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ABSTRACT

�eFinancial Entity Identi�cation and Information Integration (FEIII)

task aims at the question of understanding relationships among

�nancial entities and their roles using three sentences extracted

from each �nancial contract containing the target word. FEIII task

has two challenges - 1) data sparseness: small training sets (9% of

test data) and 2) context sparseness: limited context (three sen-

tences). Existing statistical approaches, such as Bayes and TF-IDF,

cannot evaluate the imporatance of words unobservged in train-

ing data, which is vulnerable to the above challenges. We over-

come each challenge by considering 1) the concepts of words from

knowledge bases (Probase) in addition to the words themselves

(conceptual feature) and 2) word semantics from distributed rep-

resentations such as word2vec (semantic feature). We empiri-

cally evaluate the proposed classi�cation model on the four-class

classi�cation (highly relevant, relevant, neutral, and irrelevant),

and show that the proposed model increases 18% of F1-score com-

pared to the statistical baselines.
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1 INTRODUCTION

�eFinancial Entity Identi�cation and Information Integration (FEIII)

challenge aims to identify and understand the relationships among

�nancial entities and the roles that they play in �nancial contracts

as represented in documents and databases. �e data set consists

of 10-K and 10-Q �lings, and the task is to identify sentences in the

�lings that provide evidence for a speci�c relationship between the

�ling �nancial entity and another mentioned �nancial entity.

�e important task is to rank the triples (consisting of three

sentences, �ler name, and role keyword) such that the triples with

the context best supports that role assignment and contains �nan-

cially relevant knowledge are at the top of the ranking, by giving

a relevance score between 0 and 1 representing the ranking. To

guide for evaluation, experts labeled the training data triples as be-

ing Highly relevant, Relevant, Neutral, and Irrelevant. In this pa-

per, we focus on classifying unlabeled working sets into the given

four classes.
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2 METHOD

Our work adopt a SVM classi�er to identify the context (three sen-

tences) using statistic, conceptual, and semantic features. We will

describe in the next sections, more speci�cally, (1) Statistic Fea-

tures: Bayes, TF-IDF (2) Concept Features: Probase, and (3) Se-

mantic Features: Word2vec. To compute our features, we use a

randomly selected training set of 90% of the labeled data. We use

three types of features from the training set.

2.1 Statistic Features: Baseline

�e�rst feature type consists of empirical statisticalmethods: Bayes

statistics, and the TF-IDF score.

• Bayes statistics: To classify text from the labeled data, Sa-

hami et al. [2] studies Bayes rule for junkmail. FromBayes

rule, we compute P(ci |w) =
P (w |ci )P (ci )

P (w )
, where ci stands

for category (ci ∈ C = { Highly relevant, Relevant, Neu-

tral, Irrelevant}) andw represents a word. Using the prob-

ability for each word P(c |w), we compute the category

probability of the given sentence as a combination of word

probability, i.e., P(c |s) = P(c |w1)P(c |w2), ...P(c |wn), where

s represents sentence and s = (w1,w2,w3, ...wn )

• TF-IDF:We leverage TF-IDF scorewidely adopted forword

importance. From each word in the training data, we com-

pute TF-IDF as: TF (w, ci ) =
Freq(w,ci )∑

wj ∈ci
Freq(w j ,ci )

and IDF (w) =

log(
|C |

|ci ∈C : w ∈ci |
).

2.2 Concept Features for data sparseness

Statistic features (Bayes statistics and TF-IDF) cannot compute the

importance words if it does not appear in the training set. How-

ever, due to the data and context sparseness mentioned in the ab-

stract, we expect lots of untrained words in the unlabeled sets. In

order to give those words some sort of features for classi�cation,

we represent a word as a distribution of concepts it belongs to. For

this purpose, we adopt a probabilistic knowledge base from Mi-

croso�, namely Probase [3], which contains 2.7 million concepts

harnessed automatically from a corpus of 1.68 billion web pages.

Table 1 shows the example concept statistics available for an entity

in Probase: Each entity corresponds to the list of concept probabil-

ities which are extracted from web pages using ‘such as’ textual

pa�ern: For example, textual occurrence of ‘factor such as abra-

sion’ generates a row in Table 1, and probability P(o |e) suggests

the typicality of entity ‘abrasion’ associated with concept ‘factor’.

In other word, abrasion can be represented as a probability vector,

with dimensionality as large as all possible concepts.

Given this concept vector to represent an entity, we can over-

come data sparseness, by computing the similarity of words, as

the similarity of concept distributions. �is enables to compute the

word similarity for words unseen in the training data. A sentence
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Table 1: Probase Example

Entity (e) Concept (o) Probability P(o |e)

abrasion factor 0.0348

abrasion condition 0.0255
.
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(a) Before concept selection

(b) A�er concept selection

Figure 1: Top-k Frequently Concept Distributions

also can be represented as a concept vector, by using Stanford POS

tagger (h�ps://nlp.stanford.edu/so�ware/tagger.shtml) to identify

entities, and compute the average concept distribution of all enti-

ties in the sentence.

Our hypothesis of using this feature is that, concept distribu-

tions should be similar between �nancial entities with “Relevant”

or “Highly Relevant” labels, while those between relevant and irrel-

evant entities should be dramatically di�erent. Figure 1 (a) weakly

con�rms this hypothesis, showing similar distributions between

Relevant and Highly Relevant, compared to Neutral.

�ough a well-designed distribution similarity metric may cap-

ture such di�erence, we aim to make concept feature more robust,

by making the di�erence more drastic. We observed that, the use

of abstract concepts, such as ‘information’, ‘datum’ and ‘service’,

are frequently observed from all labels, which diminishes the use-

fulness of this feature. We thus propose to automatically select a

more e�ective subset of conceptsOk , by comparing the top-k con-

cepts observed from the sentences with highly relevant, relevant,

and neutral labels, which we denote as cHR , cR , and cN respec-

tively.

More speci�cally, we de�ne Ok as:

Ok = arд max
oi ∈Ok

{P(oi |cHR ) − P(oi |cR ) − P(oi |cN )} (1)

where |Ok | = k . We empirically tune k to k = 14 and we replace

the 14 concepts used in Figure 1 (a) into OK = {expense, dept, le-
gal, loan, product, credit, transaction, payment, banking, contract,

law, �nance, secured, obligation}. We can qualitatively observe

that these concepts are more relevant to FEIII domain. In addition,

Figure 1 (b) shows that using these features makes the distribution

di�erence more dramatic as well.

2.3 Semantic Features for context sparseness

�ough concept features enable to compute similarity for unseen

words, both statistical and conceptual features treat the three sen-

tences as a bag of words. Our research question in this section

is whether bag of model is su�ciently e�ective for modeling the

given triple, or three sentences? Would having two sentences ad-

jacent or not, in these three sentences, change the meaning? If this

is the case, we need an additional feature to capture such transition.

As a hypothesis, when denoting three sentences S1, S2, and S3,

we de�ne transition vector Ti j between two adjacent sentences Si
and Sj . We de�ne Ti j , as a vector operation of Si − Sj , where Si is

represented asWord2vec [1]: Word2vec is a continuous Skip-gram

model which is an e�cient method for learning high-quality dis-

tributed vector representations representing a large number of pre-

cise syntactic and semantic word relationships. As we empirically

report later, these feature add accuracy over statistic and concep-

tual features.

3 EXPERIMENT

We evaluate the performance of the proposed features with SVM

classi�cation. We randomly divide the labeled set by an approx-

imate ratio of 9(train):1(test). We use multi-class C-SVC classi�-

cation with polynomial kernel type, with gamma value 0.25. �e

performance is evaluated by the classi�cation accuracy.

Table 2: Divided Validation Performance

Features

Statistic Concept Semantic Accuracy (%)

O X X 54.59

O O X 65.94

O O O 72.71

Table 2 shows the performance of the proposed features. We

increase 11% accuracy by using the concept features compare to

baseline performance (only statistic features are used). �e best

performance is achieved when all three features were used, which

is 18% higher than the performance of the baseline.

4 CONCLUSION

In our work, we propose a method using various features for classi-

�cation. We use statistical, conceptual and semantic features, and

used a SVM regression. Our empirical results con�rm the e�ec-

tiveness of each feature, and show the complementary strength of

these feature when aggregated for classi�cation.
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