
ERIS Live: A NUMA-Aware In-Memory Storage Engine for
Tera-Scale Multiprocessor Systems

Tim Kiefer*, Thomas Kissinger*, Benjamin Schlegel*, Dirk Habich*, Daniel Molka†,
Wolfgang Lehner*

*Database Technology Group/†Center for Information Services and High Performance Computing (ZIH)
Technische Universität Dresden

01062 Dresden, Germany
{firstname.lastname}@tu-dresden.de

ABSTRACT
The ever-growing demand for more computing power forces
hardware vendors to put an increasing number of multipro-
cessors into a single server system, which usually exhibits a
non-uniform memory access (NUMA). In-memory database
systems running on NUMA platforms face several issues
such as the increased latency and the decreased bandwidth
when accessing remote main memory. To cope with these
NUMA-related issues, a DBMS has to allow flexible data
partitioning and data placement at runtime.
In this demonstration, we present ERIS, our NUMA-

aware in-memory storage engine. ERIS uses an adaptive
partitioning approach that exploits the topology of the un-
derlying NUMA platform and significantly reduces NUMA-
related issues. We demonstrate throughput numbers and
hardware performance counter evaluations of ERIS and a
NUMA-unaware index for different workloads and configu-
rations. All experiments are conducted on a standard server
system as well as on a system consisting of 64 multiproces-
sors, 512 cores, and 8 TBs main memory.

Categories and Subject Descriptors
H.2.2 [Database Management]: Physical Design

Keywords
ERIS; NUMA; In-Memory; Storage Engine; Multiproces-
sors; Scalability

1. INTRODUCTION
As a consequence of the high main memory capacities in

today’s servers, modern database systems are very often in
the position to store their entire data in main memory. La-
tency and bandwidth of the main memory are the major
bottlenecks of such in-memory DBMSs. The significance
of these bottlenecks increases when we consider the cur-
rent trend towards tera-scale multiprocessor systems that

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from Permissions@acm.org.
SIGMOD’14, June 22–27, 2014, Snowbird, UT, USA.
Copyright 2014 ACM 978-1-4503-2376-5/14/06 ...$15.00.
http://dx.doi.org/10.1145/2588555.2594524.

0

500

1000

1500

2000

2500

3000

3500

0 64 128 192 256 320 384 448

Th
ro

u
gh

p
u

t
[M

ill
io

n
/s

]

#Cores

Shared Index

ERIS

Linear Speedup

Figure 1: Super Linear Index Lookup Scalability of
ERIS on a SGI UV 2000.

exhibit a non-uniform memory access (NUMA). On NUMA
platforms, each multiprocessor has its own local main mem-
ory which is accessible by other multiprocessors via a com-
munication network. Database systems running on NUMA
platforms face several issues such as the increased latency
and the decreased bandwidth when accessing remote main
memory. Additionally, NUMA systems worsen the already
bad scalability of latches and atomic instructions in multi-
threaded applications. To allow database systems to scale-
up on today’s and future platforms, NUMA-awareness has to
be considered as a major design principle for the fundamen-
tal architecture of a database system. Thereby, a flexible
data partitioning and data placement is needed to restrict
memory accesses to the local main memory of a multipro-
cessor and to circumvent the latching of data structures.
Our flexible in-memory storage engine—ERIS—was de-

signed to achieve a high read and write throughput on
tera-scale multiprocessor systems. ERIS picks up the con-
cept of the data-oriented architecture (DORA) [3], which
uses a thread-to-data instead of the conventional thread-
to-transaction assignment. DORA demonstrated that it is
beneficial to adaptively partition data objects on a single
multicore system to reduce lock contention in the context of
OLTP workloads. With ERIS, we extend the data-oriented
architecture to scale-up on large multiprocessor systems and
propose a load balancing mechanism that exploits the topol-
ogy of the underlying NUMA platform to allow a quick adap-
tion of the partitioning to a changing workload.

689

In our evaluation, ERIS achieves a super linear speedup
for the index lookup throughput (1 billion keys) on a NUMA
system equipped with 64 multiprocessors and a total of 512
cores as depicted in Figure 1. While ERIS is able to scale
up on such a platform, a NUMA-unaware storage engine
that shares data objects between transactions struggles with
NUMA-related issues that prevent it from scaling. In con-
trast, the data-oriented approach of ERIS employs logical
partitioning of the data object, which aligns to the topology
and thus avoids remote memory accesses, utilizes the indi-
vidual multiprocessor caches better, reduces cache coherence
overhead, and allows accesses to the data structure without
any latches or atomic instructions like compare-and-swap.
For this demonstration, we built an interactive GUI that

connects to an instance of ERIS (or the NUMA-unaware
storage engine) running on a NUMA system. The GUI dis-
plays live measurements of the request throughput (in this
demo, we focus on inserts and lookups) as well as hardware
performance counters of link and memory controller usages.
Furthermore, the GUI can be used to interactively change
setup, workload, and load balancing parameters to observe
the behavior of ERIS under changing conditions.

2. ERIS
In this section, we describe the architecture of ERIS and

its individual components as visualized in Figure 2. The cen-
tral components of the storage engine are the Autonomous
Execution Units (AEU). AEUs can be implemented in many
different ways. For this demonstration, we decided to use
prefix trees [1], which are order-preserving and—contrary
to the B+-Tree—unbalanced. Each core, respectively hard-
ware context, of the platform runs exactly one AEU. All
AEUs pinned on the same multiprocessor use a common
memory manager, because they share the same local main
memory and are thus able to quickly exchange data parti-
tions. A set of partitions—each belonging to a different data
object—is assigned to each AEU. The AEU’s main task is
to manage its partitions and to process incoming data com-
mands (i.e., inserts, lookups, and scans) on these partitions.
To efficiently route data commands between AEUs, ERIS
includes a NUMA-optimized data command routing com-
ponent. The load balancer of ERIS observes the current
load of the AEUs via a monitoring component and triggers
balancing commands in case of an uneven AEU utilization.

2.1 AEUs and Memory Management
Traditional architectures bind transactions to a number of

threads and use a global memory manager (per data object).
This way of accessing and storing the data is highly discour-
aging when running on NUMA platforms, because data is
distributed in an uncoordinated way across the memories of
different multiprocessors. This in turn causes a high number
of remote memory accesses by the transaction threads.
For that reason, ERIS employs a data-oriented architec-

ture where each data object is logically partitioned. Each
AEU gets a set of disjoint partitions (range partitioning)
assigned—each one belonging to a different data object—
and is exclusively responsible for that portion of the indi-
vidual data object. This approach restricts memory accesses
of an AEU to the multiprocessor’s local main memory and
data objects do not have to be protected against concurrent
accesses via latches.

© Prof. Dr.-Ing. Wolfgang Lehner | | 2

>

Partition
Transfer

Arch & Worker

Multiprocessor 1

AEU

Core 1

Local Memory

Core N

…

Local Memory Manager

Multiprocessor M

Core 1

Local Memory

Core N

…

Local Memory Manager

NUMA-Optimized Data Command Routing

Monitoring

… Load
Balancer

AEU AEU AEU

Figure 2: Architectural Overview of ERIS.

© Prof. Dr.-Ing. Wolfgang Lehner | | 4

>

Local Buffers Local Buffers

Routing

A1 Datenbanksysteme: Was? Wie? Warum?

Local Outgoing Buffers

Local Incoming Buffer

To AEU 1

To AEU N

…

Processing

Fill

Local Outgoing Buffers

Local Incoming Buffer

To AEU 1

To AEU N

…

Fill

Processing

Global Partition Table

1. Lookup Target AEU

2.

3. Copy

A
EU

 1
 A

EU
 N

Figure 3: Two-Level Data Command Routing.

Regarding the memory management, a global memory
manager (per data object) is not feasible on a NUMA plat-
form. Instead, ERIS deploys one memory manager per mul-
tiprocessor. Per-multiprocessor memory managers help to
reduce the contention on the memory management subsys-
tem, which is often the bottleneck during writing operations
to a data object. Moreover, this approach limits allocations
to the local main memory. Additionally, our memory man-
agers use thread-local caching to scale with a high number
of cores per multiprocessor.

2.2 NUMA-Optimized
Data Command Routing

The data command routing is an essential part of ERIS,
because AEUs have to be supplied with data commands just
in time. Thus, the main goal of the data command routing
is to distribute data commands at a high throughput, other-
wise the routing would become a bottleneck and would limit
the scalability of ERIS. Our data command routing mecha-
nism is shown in Figure 3. The core component is the global
partition table (GPT), which keeps track of the partitioning
of the individual data objects. To implement the GPT of
ERIS, we decided to use a CSB+-Tree [4], because it works
fast for sparsely distributed data and it scales better with an
increasing number of ranges, respectively AEUs, compared
to a simple array.
Besides the GPT, our NUMA-optimized data command

routing uses a two-level buffering strategy. Each AEU uses
a set of small outgoing buffers—one for each running AEU in
the system—and two bigger incoming buffers. Both buffer
types are stored in the local main memory of each AEU to
provide fast access to them.
Every time an AEU generates a data command, it starts

with looking up the responsible AEU(s) for that data com-
mand in the GPT (step 1 in Figure 3). As soon as the the
target AEU is determined, the source AEU writes the data
command to its corresponding outgoing buffer, which is pri-

690

vate to the AEU (step 2). If an outgoing buffer is either full
or a timeout is reached, the specific outgoing buffer is copied
to the incoming buffer of the target AEU (step 3). This lo-
cal pre-buffering dramatically increases the data command
routing throughput, because the contention on the incom-
ing buffers is reduced and multiple data commands can be
copied sequentially.
While outgoing buffers are private to an AEU and thus

do not require any concurrency control, incoming buffers are
written by different AEUs and are read by the host AEU in
at the same time. For that reason, incoming buffers need
an efficient and ideally latch-free concurrency control mech-
anism. Here, we employ an adapted version of the latch-free
multi-buffer proposed in LLAMA [2].

2.3 Load Balancing
ERIS requires a load balancer component to adapt the

partitioning to changing workloads. Based on the access
frequencies captured in the monitoring component (cf. Fig-
ure 2), the load balancer periodically checks the load of
ERIS for imbalances. If necessary, the load balancer exe-
cutes a load balancing algorithm that calculates a new par-
titioning. Based on the optimization goal, the partition-
ing can either be optimized for throughput or for energy-
efficiency. In the case of a throughput optimization, hot
data is evenly distributed across the AEUs. To optimize
for energy-efficiency, some AEUs only receive cold or even
no data at all to allow the operating system to throttle the
corresponding cores or to turn cores or multiprocessors com-
pletely off. With the help of the current and the targeted
partitioning, the load balancer computes a series of balanc-
ing commands that are routed to the involved AEUs.

Load Balancing Algorithms.
The load balancing algorithm receives the approximated

access frequency distribution of the recent sample period as
well as the current partitioning as inputs and outputs the
targeted partitioning. The most aggressive, but also most
costly approach is taken by the One-Shot load balancing
algorithm. This algorithm computes the average access fre-
quencies of all partitions and calculates a target partitioning
that is fully balanced. The One-Shot algorithm is suitable
for workloads that change rarely but heavily. An alternative
algorithm uses a moving average (MA) over a subset of par-
titions to calculate the target partitioning from the current
access frequencies. The MA algorithm adapts more slowly
to the new workload, but does not cause as much balancing
overhead as the One-Shot algorithm and is thus suitable for
highly dynamic workloads. The aggressiveness of the MA
algorithm depends on the window size and turns into the
One-Shot algorithm for a sufficiently large window.

Partition Transfer.
If the load needs to be balanced, each AEU that has to

grow or shrink its local partition receives a balancing com-
mand. Besides the information about the new partition
range, a balancing command includes a set of transfer com-
mands. There are two different types of transfers, depend-
ing on the distance between source and target AEU. When
both are located on the same multiprocessor, the cheap link
mechanism can be used, whereas the copy mechanism is used
for transfers between multiprocessors. For the link transfer
mechanism, the source AEU unlinks the respective portion

of the partition and the target AEU adds it to its own parti-
tion. This operation is very cheap for the prefix trees used in
our AEU implementation. A copy operation requires a coop-
eration of source and target AEU to avoid remote memory
accesses. The target AEU forwards the transfer command to
the source AEU, which flattens the partition to an exchange
format and streams it sequentially to the target AEU. The
target AEU converts the data stream and links it to its ex-
isting partition.

3. DEMONSTRATION
Figure 4 shows a screenshot of our demo application. The

various details shown in the GUI as well as the demo expe-
rience are detailed in the following sections.

3.1 Demo Setup
In our demo, we directly connect to a NUMA system to

measure and display the transaction throughput (1 in Fig-
ure 4) achieved by ERIS or a NUMA-unaware shared index.
In addition to throughput values, our GUI shows link and
memory controller utilization (2 in Figure 4) using hard-
ware performance counters to reason about the algorithms’
behaviors. To convey our load balancing algorithms, repar-
titioning commands (3 in Figure 4) are also visualized during
the demo.
We use two different NUMA systems for our demo.

The first machine (AMD machine) has 8 multiprocessors,
64 cores, and 64 GBs main memory. The second machine
(SGI machine) is a SGI UV 2000 [5] with 64 multiprocessors,
512 cores, and 8 TBs main memory.

3.2 Demo Walkthrough
The visitor of our demo will be able to choose one of the

two available machines (4 in Figure 4) as well as one of
the two basic implementations (5 in Figure 4), i.e., ERIS
and the NUMA-unaware shared index. Both machines show
NUMA effects to a different extend and comparing the
rather small AMD machine with the large SGI machine
demonstrates the scalability of ERIS and the lacking scala-
bility of the shared index, respectively.
When the visitor has decided in favor of a machine and

an algorithm, the demo tool will start with filling the index
with random keys. This prepares the following lookup of
keys and at the same time the insert throughput can be
observed. Following the insert phase, the demo tool will
query random keys, evenly distributed over the key range.
At all times, the GUI charts live throughput values as well

as link utilization and memory controller bandwidths. Com-
paring different setups, the demo visitor will see that ERIS
causes very little link activity compared to the shared index.
At the same time, ERIS is able to achieve a considerably
higher memory controller bandwidth and hence transaction
throughput. Both hardware performance measures reflect
the significantly better data locality and hence lower com-
munication penalty of ERIS.
Starting from a basic setup, the demo visitor has several

options to interactively influence the course of the demo and
to observe the algorithms’ behaviors.

Number of Partitions/Multiprocessors.
The first choice is the number of AEUs (6 in Figure 4)

and therefore partitions. At the same time, the number of

691

© Prof. Dr.-Ing. Wolfgang Lehner | | 1

>

0

50

100

150

200

250

300

350

0 10 20 30 40 50 60 70 80 90 100 110 120

Th
ro

u
gh

p
u

t
[M

ill
io

n
/s

]

Time [s]

ERIS

Shared Index

1

2

3

4

5

6

7

8

Figure 4: Screenshot of the ERIS Live Demo Application.

partitions directly determines the number of multiprocessors
that are used by the algorithm.
By adding or removing partitions and multiprocessors re-

spectively, the demo visitor can observe that the throughput
of ERIS scales linearly with the number of multiprocessors.

Skewed Workloads.
The second interactive choice is the workload (7 in Fig-

ure 4). The demo visitor can switch between a workload
that evenly queries the whole key range and several skewed
workloads with hot spots in the key range. While the shared
index is agnostic to workload changes and has an equally low
throughput, the demo visitor can see how the load balancer
of ERIS adapts to new workload conditions. Load balanc-
ing commands (i.e., commands to transfer a range of keys
from one AEU to a different one) are visualized on a logical
level. At the same time, the charted throughput values as
well as the link and memory controller utilizations reflect
the load balancing activities.

Load Balancing Algorithms.
The third choice in our demo setup is the specific load

balancing algorithm (8 in Figure 4) and hence related to
the choice of the workload. The demo visitor can choose be-
tween no load balancing at all or from different load balancer
implementations such as the One-Shot algorithm or the MA
algorithm with different parameters. Whenever the work-
load is changed, the behavior of the currently selected load
balancing algorithm can be observed and the demo visitor
can easily see their differences like gentle or steep perfor-
mance drops and quick or slow recoveries.

4. CONCLUSIONS
In this demo proposal, we introduced ERIS, our NUMA-

aware in-memory storage engine. ERIS is designed for flexi-
ble data partitioning and data placement and restricts mem-
ory accesses to the local main memories of the multiproces-
sors. To achieve scalability on tera-scale NUMA systems,
ERIS implements NUMA-aware thread and memory man-
agement, a highly optimized command routing, and NUMA-
aware load balancing mechanisms.

5. ACKNOWLEDGMENTS
This work is partly funded by the German Research Foun-

dation (DFG) in the Collaborative Research Center 912
“Highly Adaptive Energy-Efficient Computing” and under
project number LE 1416/22-1, as well as by the Bundesmin-
isterium für Bildung und Forschung via the research project
CoolSilicon (BMBF 16N10186).

6. REFERENCES
[1] M. Böhm, B. Schlegel, P. B. Volk, U. Fischer,

D. Habich, and W. Lehner. Efficient In-Memory
Indexing with Generalized Prefix Trees. In BTW, 2011.

[2] J. J. Levandoski, D. B. Lomet, and S. Sengupta.
LLAMA: A Cache/Storage Subsystem for Modern
Hardware. PVLDB, 6(10), 2013.

[3] I. Pandis, R. Johnson, N. Hardavellas, and A. Ailamaki.
Data-Oriented Transaction Execution. In VLDB, 2010.

[4] J. Rao and K. A. Ross. Making B+- Trees Cache
Conscious in Main Memory. SIGMOD Rec., 29, 2000.

[5] SGI. Technical Advances in the SGI UV Architecture.
white paper, SGI, 2012.

692

	Introduction
	ERIS
	AEUs and Memory Management
	NUMA-Optimized Data Command Routing
	Load Balancing

	Demonstration
	Demo Setup
	Demo Walkthrough

	Conclusions
	Acknowledgments
	References

