrast,
ML optimizers have a cold start problem as the best execu-
tion plan is often query and data dependent (it also depends
on the accuracy required by users). Due to the non-uniform
convergence nature of ML algorithms, any collected statis-
tics is often rendered useless when query or data changes.
Thus, the challenge resides on how to bring the cost-based
optimization paradigm, which is routinely used in databases,
to ML systems. A GD optimizer must be nimble enough
to identify the cost of different execution plans under very
strict user constraints, such as accuracy. A key ingredient of
a cost-based optimizer for iterative-convergent algorithms is
to be able to estimate both (i) the cost per iterations and
(ii) the number of iterations. Already, the latter is a hard
problem by itself that has only been addressed in theory.
However, the theoretical bounds provided in the literature
can hardly be used in practice as they are far from reality.

We present a cost-based optimizer that frees users from
the burden of GD algorithm selection and low-level imple-
mentation details. In summary, after giving a brief GD
primer (Section 2) and the architecture of our optimizer
(Section 3), we make the following contributions:

(1) We propose a concise and flexible GD abstraction. The
optimizer leverages this abstraction for parallelization and
optimization opportunities. (Section 4)

(2) We propose a speculation-based approach to estimate
the number of iterations a GD algorithm requires to con-
verge. To the best of our knowledge, this is the first solution
proposed for estimating the number of iterations of iterative-
convergent algorithms in practical scenarios. (Section 5)

(3) We show how our abstraction allows for new opti-
mization opportunities to generate different GD plans (Sec-
tion 6). We then describe an intuitive cost model to estimate
the cost per iteration in each GD execution plan (Section 7).

(4) We implemented our optimizer in ML4all, an ML sys-
tem built on top of Rheem [4,5], our in-house cross-platform
system. We use Java and Spark as the underlying plat-
forms and compared it against state-of-the-art ML systems
on Spark (MLlib [2] and SystemML [9]). Our optimizer al-
ways chooses the best GD plan and achieves performance
of up to more than two orders of magnitude than MLlib
and SystemML as well as more than one order of magnitude
faster than the abstraction proposed in [12]. (Section 8)

2. GRADIENT DESCENT PRIMER
ML tasks can be reduced to mathematical optimization

problems. This problem entails minimizing Equation 1 to
arrive at the optimal solution w∗. The algorithm of choice
for optimizing f(w) is GD that we now briefly explain.

Suppose f(w) is a sufficiently smooth function. We can
use Taylor’s Series to expand f(w) in the w’s neighborhood.

f(w + αε) ≈ f(w) + α∇f(w)T ε

Now, the choice of ε which will minimize the value in the
neighborhood must be ε = −∇f(w). Thus, starting at an
initial value w0, we iterate as follows, until convergence:

wk+1 = wk − αk∇f(wk) (2)

αk is called the step size and has the property that αk → 0
as k → ∞. The following two reasons explain why GD
algorithms are so popular in ML:

(1) If f is convex, then, starting from any initial value w0, a
GD algorithm guarantees to converge to the global optimum.

(2) If f is convex and non-smooth, the gradient can be re-
placed by a sub-gradient (a generalization of the gradient
operator) and the convergence guarantee still holds, albeit
at a slower rate of convergence.

Not only one can express many ML tasks as convex pro-
grams, but also ML tasks take on a very specific form as
specified in Equation 1. Abstractly, ML tasks reduce to the
optimization problem

∑n
i=1 fi(w) + g(w). Due to the lin-

earity of the gradient operator ∇, we have ∇(
∑n
i=1 fi(w) +

g(w)) =
∑n
i=1∇(fi(w))+∇(g(w)). Note that data directly

appears only in the first term
∑n
i=1∇(fi(w)). In large data,

computating this term is the main bottleneck that needs to
be addressed to make the system scalable. Basically, there
are three GD algorithms to compute

∑n
i=1∇(fi(w)): Batch

GD, Stochastic GD, and Mini-Batch GD.

Batch GD (BGD). This algorithm keeps the term as it
is, i.e., no approximation is carried out. In which case the
cost of computing the gradient expression is O(n), where n
is the number of data points. Thus, each iteration of the
GD algorithm requires a complete pass over the data set.

Stochastic GD (SGD). This algorithm takes a single
random sample r from the data set for approximation, i.e.,
∇fr(w) ≈

∑n
i=1∇(fi(w)). Furthermore, by linearity of Ex-

pectation: Er(fr(w)) =
∑n
i=1∇(fi(w)). Thus, the cost of

each iteration is O(1), i.e., completely independent of the size
of the data. This has made SGD particularly attracting for
large datasets. However, as at each iteration, the SGD only
provides an approximation of the actual gradient term, the
total number of iterations required to attain a pre-specified
convergence guarantee increases.

Mini-Batch GD (MGD). This is a hybrid approach
where a small sample of size b is randomly selected from
the dataset to estimate the gradient. For example, if B =
{r1, . . . , rb} is a random sample, the gradient is then esti-
mated as follows:

∑
ri∈B ∇fri(w) ≈

∑n
i=1∇(fi(w)). MGD

is also stochastic and independent of the dataset size.

3. GD OPTIMIZER ARCHITECTURE
We are inspired from relational database optimizers to de-

sign a cost-based optimizer for gradient descent. Users send
a declarative query and the optimizer outputs the optimal
plan that satisfies their requirements. Figure 2 illustrates
the architecture of our cost-based optimizer composed of
four main components: a GD abstraction, an iterations es-
timator, a plan search space, and a cost model. Overall, the
optimizer first uses the GD abstraction, which contains the
set of GD operators, to translate a declarative query into a
GD plan. It then produces an optimized GD plan based on
a cost model, which relies on (i) an iterations estimator to
know in how many iterations a GD plan converges and (ii) a
couple of optimizations that define the GD search space.

Declarative GD Language. Users can interact with our
GD optimizer through a simple declarative language. We
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briefly sketch the language with the query below. Further
details can be found in Appendix A.

run classification on training data.txt
having time 1h30m, epsilon 0.01, max iter 1000;

This query states that the user wants to build a classifi-
cation model for the given dataset training data.txt, where
she wants (i) her results before one hour and a half, (ii) an
epsilon value (i.e., tolerance) smaller or equal to 0.01, and
(iii) to run until convergence to this epsilon value or for a
maximum of 1, 000 iterations.

Concise GD Abstraction. Informally, GD-based algo-
rithms exhibit three major phases: (i) a preparation phase,
where the algorithm parses the dataset and sets the relevant
parameters, (ii) a processing phase, where the core compu-
tations occur, such as parameters update, and (iii) a con-
vergence phase, where the algorithm determines if it should
perform another iteration or not. Observing this pattern al-
lows us to propose seven GD operators that are sufficient to
express most of the GD-based algorithms (Section 4).

Speculative GD Iterations Estimator. As most ML
algorithms are iterative, it is crucial to estimate the number
of iterations required to converge to a tolerance value. We
propose a novel speculation-based approach to estimate the
number of iterations for any GD algorithm. In a few words,
we obtain a sample of the data and run a GD algorithm
under a fixed time budget. Based on the observations, we
estimate the iterations required by the algorithm (Section 5).

GD Plan Space. Given an ML task specified using our
abstraction, the optimizer needs to explore the space of all
possible GD execution plans. ML tasks could be solved using
any of the BGD, MGD, or SGD algorithms. Each of these
options forms a potential execution plan. Transforming an
abstracted plan to an execution plan enables us to introduce
some core optimizations, namely lazy transformation and
efficient data skipping and, thus, significantly speed up the
execution of GD-based algorithms in many cases (Section 6).

GD Cost Model. Once all possible GD execution plans
are defined, our optimizer uses a cost model to identify the
best execution plan in this search space. Note that, like
database optimizers, the main goal of our optimizer is to
avoid the worst execution plans. We provide a cost analy-
sis model for computing the operator cost, which together
with the estimated number of iterations of a GD algorithm
enables the cost estimation of an execution plan (Section 7).

4. GD ABSTRACTION
We aim at providing an abstraction for GD algorithms

that allows our optimizer to build plans considering paral-
lelization and optimization opportunities. We found that
most ML algorithms have three phases: the preparation
phase, the processing phase, and the convergence phase. In
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Figure 3: Abstraction.

the preparation phase, the algorithm parses and prepares
the input dataset as well as it sets all required parameters
for its core operations. Then, it enters into the iterative
phases of processing and convergence, which interleave each
other. While the processing phase performs its core com-
putations, the convergence phase decides (based on a given
number of iterations or a convergence condition) if it has to
repeat its core operations.

Based on this observation, we introduce seven basic op-
erators that abstract the above phases: Transform, Stage,
Compute, Update, Sample, Converge, and Loop. The system
exposes these operators as User-Defined Functions (UDFs).
While we provide reference implementations for all the com-
mon use cases, expert users could readily customize or over-
ride them if necessary. We aim at providing a small but
adequate set of operators that allows GD algorithms to ob-
tain scalability and high performance. In the following, we
formally define these operators, justify their existence, and
illustrate examples of them in Figure 3(a) using SGD.

4.1 Preparation Phase
The reader might believe that a single preparation opera-

tor is sufficient to abstract this phase, such as in [12]. While
this is true in theory, in practice this is not efficient. This
is because GD algorithms need to transform the entire in-
put dataset, but, to set their global variables, they usually
need no (or a small sample of) input data. Therefore, our
system provides two basic operators (Transform and Stage),
rather than a single one, for users to parse input datasets
and efficiently set all algorithmic variables, respectively. We
discuss these two operators below.

(1) Transform prepares input data units1 for consequent
computation. Basically, it outputs a parsed and potentially
normalized data unit (UT ) for each input data unit (U):

Transform(U)→ UT

This operator is important as it allows for a proper com-
putation of the input data units. For example for SGD
(Figure 3(a)), a possible Transform operator identifies the
double-type dimensions of each data point as well as its label
in the entire sparse input dataset. It outputs a sparse data
unit containing a label, a set of indices, and a set of values.
Listing 1 shows the code snippet for a simple Transform op-
erator. Note that the context contains all global variables.

1The system reads the data units from disk using a Recor-
dReader UDF, such as in Hadoop.
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public double [] transform( String line , Context context) {
1 String [] pointStr = line . trim() . split ( ’ , ’ ) ;
2 double [] point = new double[pointStr.length ];
5 for ( int i=0; i<pointStr.length ; ++i) {
6 point [ i ] = Double.parseDouble(pointStr[ i ]) }
9 return point ;}

Listing 1: Code snippet example of Transform.

(2) Stage sets the initial values for all algorithm-specific
parameters required. Typically, this operator does not re-
quire the input dataset for setting the initial parameters.
Still, it may sometimes need a data unit or list of data units
to initialize parameters. For instance, it may use a sam-
ple from the input data to initialize the weights (see Fig-
ure 3(b)). Thus, we formally define Stage as follows:

Stage(∅ |UT | list〈UT 〉)→ ∅ |UT | list〈UT 〉

Stage allows users to ensure the good behavior of the conse-
quent operations. For example in Figure 3(a), Stage sets the
initial values for vector w to 0.0, the step size to 1.0, and
the iteration counter to 0. It is worth noting that, Stage
is not a data transformation operator and hence it simply
outputs any potential data units (UT ) it receives. We show
in Listing 4 of Appendix B the Stage code for this example.

4.2 Processing Phase
As in the preparation phase, the reader might again think

that a single operator is sufficient to abstract the main op-
erations of a GD algorithm. This is in fact what is pro-
posed in [12]. However, this prevents the parallelization of
an algorithm and thus, its performance and scalability. In a
distributed setting, GD algorithms need to know the global
state of their operations to update their parameters for the
next iteration, e.g., the weights in BGD. Thus, having a
single operator for this phase would lead to centralizing the
process phase so that the update can happen and thus would
significantly hurt performance.

Therefore, we abstract this phase via two basic opera-
tors, that can be used to define the main computations of
their algorithms (Compute) and update the global variables
accordingly (Update). While these two operators abstract
the operations of most batch GD algorithms, some (online)
algorithms (such as MGD and SGD) work on a sample of
the input data. This is why we introduce a third operator
(Sample) that can be optionally used to narrow the data
input for their ML tasks. We detail these operators below.

(3) Compute performs the core computations. It takes a
data unit (UT ) as input and performs a user defined com-
putation over it to output another data unit (UC):

Compute(UT )→ UC

For instance, in Figure 3(a), the Compute operator computes
the gradient of a sparse data unit. Users can use one of the
provided gradient functions or provide their own. The code
of Compute for our example is in Listing 2.

public double [] compute (double[] point , Context context) {
1 double [] weights = (double[]) context .getByKey(”weights”);
2 return this .svmGradient. calculate (weights , point);}

Listing 2: Code snippet example of Compute.

(4) Update re-sets all global parameters required by the
GD algorithm, e.g., vector w for SGD. It outputs a data unit

(UU ) representing the new global variable value for a given
aggregated data unit (UC). Formally:

Update(UC)→ UU

Notice that UC is the sum of all data units. For example,
UC represents the sum of gradients emitted by Compute in
BGD. This operator is as important as the Compute operator
as it ensures the good behavior of a GD algorithm by cor-
rectly computing its global variables. For example, for SGD
(Figure 3(a)), Update computes the new values for vector w
as is illustrated in Listing 3.

public double [] update (double [] input , Context context) {
1 double [] weights = (double[]) context .getByKey(”weights”);
2 double step = (double) context.getByKey(”step”) ;
3 for ( int j=0; j<weights.length; j++) {
4 weights [ j ] = weights[ j ] − step ∗ input [ j+1]; }
5 return weights;}

Listing 3: Code snippet example of Update.

(5) Sample defines the scope of the consequent computa-
tions to specific parts of the input dataset. It takes the
number of data units in the dataset or a set of data units
as input and outputs a list of numbers (no greater than the
number of input data units) or a smaller list of data units:

Sample(n | list〈U〉)→ list〈nb〉 | list〈U〉

It is via Sample that users can enable the MGD and SGD
methods, by setting the right sample size. Typically, this
operator is placed right before Compute and hence it is called
at the beginning of each iteration (Figure 3(a)). The code
of an example sample operator is shown in Appendix B.

4.3 Convergence Phase
In addition to the above five operators, we provide two

more operators that allow users to have control on the ter-
mination of the algorithm: the Converge and Loop operators.

(6) Converge specifies how to produce the delta data unit
(i.e., the convergence dataset), which is the input of the Loop
operator. It takes a data unit from Update and outputs a
delta data unit:

Converge(UU )→ U∆

For example, it might compute the L2-norm of the difference
of the weights from two successive iterations for SGD. List-
ing 5 in Appendix B illustrates the lines of code for Converge
in this example.

(7) Loop specifies the stopping condition of a GD algo-
rithm. For this, we first compute the delta data unit for the
stopping condition as defined above. Then, the Loop oper-
ator decides if the algorithm needs to keep iterating based
on this delta data unit (U∆). Formally:

Loop(U∆)→ true | false

In other words, this operator determines the number of iter-
ations a GD algorithm has to perform its main operations,
i.e., Compute and Update. For instance, the Loop operator
ensures that the algorithm will run for 100 iterations for our
example in Figure 3(a). Listing 6 in Appendix B illustrates
the lines of code for Loop in this example.

4.4 GD Plans
We now demonstrate the power of our abstraction by show

how the basic GD algorithms, such as BGD and MGD, are
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Algorithm 1: Speculation process

Input: Desired tolerance εd, speculation tolerance εs,
speculation time budget B, dataset D

Output: Estimated number of iterations T (εd)

1 D′ ← sample on D;
2 initialize errorSeq // List of {error, iteration}

3 i = 1 // iteration

4 ε1 =∞;
5 while εi > εs & t < B do
6 Run iteration i of GD algorithm on D′;
7 errorSeq ← add(εi, i);
8 i++;

9 a← fit errorSeq to the function T (ε) = a
ε
;

10 compute T (εd) = a
εd

;

11 return T (εd);

abstracted using our operators. SGD was already shown
as the running example. The implementation of BGD and
MGD algorithms using the proposed abstraction is trivial.
We simply have to modify the sample size of the Sample
operator in the SGD plan illustrated (Figure 3(a)) to sup-
port MGD or to remove the Sample operator to support
BGD (e.g., Figure 3(b)). We also show how two more com-
plex algorithms, namely line search and SVRG [15], can be
expressed using our abstraction (see Appendix C). Our ab-
straction allows the implementation of any GD algorithm
regardless of the step size and other hyperparameters.

5. GD ITERATIONS ESTIMATION
One of the biggest challenges of having an effective opti-

mizer is to estimate the number of iterations that a gradi-
ent descent (GD) algorithm requires to reach a pre-specified
tolerance value. A GD algorithm only uses first-order infor-
mation (the gradient). However, the rate of convergence of
GD depends on second-order information, such as the con-
dition number of the Hessian. This constitutes a roadblock
as the Hessian not only is very expensive to compute, but
also changes at every iteration. In addition, the rate of con-
vergence requires an inversion of a d×d dense matrix, where
d is the dimensionality of the problem.

However, for classical machine learning models, like lo-
gistic regression and SVM with `2 regularization, the loss
function is convex and smooth. A function is L-smooth if
‖∇f(v) − ∇f(w)‖ ≤ L‖v − w‖ for all v and w in the do-
main of f [6]. When a function is convex and L-smooth, it
is known that BGD with a step size α ≤ 1/L [6], results in a

sequence {wk}, which satisfies |f(wk)−f(w∗)| ≤ ‖w
0−w∗‖22
2αk

,
where w∗ is the optimal model vector.

Thus in order to obtain a tolerance ε, a sufficient num-

ber of iterations (k) is k ≥ ‖w0−w∗‖22
2αε

. However, note that
this is a sufficient, rather than a necessary condition and
more importantly the bound is not practical as w∗ is not
known a priori but only once the GD algorithm has con-
verged. To obtain practical and accurate estimates, we take
a speculation-based approach that we describe below.

Speculation-based approach. Our approach to estimate
the number of iterations is based on the observations that
(i) in practical large scale (batch) settings, the training time
is large and (ii) the “shape” of error sequence over a sample

is very similar to the one over the entire dataset [7]. We
can thus afford a relatively small speculation time budget B
such that we can actually run BGD, MGD, and SGD on few
samples from the dataset for relatively high ε values.

Prior research shows that gradient descent based meth-
ods on convex functions routinely exhibit only three stan-
dard convergence rates – linear, supra linear (with order p)
and quadratic [7]. Each of these convergence rates can be
identified purely through the error sequence. Our iterations
estimator leverages this observation by identifying and then
parameterizing the error sequence in our speculative stage.
Note that this approach works regardless of the dataset, the
specific (convex) optimization function, the variant of the
gradient descent used and the step size. As the rate of con-
vergence is O( 1

ε
) or better [6], we can fit the function a

ε
using

the speculation output to learn α. Value a is dependent on
the dataset and the form of the loss function (and regular-
izer). Thus, our approach elegantly abstracts from any hy-
perparameter tuning as parameters are learned purely from
the speculative stage, i.e., users do not specify them.

Algorithm 1 shows the pseudocode of our approach. As-
sume we want to estimate the number of iterations T (εd)
a GD algorithm requires to converge to tolerance value εd.
Given a (large) speculation tolerance εs and time budget B,
our algorithm first takes a sample D′ from dataset D and
starts running the GD algorithm on it (Lines 1–6). εs is set
by default to 0.05 and B to 1 min. However, the user or sys-
tem administrator is free to change them. In each iteration,
the reached tolerance error εi together with the iteration i is
appended in a list (Line 7). Note that T (εi) = i. When the
error reaches the speculation tolerance εs or the time budget
has been consumed, the GD algorithm terminates. Then, we
use this list of {ε, T (ε)} to fit the function T (ε) = a

ε
and learn

a (Line 9). After a is known for the specific dataset, the out-
put is the number of iterations T (εd) (Lines 10 and 11). We
run this algorithm for each GD algorithm, namely BGD,
MGD, and SGD, to obtain the estimated number of itera-
tions for each one. Note that MGD and SGD take their data
samples from sample D′ and not from the input dataset D.
BGD runs over the entire D′.

Sampling effect. Our iterations estimator uses a small data
sample for running the various GD algorithms. This is ad-
vantageous as the smaller size results in algorithms converg-
ing quite fast. In this way, we can easily obtain a good fit
of the error sequence shape before the time budget is ex-
hausted. We observed that using a small sample instead
of the entire dataset for speculation does not affect the it-
eration estimation in any major way. It is known that for
many linear and quadratic loss functions, the sample com-
plexity (number of training samples needed to successfully
learn a function) is finite and depends linearly on its VC-
dimension [6]. It has also been observed (such as in [11]) that
only a small number of training examples have a meaningful
impact in the computation of gradient. Finally, [11] also ob-
served that the estimation errors vary between the inverse
and the inverse square root of the number of training exam-
ples. Jointly, these observations justify our approach to use
a small fraction of the dataset for the iterations estimator.

6. GD PLAN SPACE
Given an ML task using the proposed abstraction in Sec-

tion 4 as input, the GD optimizer produces an optimal GD
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execution plan. For this, the GD optimizer exploits the flex-
ibility of the proposed abstraction to come up with several
optimized plans for the GD algorithms. Basically, it departs
from the fact that SGD and MGD work on a data sample
in each iteration to introduce two core optimizations: lazy
transformation, which allows our optimizer to transform in-
put data units only when required, and; efficient data skip-
ping, which allows our optimizer to efficiently read only parts
of data a GD algorithm should work on. The former is pos-
sible thanks to the ability to commute the Transform and
the Sample operator, while the latter is thanks to the decou-
pling of the Compute operator from the Sample operator. To
the best of our knowledge, we are the first to exploit such
kind of techniques to boost GD algorithms performance.

Lazy-transformation. Recall that we transform all in-
put data units upfront before all the core operations of an
algorithm (see Figure 3). We call this approach eager trans-
formation. This approach inherently assumes that all data
units are required by GD algorithms. However, as men-
tioned above, this is not the case for all algorithms, such
as for SGD and MGD. Thus, our optimizer considers a lazy
transformation approach for those cases where not all data
units are required by a GD algorithm. The main idea is to
delay the transformation of data units until they are con-
sumed by the main operations of an algorithm. We ex-
ploit the flexibility of our abstraction in order to move the
Transform operator inside the loop process, right after the
Sample operator. In this case, when the algorithm runs only
few times the transformation cost is alleviated significantly.
Here, the reader might think that our system cannot use
this approach whenever the Transform operator requires any
global statistic (such as the mean) of the entire dataset.
However, such possible cases are handled by passing the
dataset to the Stage operator beforehand, which is respon-
sible of obtaining any global data statistics. Figure 4 shows
the plan for this lazy-transformation approach.

Efficient data skipping. Sampling also plays an impor-
tant role in the performance of stochastic-based GD algo-
rithms, such as MGD and SGD, especially because these
algorithms require a new sample in each iteration. Thus,
apart from changing the order of Transform, we consider dif-
ferent sampling implementations for SGD and MGD. The
Bernoulli sampling is a common way to sample data in sys-
tems where datasets are chunked into horizontal data par-
titions. Then, one has to fetch all data partitions and scan
each data unit to decide whether to include it in the sample
or not based on some probability. MLlib [2] uses this sam-
pling mechanism. This sampling technique clearly might
lead to poor performance as it requires to read the entire
input dataset for taking a small sample. Therefore, our op-

GD Variants

BGD SGD/MGD

Eager Lazy Eager Lazy

Bernoulli ShuffledRandom Bernoulli ShuffledRandom

Figure 5: Gradient descent plans.

timizer also considers a random-partition sampling strategy.
For each sample required, random-partition first randomly
chooses one data partition and then randomly samples a
data unit inside this partition (see Figure 4). However, this
sampling mechanism might also lead to poor performance
due to the large number of random accesses. To mitigate this
large number of random accesses, we provide an additional
sampling strategy: the shuffled-partition. With this sam-
pling strategy one randomly-picked data partition is shuffled
(see Figure 4) only once. Then, at each iteration, the sam-
ple operator simply takes the sample in a sequential manner
from that shuffled partition. Whenever there are not enough
data units left in the partition to sample, it randomly selects
a second partition and shuffles it before taking the sample.
Notice that shuffled-partition might increase the number of
iterations that a GD algorithm requires to converge. How-
ever, its cost per iteration is so low that it can still achieve
lower training times than the other sampling techniques.

Search space. Taking all possible combinations of the
above transformation and sampling techniques leads to po-
tentially six plans for each GD algorithm. However, we con-
sider only one plan for BGD (eager-transformation without
sampling) as it requires all input data units at each itera-
tion. Our optimizer also discards the lazy-transformation
plan with Bernoulli sampling, because Bernoulli sampling
goes through all the data anyways. Thus, our optimizer
ends up considering 11 plans as shown in Figure 5. Even
though we consider three GD algorithms in this paper, note
that there could be tens of GD algorithms that the user
might want to evaluate. In such a case, the search space
would increase proportionally. In other words, our search
space size is fully parameterized based on the number of GD
algorithms and optimizations that need to be evaluated.

7. GD COST MODEL
As the search space is very small, our optimizer can esti-

mate the cost of all 11 GD plans and pick the cheapest. To
estimate the overall cost of a GD plan, it uses a cost model
that is composed of the cost per iteration and the number of
iterations of the GD plan. The latter is obtained by the iter-
ation estimator as explained in Section 5. On the other side,
the cost per iteration basically depends on the cost of all the
operators contained in a GD plan (Section 7.1). The total
cost of a GD plan is then simply its cost per iteration times
the number of iteration it requires to converge (Section 7.2).

7.1 Operator Cost Model
We now provide a cost analysis for the abstraction pre-

sented in Section 4. We model the cost of an operator in
terms of IO (disk or memory), CPU, and network transfer
cost (if applicable). In the following, we first define these
three costs (IO, CPU, and Network) and then analyze the
cost of an operator based on them. Table 1 shows the nota-
tion of our cost analysis.

IO cost. We consider a disk/memory page as the mini-
mum unit of data access and we consider a wave to be the
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Table 1: Notation.
Notation Explanation
D operator’s input dataset
P data partition
page data unit for storage access
packet maximum network data unit
n #data units in D
d #features in a data unit
m #points in a sample
cap #processes able to run in parallel
pageIO IO cost for reading/writing a page
SK IO cost of a seek
NT network cost of 1 byte
CPUu(op) processing cost for a data unit U

p(D) = d |D|b|P |b
e #partitions of D

w(D) = p(D)
cap

#waves for D

lwp(D) = nmod (k×cap×bw(D)c)
k

#partitions in the last wave for D

k = dn×|P |b|D|b
e #data units in one partition

maximum number of parallel processes for an input dataset.
For example, consider a compute cluster of 10 nodes, each
being able to process 2 partitions in parallel. Given this
setup, we could parallelize the processing of a given dataset
composed of 85 partitions in 5 waves: each wave processing
20 partitions in parallel, except the last wave that processes
the remaining 5 partitions. Thus, we model the cost of read-
ing a dataset D as the cost of reading the pages of a single

partition, |P |b
|page|b

, times the number of waves, w(D). But in

the last wave, we consider only the remaining data units in
case they do not fill an entire partition. Formally:

cIO(D) = bw(D)c × (SK +
|P |b
|page|b

× pageIO) +

(SK +
|min(lwp(D), 1)× k|b

|page|b
× pageIO)

(3)

CPU cost. Similar to the IO cost, we model the cost of
processing a dataset D as the cost of processing the number
of data units in one partition times the number of waves.
Again, in the last wave, we consider only the remaining data
units if they do not fill an entire partition. Formally:

cCPU (D, op) = bw(D)c × k × CPUu(op) +

dmin(lwp(D), 1)× ke × CPUu(op)
(4)

Network cost. Let a packet be the maximum network
data unit. Notice that the last packet of a dataset can be
smaller than the other packets, but its difference in cost is
negligible and can be ignored. We thus model the network
cost for transferring a dataset D as follows:

cNT (D) =
|D|b

|packet|b
×NT (5)

Operator cost. Given the above costs, we can simply
define the cost of any operator op as the sum of its IO,
network, and CPU costs. Formally:

cop(D) = cIO(D) + cNT (D) + cCPU (D, op) (6)

Note that the operators Transform (cT ), Compute (cC),
Sample (cSP), Converge (cCV), and Loop (cL) involve only
IO and CPU costs. This is because the data is already par-
titioned in several nodes and thus Transform, Sample and
Compute are performed locally at each node, while Loop and
Converge are executed in a single node. Stage (cS) may in-
cur only CPU cost, if it does not receive any data unit as
input. Update is the only operator that involves network
transfers in its cost (cU ) because all the data units output
by the Compute should be aggregated and thus, sent to a
single node where the update will happen.

Table 2: Real and synthetic ML datasets.
Name Task #points #features Size Density
adult LogR 100,827 123 7M 0.11
covtype LogR 581,012 54 68M 0.22
yearpred LinR 463,715 90 890M 1.0
rcv1 LogR 677,399 47,236 1.2G 1.5× 10−3

higgs SVM 11,000,000 28 7.4G 0.92
svm1 SVM 5,516,800 100 10GB 1.0
svm2 SVM 44,134,400 100 80GB 1.0
svm3 SVM 88,268,800 100 160GB 1.0
SVM A SVM [2.7M-88M] 100 [5G-160GB] 1.0
SVM B SVM 10K [1K-500K] [180MB-90GB] 1.0

7.2 GD Plan Cost Model
Now that we have defined the cost per operator we can

compose the cost of the different GD algorithms assuming
that the algorithm runs for T iterations.

BGD. The cost of running BGD is equal to the cost of
Stage, Transform for the entire dataset D, and plus T times
the cost of the Compute, Update on the input dataset D,
Converge and Loop:

CBGD(D) = cS(D) + cT (D) + T × (cC(D) + cU (D) + cCV + cL)
(7)

MGD with eager transformation. Using the ea-
ger transformation, the cost of MGD is the cost of Stage,
Transform for the entire dataset D plus T times the cost of
the Sample on the entire dataset, Compute, Reduce, Update
operators on a sample mi, Converge and Loop:

C
eager
MGD (D) = cS(D) + cT (D) + T × (cSP(D) + cC(mi)

+cU (mi) + cCV + cL)
(8)

MGD with lazy transformation. For the lazy trans-
formation, the MGD cost is the cost of Stage for the entire
dataset D plus T times the cost of Sample on D, Transform,
Compute, Update on a sample mi, Converge and Loop:

C
lazy
MGD(D) = cS(D) + T × (cSP(D) + cT (mi)+

cC(mi) + cU (mi) + cCV + cL)
(9)

Formulas 8 and 9 also apply for SGD and we omit them.

8. EXPERIMENTAL EVALUATION
We designed a suite of experiments to answer the following

questions: (i) How good is our GD optimizer in estimating
the model training time for different GD algorithms? This
is a key distinguishing feature of our system vis-a-vis all
other ML systems (Section 8.2); (ii) How effective is our op-
timizer in choosing the correct GD plan for a given dataset?
(Section 8.3) (iii) What is the impact of the abstraction in
generating GD execution plans? (Section 8.4) (iv) Does our
sampling techniques affect the accuracy of a model? (Sec-
tion 8.5) (v) What is the impact of each individual optimiza-
tion that our optimizer offers? (Section 8.6)

8.1 Setup
We implemented our GD optimizer in ML4all. ML4all is

built on top of Rheem2, our in-house cross-platform sys-
tem [4, 5]. We used Spark and Java as the underlying plat-
forms and HDFS as the underlying storage. The source code
of ML4all’s abstraction can be found at https://github.com/
rheem-ecosystem/ml4all. Further details about our imple-
mentation can be found in Appendix D.

2https://github.com/rheem-ecosystem/rheem
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Cluster. We performed all the experiments on a cluster
consisting of four virtual nodes interconnected by a 10Giga-
bit switch, where each node has: 4×4 Intel(R) Xeon(R) CPU
E5-2650@2GHz, 30GB memory, 250GB disk. We used Or-
acle Java JDK 1.8.0 25 64bit, HDFS 2.6.2 and Spark 1.6.2.
Spark was used in a standalone cluster mode, with four ex-
ecutors each having 20GB memory and 4 cores. The Spark
driver was run in one of the four nodes with the default
memory of 1GB. We used HDFS with its default settings.

Datasets. We used a broad range of datasets for differ-
ent models of supervised learning (SVM, linear regression,
logistic regression), of different sizes and different density
(i.e., number of non-zeros to total number of values) in order
to get comprehensive insights. The real datasets are from
LIBSVM3. We used eleven synthetic dense datasets for SVM
of varying size and dimensionality to stress the scalability of
the system. The datasets of size above 80GB do not fit en-
tirely into Spark cache memory. Table 2 summarizes the
datasets along with the tasks that they were used for.

Baseline systems. To the best of our knowledge, there is
no other system that uses cost-based optimization to distin-
guish between different forms of gradient descent. We thus
report the performance of ML4all in absolute terms. How-
ever, we do compare our abstraction with the abstraction
proposed in Bismarck [12] (designed to run on a DBMS).
For this, we implemented this abstraction on top of Spark.
In addition, we compare the plans produced by ML4all with
MLlib 1.6.2 [2] and SystemML 0.10 [9], which are state-of-
the-art ML systems on top of Spark. MLlib comes with an
implementation of the MGD algorithm, and thus, by setting
the batch size accordingly we were able to have from BGD to
SGD. SystemML provides a declarative R-like language for
users to implement their own algorithms. Although it pro-
vides scripts for SVM and linear regression, the algorithms
used are the native SVM algorithm and the conjugate GD,
respectively. For this reason, we scripted the three GD al-
gorithms we have considered in this paper in their R-like
language with appropriate gradient functions. We then ran
these scripts in SystemML with the hybrid execution mode
enabled. We configured all systems with exactly the same
parameters (i.e., step size, maximum number of iterations,
initial weights, intercept, regularizer, and convergence con-
dition). In fact, we use the exact same step size that
is hard-coded in MLlib, i.e., β√

i
, where β is a user-defined

value (set to 1 in our experiments) and i is the current iter-
ation. As hyperparameter tuning is out of the scope of our
paper, we used the same step size not only across the differ-
ent systems but also across the different GD algorithms.

8.2 Estimation of Training Time
We first evaluate ML4all on how accurately it can estimate

the training time of different plans and thus select the best
one. We evaluate the estimates of the number of iterations,
the cost per iteration, and the combined training time. For
all the experiments below, the speculation tolerance was set
to 0.1, the time budget to 10s and the sample size to 1, 000
for the speculative-based iterations estimator.

8.2.1 Number of iterations estimation
We measure the estimated and the real number of it-

erations for the three algorithms of GD at different toler-

3
https://www.csie.ntu.edu.tw/˜cjlin/libsvmtools/datasets/

ance levels on three real datasets. The results for the other
datasets were similar and are omitted due to space limita-
tions. Figure 6 shows the results of this experiment, where
the full and hollow bars denote the actual and estimated
number of iterations, respectively. Notice that we don’t
show the results for rcv1 with a tolerance of 0.001 as the
GD algorithms did not converge in three hours and we had
to stop them. We observe that the estimated and the ac-
tual number of iterations are very close for BGD in all three
datasets. For MGD and SGD, we observe that they are in
the same order of magnitude and also very close for a large
tolerance. More importantly, the difference among the esti-
mated number of iterations of BGD, MGD and SGD follows
the same trend with the actual number of iterations. Clearly,
as the tolerance decreases all algorithms require more num-
ber of iterations to converge. Even if our estimates are not
always very accurate for MGD and SGD, because of stochas-
ticity, they are always in the same order of magnitude with
the actual ones. Especially, we observe that ML4all pre-
serves the same ordering of the estimated number of itera-
tions for all three GD algorithms. Having the right order is
highly desirable in an optimizer as it prevents us from falling
into worst cases. In Appendix E, we demonstrate how our
speculation-based approach using curve fitting works well
even for different adaptive step sizes.

8.2.2 Cost per iteration estimation
To evaluate the cost per iteration, we fixed the number of

iterations to 1, 000 and compared the estimated time with
the actual time on four real datasets. As the number of it-
erations is fixed, as expected, ML4all selected SGD for all
datasets. Figure 7(a) reports the results of this experiment.
We observe that ML4all performs remarkably well to esti-
mate the cost per iteration for all datasets. We see that,
in the worst case, ML4all computes a time estimate that is
only 17% away from the actual time. This shows the cor-
rectness and high accuracy of our cost model. Note that our
cost model accurately estimates the cost of any of the GD
algorithms. This is also shown by the following results.

8.2.3 Total cost estimation
We now combine the estimates of number of iterations

and cost per iteration to evaluate the overall effectiveness
of our optimizer. For this experiment, we ran all three
GD algorithms until convergence. To get insights on dif-
ferent tolerance values, we set the tolerance to 0.001 for the
datasets adult and covtype, to 0.01 for rcv1, and to 0.1
for yearpred. ML4all chose BGD for the first two datasets,
and SGD-lazy-shuffle for the last two. Figure 7(b) shows
the real execution time and the time estimated by ML4all
for the algorithm that it decided to be the best choice. We
again observe that the estimated runtimes are very close to
the actual ones. These results confirm the high accuracy of
both our cost model and iterations estimator.

8.3 Effectiveness
We now assess the effectiveness of ML4all by evaluating

which GD plans it chooses. In addition, we measure the time
it takes to choose such plans. To do so, we exhaustively ran
all GD plans until convergence besides the GD plans selected
by our optimizer. For this, we used a larger variety of real
and synthetic datasets and measure the training time.
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Figure 6: ML4all obtains good estimates for the number of iterations for all GD algorithms.
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Figure 7: ML4all obtains accurate time estimates.
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Figure 8: ML4all always performs very close to the
best plan by choosing it plus a small overhead.

Figure 8 illustrates the training times of the best (min)
and worst (max) GD plan as well as of the GD plan selected
by ML4all for each dataset. Notice that the latter time
includes the time taken by our optimizer to choose the GD
plan (speculation part) plus the time to execute it. The
legend above the green bars indicate which was the GD plan
that our optimizer chose. Although for most datasets SGD
was the best choice, other GD algorithms can be the winner
for different tolerance values and tasks as we showed in the
introduction. We make two observations from these results.
First, ML4all always selects the fastest GD plan and, second,
ML4all incurs a very low overhead due to the speculation.
Therefore, even with the optimization overhead, ML4all still
achieves very low training times - close to the ones a user
would achieve if she knew which plan to run. In fact, the
optimization time is between 4.6 to 8 seconds for all datasets.
From this overhead time, around 4 sec is the overhead of
Spark’s job initialization for collecting the sample. Given
that usually the training time of ML models is in the order
of hours, few seconds are negligible. It is worth noting that
we observed an optimization time of less then 100 msec when
just the number of iterations is given.

All the above results show the efficiency of our cost model
and the accuracy of ML4all to estimate the number of it-
erations that a GD algorithm requires to converge, while
maintaining the optimization cost negligible.

8.4 The Power of Abstraction
We proceed to demonstrate the power of the ML4all ab-

straction. We show how (i) the commuting of the Transform

and the Loop operator (i.e., lazy vs. eager transformation)
can result in rich performance dividends, and (ii) decou-
pling the Compute operator with the choice of the sampling
method for MGD and SGD can yield substantial perfor-
mance gains too. In particular, we show how these opti-
mization techniques allow our system to outperform base-
line systems as well as to scale in terms of data points and
number of features. Moreover, we show the benefits and
overhead of the proposed GD abstraction.

8.4.1 System performance
We compare our system with MLlib and SystemML. As

neither of these systems have an equivalent of a GD opti-
mizer, we ran BGD, MGD and SGD and we used ML4all
just to find the best plan given a GD algorithm, i.e., which
sampling to use and whether to use lazy transformation or
not. We ran BGD, SGD, and MGD with a batch size of
1, 000 in all three systems until convergence. We considered
a tolerance of 0.001 and a maximum of 1, 000 iterations.

Let us now stress three important points. First, note that
the API of MLlib allows users to specify the fraction of the
data that will be processed in each iteration. Thus, we set
this fraction to 1 for BGD while, for SGD and MGD, we
compute the fraction as the batch size over the total size
of the dataset. However, the Bernoulli sample mechanism
implemented in Spark (and used in MLlib) does not exactly
return the number of sample data requested. For this rea-
son, for SGD, we set the fraction slightly higher to reduce
the chances that the sample will be empty. We found this to
be more efficient than checking if the sample is empty and,
in case it is, run the sample process again. Second, we used
the DeveloperApi in order to be able to specify a conver-
gence condition instead of a constant number of iterations.
Third, as SystemML does not support the LIBSVM format,
we had to convert all our real datasets into SystemML bi-
nary representation. We used the source code provided to
us by the authors of [8], which first converts the input file
into a Spark RDD using the MLlib tools and then converts
it into matrix binary blocks. The performance results for
SystemML show the breakdown between the training time
and this few seconds conversion time.

Figure 9 shows the training time in log-scale for different
real datasets and three larger synthetic ones. Note that for
our system, the plots of SGD and MGD show the runtime
of the best plan for the specific GD algorithm. Details on
these plans as well as the number of iterations required to
converge can be found in Table 4 in Appendix E. From these
results we can make the following three observations:

(1) For BGD (Figure 9(a)), we observe that even if sam-
pling and lazy transformation are not used in BGD, our sys-
tem is still faster than MLlib. This is because we used map-

Partitions and reduce instead of treeAggregate, which
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Figure 9: Training time (sec). ML4all significantly outperforms both MLlib and SystemML, thanks to its
novel sampling mechanisms and its lazy transformation technique.
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Figure 10: ML4all scalability compared to MLlib.
It scales gracefully with both the number of data
points and features.

resulted in better data locality and hence better response
times for larger datasets. Notice that SystemML is slightly
faster than our system for the small datasets, because it pro-
cesses them locally. The largest bottleneck of SystemML for
small datasets is the time to convert the dataset to its binary
format. However, we observe that our system significantly
outperforms SystemML for larger datasets, when SystemML
runs on Spark. In fact, we had to stop SystemML after 3
hours for the higgs dataset, while for all the dense synthetic
datasets SystemML failed with out of memory exceptions.

(2) For MGD (Figure 9(b)), we observe that our system
outperforms, on average, both MLib and SystemML: It
has similar performance to MLib and SystemML for small
datasets. However, SystemML requires an extra overhead
of converting the data to its binary representation. It is
up to 28 times faster than MLib and more than 17 times
faster than SystemML for large datasets. Especially, for the
dataset svm3 that does not fit entirely into Spark’s cache,
MLlib incurred disk IOs in each iteration resulting in a train-
ing time per iteration of 6 min. Thus, we had to terminate
the execution after 3 hours. The large benefits of our system
come from the shuffle-partition sampling technique, which
significantly saves IO costs.

(3) For SGD (Figure 9(c)), we observe that our system is
significantly superior than MLlib (by a factor from 2 for
small datasets to 46 for larger datasets). In fact, similarly
to MGD, MLlib incurred many disk IOs for svm3. We had
to stop the execution after 3 hours. In contrast, SystemML
has lower training times for the very small datasets (adult,
covtype, and yearpred), thanks to its binary data represen-
tation that makes local processing faster. However, the cost
of converting data to its binary data representation is higher
than its training time itself, which makes SystemML slower
than our system (except for covtype). Things get worse for
SystemML as the data grows and get dense. Our system is
more than one order of magnitude faster than SystemML.
The benefits of our system on SGD is mainly due to the lazy
transformation used by our system. In fact, as for BGD and
MGD, SystemML failed with out of memory exceptions for
the three dense datasets. Notice that the training time for

a larger dataset may be smaller if the number of iterations
to converge is smaller. For example, this is the case for the
dataset covtype, which required 923 iterations to converge
using SGD, in contrast to rcv1, which required only 196.
This resulted in ML4all requiring smaller training time for
rcv1 than covtype.

8.4.2 Scalability
Figure 10 shows the scalability results for SGD for the

two largest synthetic datasets (SVM A and SVM B), when in-
creasing the number of data points (Figure 10(a)) and the
number of features (Figure 10(b)). Notice that we discarded
SystemML as it was not able to run on these dense datasets.
We plot the runtimes of the eager-random and the lazy-
shuffle GD plan. We observe that both plans outperform
MLlib by more than one order of magnitude in both cases.
In particular, we observe that our system scales gracefully
with both the number of data points and the number of fea-
tures while MLlib does not. This is even more prominent for
the datasets that do not fit in Spark’s cache memory. Es-
pecially, we observe that the lazy-shuffle plan scales better
than the eager-random. This shows the high efficiency of
our shuffled-partition sampling mechanism in combination
with the lazy transformation. Note that we had to stop the
execution of MLlib after 24 hours for the largest dataset of
88 million points in Figure 10(a). MLlib took 4.3 min for
each iteration and thus, would require 3 days to complete
while our GD plan took only 25 minutes. This leads to more
than 2 orders of magnitude improvement over MLlib.

8.4.3 Benefits and overhead of abstraction
We also evaluate the benefits and overhead of using the

ML4all abstraction. For this, we implemented the plan pro-
duced by ML4all directly on top of Spark. We also imple-
mented the Bismarck abstraction [12], which comes with a
Prepare UDF, while the Compute and Update are combined,
on Spark. Recall that a key advantage of separating Compute

from Update is that the former can be parallelized where
the latter has to be effectively serialized. When these two
operators are combined into one, parallelization cannot be
leveraged. Its Prepare UDF, however, can be parallelized.

Figure 11 illustrates the results of these experiments. We
observe that ML4all adds almost no additional overhead to
plan execution as it has very similar runtimes as the pure
Spark implementation. We also observe that our system
and Bismarck have similar runtimes for SGD and MGD(1k)
and for all three data sets. This is because our prototype
runs in a hybrid mode and parts of the plan are executed
in a centralized fashion thus negating the separation of the
Compute and the Update step. As the dataset cardinality or
dimensionality increases, the advantages of ML4all become
clear. Our system is (i) slightly faster for MGD(10k) for a
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Figure 11: ML4all abstraction benefits and overhead. The proposed abstraction has negligible overhead w.r.t.
hard-coded Spark programs while it allows for exhaustive distributed execution.

small dataset (Figure 11(a)), (ii) more than 3 times faster
for MGD(10k) in Figure 11(c), because of the distribution of
the gradient computation, and (iii) able to run MGD(10k)
in Figure 11(b) while the Bismarck abstraction fails due to
the large number of features of rcv1. This is also the reason
that the Bismark abstraction fails to run BGD for the same
dataset of rcv1, but for svm1 the reason it fails is the large
number of data points. This clearly shows that the Bismarck
abstraction cannot scale with the dataset size. In contrast,
our system scales gracefully in all cases as it execute the
algorithms in a distributed fashion whenever required.

8.4.4 Summary
The high efficiency of our system comes from its (i) lazy

transformation technique, (ii) novel sampling mechanisms,
and (iii) efficient execution operators. All these results not
only show the high efficiency of our optimizations tech-
niques, but also the power of the ML4all abstraction that
allows for such optimizations without adding any overhead.

8.5 Accuracy
The reader might think that our system achieves high per-

formance at the cost of sacrificing accuracy. However, this
is far from the truth. To demonstrate this, we measure the
testing error of each system and each GD algorithm. We
used the test datasets from LIBSVM when available, other-
wise we randomly split the initial dataset in training (80%)
and testing (20%). We then apply the model (i.e., weights
vector) produced on the training dataset to each example
in the testing dataset to determine its output label. We
plot the mean square error of the output labels compared
to the ground truth. Recall that we have used the same
parameters (e.g., step size) in all systems.

Let us first note that, as expected, all systems return the
same model for BGD and hence we omit the graph as the
testing error is exactly the same. Figure 12 shows the results
for MGD and SGD. We omit the results for svm3 as only our
system could converge in a reasonable amount of time. Al-
though our system uses aggressive sampling techniques in
some cases, such as shuffle-partition for the large datasets in
MGD4, the error is significantly close to the ones of MLlib
and SystemML. The only case where shuffle-partition influ-
ences the testing error is for rcv1 in SGD. The testing error
for MLlib is 0.08, while in our case it is 0.18. This is due to
the skewness of the data. SystemML having a testing error
of 0.3 also seems to suffer from this problem. We are cur-
rently working to improve this sampling technique for such
cases. However, in cases where the data is now skewed our
testing error even for SGD is very close to the one of MLlib.

4Table 4 in Appendix E shows the plan chosen in each case.
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Figure 12: Testing error (mean square error). For
SGD/MGD, ML4all achieves an error close to MLlib
even if it uses different sampling methods.
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Figure 13: Sampling effect in MGD for eager and
lazy transformation.

Thus, we can conclude that ML4all decreases training times
without affecting the accuracy of the model.

8.6 In-Depth
We analyze in detail how the sampling and the transfor-

mation techniques affect performance when running MGD
with 1, 000 samples and SGD until convergence with the
tolerance set to 0.001 and a maximum of 1, 000 iterations.

8.6.1 Varying the sampling technique
We first fix the transformation and vary the sampling tech-

nique. Figure 13 shows how the sampling technique affects
MGD when using eager and lazy transformation. First, in
eager transformation for small datasets, using the Bernoulli
sampling is more beneficial (Figure 13(a)). This is because
MGD needs a thousand samples per iteration and thus, a
full scan of the whole dataset per iteration does not penal-
ize the total execution time. However, for larger datasets
that consist of more partitions, the shuffle-partition is faster
in all cases as it accesses only few partitions.

For the lazy transformation (Figure 13(b)), we ran only
the random-partition and shuffle-partition sampling tech-
niques. Using a plan with Bernoulli sampling and lazy trans-
formation is always inefficient as explained in Section 6.
We observe that for MGD and the two small datasets of
adult and covtype, which consist of only one partition, the
random-partition is faster than the shuffle-partition. Again,
this is because the re-ordering of the partition does not pay-
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Figure 14: Transformation effect for the shuffle-
partition sampling technique.

off in this case. For the rest of the datasets, shuffle-partition
shows its benefits as only one partition is now accessed. In
fact, for the larger synthetic dataset, we had to stop the exe-
cution of the GD plan with lazy transformation and random-
partition after one hour and a half.

The results for SGD show that it benefits more from the
shuffle-partition technique even for smaller datasets for both
eager and lazy transformation (see Appendix E).

8.6.2 Varying transformation method
We now fix the sampling technique to shuffle-partition and

vary the transformation. The results are shown in Figure 14.
Our first observation in Figure 14(a) is that SGD always
benefits from the lazy transformation as only one partition
is shuffled and only one sample needs to be transformed per
iteration. For MGD, eager transformation pays-off more for
the larger datasets. This is because the number of iterations
required for these datasets arrives to the maximum of 1, 000
and therefore, for a batch size of 1, 000, MGD touches all
data units. Thus, it pays off to transform all data units in
an eager manner. Appendix E depicts the results when we
fix the sampling technique to random-partition.

To summarize, most of the cases SGD profits from the
lazy transformation and the shuffle-partition. For MGD,
when the datasets are small then the eager transformation
with the Bernoulli sampling is usually a good choice, while
for larger datasets the shuffle-partition is usually a better
choice. Although, we observed some of these patterns, we
still prefer a cost-based optimizer to make such choices as
there can be cases of datasets where these rules do not hold.

8.6.3 Observations
In general, we observed some patterns on which our sam-

pling and transformation techniques match best a specific al-
gorithm. For instance, if the dataset size is smaller than one
data partition, the eager-bernoulli variant is a good choice.
Another observation is that if the number of iterations to
converge is much smaller than the data points of the input
dataset, then the lazy transformation is a good choice for
SGD. However, even if we observe such patterns, these are
not always followed. This confirms the need for a cost-based
optimizer instead of a rule-based one.

9. RELATED WORK
ML has attracted a lot of attention from the database re-

search community over the last years [13,17,21,23,24]. The
closest work to our GD abstraction is Bismarck [12]. The
authors propose to model ML operators as an optimization
problem and use SGD to solve it. However, as we have wit-
nessed from our experiments, SGD is not always the best
algorithmic choice. In contrast, our abstraction covers all

GD algorithms. Yet, similar to the authors of Bismarck,
one could leverage the User-Defined Aggregate (UDA) fea-
ture in most DBMSes to integrate our ideas in a DBMS.
Another related (but complementary) work is DimmWit-
ted [24], which also focuses on optimizing the execution of
statistical analytics. However, the authors mainly study the
trade-off between statistical efficiency (i.e., number of itera-
tions needed to converge) and hardware efficiency (i.e., exe-
cution time per iteration). In contrast, we focus on selecting
both the best GD plan and execution mode (centralized or
distributed) of each GD operator. Furthermore, the authors
exploit their ideas only for NUMA machines and hence for
main-memory analytics.

There are several distributed ML systems built on top of
Hadoop or Spark, such as Mahout [1] and MLlib [2]. How-
ever, in all these systems adding new algorithms or modify-
ing existing ones requires from users a good understanding of
the underlying data processing framework. In the MLBase
vision paper [16], the authors plan to provide all available
algorithms for a specific ML task together with an optimizer
for choosing among these algorithms. However, building all
algorithms for a specific operator is a tedious task where a
developer has to deal with adhoc decisions for each algo-
rithm. SystemML [9] also provides a cost-based optimizer
but it is more focused on finding plans that parallelize task
execution and data processing. Another system built on top
of Hadoop is Cumulon [14]. It uses a cost model to esti-
mate time and monetary cost of matrix-based data analysis
programs. However, the authors of [14] do not address the
problem of algorithm selection. Finally, Google’s deep learn-
ing platform, TensorFlow [3], lacks an optimizer. There have
also been other efforts towards optimizing the SGD perfor-
mance [18,20], using SGD in distributed deep learning [19],
and parallelizing both data and model computations [22].
Nevertheless, all these works are complementary to ours.

Moreover, convergence of GD algorithms and the rate
of their convergence has been extensively studied theoret-
ically [6, 7, 11]. A popular technique, local analysis, studies
the behavior of algorithms in the vicinity of the optimal so-
lution. Nonetheless, local analysis cannot be directly used
in practice, because it requires the knowledge of w∗, which
is only known at the end of the execution of a GD algorithm.

To the best of our knowledge, our approach is the first one
to provide both a general GD abstraction to express most
GD algorithms and an optimizer that selects the best GD
algorithm for users’ declarative queries.

10. CONCLUSION
We presented a cost-based optimizer for solving optimiza-

tion problems using gradient descent algorithms. In partic-
ular, our cost-based optimizer obviates the need for rules of
thumb and justifies standard practices used by ML practi-
tioners when selecting a GD algorithm. Our optimizer uses
a new abstraction for easy parallelization of GD algorithms
and further optimizations that lead to performance speedup.
It is able to choose the best GD plan, while the optimiza-
tions of ML4all built on top of Rheem speed up performance
by more than two orders of magnitude than state-of-the-art
ML systems on top of Spark, i.e., MLlib and SystemML.
Last but not least, our approach can easily be extended to
assist in other design choices in ML systems, such as hyper-
parameter tuning.
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optimizations for feature selection workloads. In
SIGMOD, pages 265–276, 2014.

[24] C. Zhang and C. Re. DimmWitted: A Study of
Main-Memory Statistical Analytics. PVLDB,
7(12):1283–1294, 2014.

APPENDIX
A. ML4ALL LANGUAGE

ML4all exposes to users a simple declarative language to
interact with its GD optimizer. As this language also tar-
gets non-expert users, i.e., with no (or little) knowledge of
ML and data processing platforms, it is composed of three
main commands only: run for executing an ML operator,
having for expressing constraints, and using for controlling
the optimizer to some extent. Where the having and using
commands are optional. Notice that a detailed discussion of
this language is out of the scope of this paper.

Running a query. Users run a task on a specific dataset
using the basic command run. This is a mandatory com-
mand in any query. For example, a user would write the
following query to run a classification on a given dataset:

Q1 = run classification on training_data.txt;

This query states that the user wants to build a classifica-
tion model using the dataset training data.txt. Users can
also be more specific and provide a gradient function in-
stead of the ML task. The gradient function can be from
the ones provided by the system (e.g., hinge()) or by users
via a Java UDF (see Table 3 for a list of currently supported
ML tasks and gradient functions). Additionally, users can
provide their own parser to read an input dataset. For exam-
ple, if the dataset traning data is sparse, then the user can
utilize the libsvm dataset parser, libsvm(training data.txt).
Notice that, by default, the system takes the first column as
the label and the remaining columns as the features. Users
can also specify the columns for the label and features as
shown in Q2.

Table 3: ML tasks and gradient functions currently
supported by our system.

ML task Gradient function

Linear regression g(w,xi, yi) = 2(wTxi − yi)xi

Logistic regression g(w,xi, yi) = ( −1

1+eyiw
T xi

)yixi

SVM g(w,xi, yi) =

{
−yixi, yiw

Txi < 1

0, yiw
Txi ≥ 1

Specifying constraints. Users express their time, accu-
racy, and iterations constraints as follows:

Q2 = run classification

on input_data.txt:2, input_data.txt:4-20,

having time 1h30m, epsilon 0.01, max iter 1000;

With such an extension, the user is now indicating to the
system that she wants: (i) her results before one hour and
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half; (ii) her results within a tolerance epsilon of 0.01; and
(iii) to run the system until convergence or for a maximum of
1000 iterations. Indeed, any of these constraints are optional
and independent from each other. In case no tolerance is
specified, the system uses the value 10−3 as default. If the
system cannot satisfy any of these constraints, it informs
the user which constraint she has to revisit. Note that, in
Q2, the user is also specifying that column 2 is the label and
attributes 4− 20 are the features.

Controlling the optimizer. Advanced users can addi-
tionally use the using command to control the optimizer
to some extend. They can specify the GD algorithm, the
convergence function or condition, the step size, and the
sampling for SGD and MGD:

Q3 = run classification on input_data.txt

using algorithm SGD, convergence cnvg(), step 1,
sampler my_sampler();

In contrast to Q1 and Q2, Q3 tells the system to use:
(i) SGD as algorithm, (ii) the convergence function cnvg(),
(iii) the step size 1, and (iv) the sampling mechanism
my sampler(). Similarly to the having command, any of
these using commands are optional and independent from
each other.

Storing models and testing data. As explained earlier,
once a user sends her query, the system translates it into
a GD plan using a cost-model, further optimizes the plan,
runs the optimized execution plan, and returns the resulting
model. A user can optionally store such a model using the
command:

persist Q1 on my_model.txt.

Once a model is obtained, a user can run the test phase
over a given dataset: <result = predict on test_data

with my_model.txt;>.

result = predict on test_data with my_model.txt;

Next, users might indeed use the result from the test phase
to compute the measures they are interested in, such as the
precision, recall, and f1 score.

B. GD OPERATORS LISTINGS
We show in Listing 4 the code snippet for the Stage, List-

ing 3 the Converge, and Listing 6 the Loop operator of the
example in Figure 3(a). Listing 7 shows a simple random
sampling operator.

public void stage(Context context) {
1 double [] weights = new double[features ];
2 context .put(”weights”,weights) ;
3 context .put(”step”,1.0) ;
4 context .put(”iter ”,0) ;
}

Listing 4: Code snippet example for Stage.

C. ACCELERATING GD ALGORITHMS
We demonstrate how our abstraction can support GD ac-

celeration techniques such as line search or combinations of
BGD and SGD.

SVRG. The idea of this algorithm (stochastic variance re-
duced gradient) is to mix BGD with SGD in order to have

public double converge (double [] input , Context context) {
1 double [] weights = (double[]) context .getByKey(”weights”);
2 double delta = 0.0;
3 for ( int j = 0; j < weights.length ; j++) {
4 delta += Math.abs(weights[j] − input[j ]) ;
5 }
}

Listing 5: Code snippet example for Converge.

public boolean loop(double input , double tolerance ) {
1 boolean stop = input < tolerance ;
2 return stop;
}

Listing 6: Code snippet example for Loop.

public double [] sample(double[] input , Context context) {
1 double rand = new Random().nextDouble();
2 if (rand < 0.5)
3 return null ;
4 return input ;
}

Listing 7: Code snippet example for Sample.

fast convergence and fast computation. It performs SGD
by reducing its variance using BGD every m iterations [15].
This requires a nested loop operation where the outer loop
requires the gradient calculation for all input data points
(BGD) and the inner loop computes the gradient of a sin-
gle data point (SGD). In other words, SVRG computes the
gradient of all the data points every m iterations, while for
the rest it just computes the gradient of one point. SVRG
has also a different update formula in order to reduce the
variance in each iteration. We can “flatten” the nested loops
by using an if-else condition in the Sample, Compute, and
Update operators in order to capture the computations of
every m iteration. Thus, we can express SVRG in our ab-
straction using the same plan as for SGD (Figure 3(a)) but
with different implementations of the GD operators. The
pseudocode of the algorithm written to fit our abstraction
is shown in Algorithm 2.

Listing 8 shows the modified code snippet for the Compute
operator to implement the SVRG algorithm. Similarly the
rest of the operators can be modified. This shows that our
template is general enough to capture even algorithms that
do not seem to match with a first glance.

public Pair<double[], double[]> compute (SparseVector point, Context
context) {

1 int iteration = (int) context .getByKey(”iter ”) ;
2 double [] w = context.getByKey(”weights”);
3 int m = (int) context .getByKey(”m”);
4 if (( iteration % m) − 1 == 0)
5 return new Pair(this . gradient . calculate (w, point) , null ) ;
6 else {
7 grad = this . gradient . calculate (w, point) ;
8 double [] w bar = context.getByKey(”weightsBar”);
9 fullGrad = this . gradient . calculate (w bar, point) ;
10 return new Pair(grad, fullGrad ) ;
11 }
}

Listing 8: Code snippet for the Compute of SVRG.

GD with backtracking line-search. There has been
extensive research on accelerating gradient descent based
methods through the step size. A non-exhaustive list of
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Algorithm 2: SVRG

Input: Update frequency m
1 Initialize w0, w̃
2 for t=1,2,... do
3 if (t mod m) - 1=0 then
4 if t > 1 then
5 w̃ := wt

6 µ := 1
n

n∑
i=1

∇fi(w̃)

7 wt := wt−1 − αµ
8 else
9 Randomly pick it ∈ {1, 2, ..., n} and update wt

10 wt := wt−1 − α(∇fit(wt−1)−∇fit(w̃) + µ)

tricks include step size-based approaches including fixed step
size, adaptive step size, optimal step sizes including line
search, BB methods, etc. Here we show how our abstrac-
tion can be applied to implement BGD5 using backtracking
line search. Backtracking line search chooses the step size
in each iteration of GD as follows: αki = β ∗ αki−1 , where
k is the iteration step of BGD and i is the iteration step of
the line search. The iterations of the line search repeat until
f(wk) − f(wk − αki∇f(wk)) < αki ∗ i. However, to com-
pute the f function the entire dataset is required. Thus, we
need to modify the Compute and Update operator to support
backtracking line-search step size. Similarly with SVRG we
can emulate the nested loops of line search by adding an
if-else condition. Listings 9 and 10 show the pseudocode for
Compute and Update, respectively. Similarly other methods,
such as the Barzilai-Borwein, can be plugged in our system.

public Pair<double, double[]> compute (SparseVector point, Context
context) {

1 double [] w = (double[]) context .getByKey(”weights”);
2 double step = (double) context.getByKey(”step”) ;
3 double [] grad = this .svmGradient. calculate (w, point) ;
4 boolean isStepSizeIter = (boolean) context.getByKey(”isStepSize”) ;
5 if ( isStepSizeIter ) {
6 double diff = this .objFunction. calculate (w, point) −

this.objFunction. calculate (w − step ∗ grad, point) ;
7 return new Pair( diff , grad);
8 }
9 else
10 return new Pair( Inf , grad);
}

Listing 9: Code snippet for the Compute of BGD with
backtracking line search.

D. IMPLEMENTATION
We implemented our GD optimizer in ML4all. ML4all is

an ML system built on top of Rheem6, our in-house cross-
platform system [4, 5]. Rheem is a cross-platform system
which abstracts from the underlying platforms and allows
not only for platform independence but also for automatic
selection of the right platform for a given job. In ML4all, we
use Spark and Java as the underlying platforms of Rheem

5Usually line search is not used in stochastic algorithms be-
cause the correct direction of the gradient is required.
6https://github.com/rheem-ecosystem/rheem

public double [] update (Pair<double,double[]> input, Context context) {
1 double [] weights = (double[]) context .getByKey(”weights”);
2 double beta = (double) context.getByKey(”beta”);
3 double step = (double) context.getByKey(”step”) ;
4 double diff = input. field0 ;
5 int i = (int) context .getByKey(”step iteration ”) ;
6 if ( diff >= step ∗ i) {
7 step = beta ∗ step;
8 context .put(”step”, step) ;
9 context .put(” step iteration ”, ++i);
10 return null ;
11 }
12 else {
13 context .put(” isStepSizeIter ”, false ) ;
14 for ( int j=0; j<weights.length; j++)
15 weights [ j ] = weights[ j ] − step ∗ input . field1 [ j+1];
16 return weights ;
17 }
}

Listing 10: Code snippet example of Update of BGD
with backtracking line search.

Table 4: Chosen plan for each GD algorithm.
Dataset SGD MGD BGD

#iter plan #iter plan #iter
adult 433 lazy-random 482 eager-bernoulli 224
covtype 923 eager-bernoulli 404 lazy-random 381
yearpred 26 lazy-shuffle 14 lazy-shuffle 5
rcv1 196 eager-shuffle 773 eager-bernoulli 515
higgs 6 lazy-shuffle 1000 eager-shuffle 264
svm1 4 lazy-shuffle 1000 eager-shuffle 145
svm2 5 lazy-shuffle 1000 eager-shuffle 145
svm3 8 lazy-shuffle 1000 eager-shuffle 145

and HDFS as the underlying storage. The source code of
ML4all’s abstraction can be found at https://github.com/
rheem-ecosystem/ml4all. We utilize Rheem’s platform in-
dependence and map each operator of a GD plan to either
Java code (for a centralized execution) or Spark code (for a
distributed execution), transparently to users. The reader
may think that running some operators on a centralized
mode might be a bottleneck. However, our optimizer maps
an operator to Java only if its input data fits in a single data
partition (i.e., one HDFS partition). Running an operator
on distributed mode for such small input data would just
adds a processing overhead. Thus, it maps an operator to
a Spark operator only when its input data spans to multi-
ple data partitions – having each available processing core
executing this operator over a single data partition. More
interestingly, ML4all can produce a GD plan as a mixture of
Java and Spark (i.e., a Mix-based GD plan). This is benefi-
cial when the input size for some operators is large, but the
input for other operators in the same plan is much smaller.
For instance, the Transform and Sample operators in SGD
usually have several orders of magnitude larger input than
the operators Compute and Update. In fact, ML4all indeed
produces a mix-based plan for SGD.

E. ADDITIONAL RESULTS
Chosen plans. Table 4 shows for each GD algorithm
which was the best GD plan chosen by our optimizer and
how many iterations were required for each plan to converge.

Adaptive step sizes in iterations estimator. We
demonstrate how using different adaptive step size affects
the iteration estimator. For this experiment, we ran the
speculation of our iterations estimator on a sample of 1000
data points until a tolerance value of 0.05 and collected pairs
of <iteration, error>. We use these pairs to fit the curve.
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(a) Step size 1/
√
i (b) Step size 1/i (c) Step size 1/i2

Figure 15: Curve fitting using different adaptive step sizes for adult dataset for BGD.

(a) covtype dataset (b) rcv1 (c) higgs dataset

Figure 16: Curve fitting using adaptive step size 1/i for BGD for various datasets.

Our goal is to estimate the number of iterations required to
arrive to an error of 0.001. In addition, when ran the real
execution until a tolerance value of 0.001 and also collected
pairs of <iteration, error> in order to compare with the fit-
ted curve. Figure 15 shows the results for the adult dataset
for BGD and two different step sizes. The y-axis shows the
error sequence (tolerance values) at each iteration i (x-axis).
The blue line denotes the execution during speculation on a
sample, while the green line depicts the real execution. The
red dotted line is the fitted curve from which we can infer
the number of iterations that the real execution will require
to converge. Notice that the red dotted line arrives at an
error of 0.001 in almost the same number of iterations that
the real execution terminates (green line). Similar results
are observed for the other datasets as well. Figure 16 shows
some of these results.

In-Depth. We now discuss how sampling affects perfor-
mance when fixing the transformation in SGD to eager or
lazy. We observe from Figure 17(a) that the shuffle-partition
is faster in all datasets but adult. This is because the
adult dataset consists of a single partition (HDFS block
size is 128MB) and the cost of re-ordering the entire parti-
tion does not pay-off in comparison to the random accesses
of the random-partition sampling for a small number of it-
erations that are required for convergence. When using the
lazy transformation (Figure 17(b)), the training times be-
tween using random or shuffle-partition are very close with
the shuffle-partition being slightly faster in most of the cases.

We now show the impact of the transformation method
when we fix the sampling to the random-partition technique.
We observe from Figure 18(b) is that there is no significant
difference between eager and lazy transformation for MGD,
except of the case of svm2 where we had to terminate the
execution for the lazy transformation. On the other hand,

Tr
ai

ni
ng

 ti
m

e 
(s

ec
)

1

10

100

Dataset

ad
ult

co
vty
pe

ye
arp
red rcv

1
hig
gs

svm
1

svm
2

151517
25

17
3424

383324
57

3737

14

414

5750
2921

45
27

Bernoulli
Random-partition
Shuffle-partition

(a) Eager transformation
Tr

ai
ni

ng
 ti

m
e 

(s
ec

)

1

10

100

Dataset

ad
ult

co
vty
pe

ye
arp
red rcv

1
hig
gs

svm
1

svm
2

111011

23

12

31

14 13
17

13

34
21

33

12

Random-partition Shuffle-partition
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Figure 17: Sampling effect in SGD for eager and
lazy transformation.
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Figure 18: Transformation effect for the random-
partition sampling technique.

SGD seems to always benefit from the lazy transformation
when the random-partition is used (Figure 18(b)).
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