VQA: Vertica Query Analyzer

Alkis Simitsis Kevin Wilkinson
HP Labs HP Labs
Palo Alto, CA, USA Palo Alto, CA, USA
alkis@hp.com kevin.wilkinson@hp.com
ABSTRACT

Database query monitoring tools collect performance metrics, such
as memory and cpu usage, while a query is executing and make
them available through log files or system tables. The metrics
can be used to understand and diagnose query performance issues.
However, analytic queries over big data presents new challenges
for query monitoring tools. A long-running query may generate
tens of thousands of values so simply reporting the metrics may
overwhelm the user. Second, analytic queries may be written by
database novices who have trouble interpreting the metrics. Third,
analytic queries may access data or processing outside the database
through user-defined functions and connectors. The impact of these
on query performance must be understood. Vertica Query Analyzer
(VQA) is a query monitoring tool to address these challenges. VQA
is both a useful tool and a research platform for query analytics. It
presents query performance metrics through a variety of views and
granularities. In addition, it analyzes the metrics for typical perfor-
mance problems and suggests corrective actions. We demonstrate
VQA using TPC-DS queries which have a wide range of query du-
ration and complexity.

Categories and Subject Descriptors

H.2.m [Database Management]: Miscellaneous

Keywords
SQL; SQL query monitoring; SQL query analysis; parallel database

1. INTRODUCTION

This demonstration addresses the question: ‘Why is my ana-
Iytic query so slow?’ Most database systems include monitoring
tools that enable administrators and users to view performance met-
rics for individual queries. Typically, the performance metrics are
stored into log files or system tables that can then be read by an
application and displayed on a dashboard or summarized in a re-
port. However, for analytic queries over big data, we believe this

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

SIGMOD’14, June 22-27, 2014, Snowbird, Utah, USA.

Copyright is held by the owner/author(s). Publication rights licensed to ACM.

ACM 978-1-4503-2376-5/14/06 ...$15.00.
http://dx.doi.org/10.1145/2588555.2594531.

Joe Walsh
HP Vertica
Campbridge, MA

Jason Blais
HP Vertica
Campbridge, MA

jason.j.blais@hp.com joe.e.walsh-jr@hp.com

701

approach is lacking in several respects. First, the user may be a
data scientist or analyst for whom the low-level metrics provided by
the monitoring tools are incomprehensible. Second, a long-running
query on a parallel database engine may generate tens or hundreds
of thousands of metrics. Simply reporting this data is not help-
ful. A user needs to find the useful information. Third, complex
analytic queries may invoke user-defined functions (UDFs) or use
connectors to other processing engines. Their impact on query per-
formance must be understood.

As a first step in addressing these challenges, HP Labs, in col-
laboration with Vertica, have developed a research platform, the
Vertica Query Analyzer (VQA). The Vertica database engine is an
excellent testbed for this project. Vertica is designed for analytic
workloads and it employs a high degree of intra-query parallelism.
This combination of high query complexity and large scale paral-
lelism presents many opportunities for studying problem queries.
This paper starts with an overview of the VQA architecture, then
describes the features to be demonstrated, and then provides an out-
line of our planned presentation to SIGMOD attendees.

2. SYSTEM OVERVIEW

At ahigh-level, VQA executes a query, collects performance met-
rics and presents those metrics in a variety of representations and
perspectives. It also provides a number of monitoring and analysis
actions. VQA features are described in the next section.

VQA comprises a user interface module and a server module
(Figure 1). The interface module accepts a SQL query, sends it
to the server module, collects performance metrics from the server
module and renders charts and graphics of those metrics. An exter-
nal query, i.e., one executed outside VQA, may also be analyzed by
entering its Vertica query identifier. The interface is Web-browser
based and uses HTML and various graphics libraries for display,
and Ajax and JSON to communicate with the server module.

AJAX rgst JDBC rgst
2/(\3/eb tér:;::er > VQA —> database
t;%‘;:irefox) — server — instance
ISON reply JDBC reply

Figure 1: VQA architecture

The server module submits queries for execution to Vertica and
retrieves query execution performance metrics. Per user request,
metrics may be collected periodically during execution or after the
query completes. The server also retrieves and parses the query
explain plan and checks for query execution events (e.g., hash table
overflow). The server is implemented in Jetty and Java and uses
JDBC to access Vertica. It may run on a user machine, a Vertica
node or an application server.

Vertica can collect detailed (thread-level) performance metrics
for the operators of a running query. Some metrics are common
to all operators (e.g., CPU, memory usage, rows produced) and
others are operator-specific (network bytes sent). A large analytic
query may comprise a few hundred logical operators, each of which
may comprise a number of multi-threaded, physical operators, each
running on multiple nodes. So, a long-running, parallel query for
which metrics are collected every few seconds may easily generate
tens to hundreds of thousands of metric values.

Vertica stores query performance metrics in a system table. The
VQA server uses a SQL query to read the metrics for a query into
its main memory. To reduce memory usage on the server, by de-
fault, only a subset of all possible metrics are collected. But, the
interface allows users to request more or fewer metrics as needed.
Performance metrics for a query are not retained indefinitely by
Vertica or VQA. However, a user may request that VOA log query
metrics to disk for later review or off-line analysis.

3. DEMONSTRABLE FEATURES OF VQA

VQA provides four primary functions to help users understand
query behavior: Entry, Monitor, Analyze, and Action. The first step
is to enter the query to be studied. Monitor refers to collecting and
viewing performance metrics for a query, either during its execu-
tion or after. Analyze runs a set of data mining algorithms over
the metrics looking for patterns of performance problems. And,
VQA provides users a number of actions on the metrics or the query.
This section describes these functions in more detail.

3.1 Entry

There are three use cases for VQA. The first is when a user en-
ters the SQL text for a query. Here, VQA initiates query execu-
tion and so VQA may collect performance metrics for the entire
query execution. The second is when a user wants to monitor an
external query, e.g., to study a query that is blocked or running too
long. Here, the user enters its Vertica query identifier and VQA can
collect performance metrics only from that point until the end of
execution. Third, a user may wish to retrieve metrics from the
VQA log for a previously monitored query for review and analysis.
Figure 2(top-left) shows a fragment of the query entry interface.

3.2 Monitor

VQA provides several options for when to collect metrics for a
query. First, a user may collect an immediate snapshot of a query’s
performance metrics to study the current query state. Subsequent
snapshots may be collected at the user’s discretion. Second, a user
may let a query run to completion and then collect a final snapshot
of the performance metrics. Third, a user may have VQA automat-
ically collect periodic snapshots in order to view the dynamic be-
havior of the query. In addition, a user may specify which metrics
to collect. VQA collects a default set of metrics for each operator,
but the user may add or delete from that set. For each snapshot of
metrics, VOA provides chart views and tree views.

3.2.1 Chart Views

VQA provides a number of two-dimensional charts to view a
metric snapshot. These charts are refreshed for each new snap-
shot collected during query execution. Typically, there is one chart
for each type of metric, but some charts show multiple metrics for
comparison; e.g., estimates vs. actual measures. The Vertica en-
gine collects metrics for each thread of each physical operator for
a query. But the user view of query execution is the tree of logical
operators (termed paths in Vertica) shown by the SQL explain plan
command. Each logical operator (e.g., GroupBy) comprises a num-

702

ber of physical operators (e.g., ExpressionEval, HashGroupBy).
And a physical operator may run as multiple threads on a node (e.g.,
a parallel table scan). Additionally, Vertica is a parallel database, so
a physical operator may execute on multiple nodes. Consequently,
each logical operator in the tree may correspond to many metric
values at the physical operator level.

The snapshots collected for a query form a multi-dimensional,
hierarchical dataset where the dimensions are path/operator, node,
time, and the cells contain metric values. The metrics may then
be aggregated (rolled-up) at the physical operator level, the logical
operator (path) level, the node level, or the query level. To reduce
the level of detail, the charts initially display metrics aggregated at
the node level. The user may selectively drill down to see more
detail. Clicking on a node displays all paths on the node and click-
ing on a path displays all operators for that path. Different colors
are used to distinguish operators/paths that are currently executing
from those that have completed. Pending paths and operators that
have not started are not shown to simplify the charts.

Figure 2(bottom-left) shows an Elapsed Time chart drilled-down
to the operator level for path 6 on node 3. It shows the time when
each operator starts and ends execution. Charts for other metrics
are available, e.g., Time (cpu usage, clock time), Memory (reserved
and used), Rows (estimated and produced), and so on. Query ex-
ecution events (e.g., group_by_spilled, no_histogram), if any, are
listed on the affected path.

To view different perspectives, a user may aggregate along dif-
ferent hierarchies, e.g., path first, then physical operator and then
node. Note that for some metrics, the range of values may be sev-
eral orders of magnitude, e.g., memory usage for a filter operator
compared to a sort operator. Consequently, by default, VQA will
not display operators or paths with insignificant metric values. In
this way, less useful information is not exposed to the user. Alter-
natively, a user may choose a logarithmic scale for a chart.

When a monitored query completes execution, a History chart is
available that shows metrics aggregated at the query level at each
timestamp where a snapshot was collected. This helps in seeing
trends and correlations in the metrics. Figure 2(right) shows an ex-
ample History with snapshots taken approximately every four sec-
onds. This timeline chart is designed to give a coarse overview of
the query execution to check for obvious anomalies.

3.2.2 Tree Views

In a tree view, VQA first displays a query’s explain plan as a
graphical tree of operators. Then, as metric snapshots arrive, a
query’s progress is shown by annotating the operator tree. Each
node in the operator tree represents a path (logical operator) in the
query and arcs between nodes represent dataflow. Within a tree
node, bar charts indicate relative values for metrics: e.g., execu-
tion time, memory allocated, and rows produced. Each bar chart
has its own scale and shows the fraction of total query metric value
consumed or produced by this operator. Additionally, the color of
the tree node indicates the execution status of the path, i.e., waiting
(not started), running or completed. Tool tips over nodes and arcs
provide additional details about the operator or data.

Figure 3(left) shows the tree view for a query which has a hash
join as its root operator (#2). As can be seen, its right child (#15)
has finished, indicating the hash table has been built. The second
input (#3) has just started executing. We can also see that, currently,
operators #6 and #17 use most of the memory in this query and
operators #6, #15-#17 use most of the CPU. It appears anomalous
that some operators have finished while their child operators are
still running, e.g., operator #16 and operator #17. This is an artifact
of collecting the metrics in real-time across multiple Vertica nodes.

7) Vertica Query Analyzer

An experimental platform

.:' HP Labs

ALPHA
Version 0.8

Time

Metric charts
i |
Memory
Query Entry
P A Rows
Enter a SQL query in one of the following ways Network
95320273
Import a query Retrieve a query History
[openrite | aqueryrogs || import metrics | Transaction ID: l:l Statement ID: [Browser Execution Time
. 7.047804999999999
SQLscript %
4162204672
y') then sales price else null end) sun sales,
T Chen Sateeiaios clse mull coa) mooaree Memory Reserved .—.’/’\.
then sale3 price else null end) tie_sales
then sales price slse null end) wed sales
hen sales price else null end) thu Sales, 3945018368
then sales pFice else null ena) fri_sales,
*) then seles_price else null end) sac_sales
from 2444803824
{select sold date sk
Time | Eapsedtime Memory Allocated
S| -
Memory ' 1585898976
o Rows 03 node v_hfms_node0001 —————e— 615513509
Network (1‘ node v_hfms_node0002 Root ———
- D nodev_nims noceooo | [—
patn]
ParallelUnion 25646210
ExprEval
Join - sas31561%0
patn 13 |
path 15 | Estimated Rows Produced
patn18 1 . u - -
path2s I 6483126:19
ath 26
"] 57074
node v_hf;ms_node0004 —
node v_hfms_node0005 L —————————
node v_hfms_node0006 1 Bytes Sent
node v_hfms_noce00o? 1
node v_hfms,_node0003 1 =
. . | ! 00:26:26 00:26:30 00:26:34 00:26:39
0 0.01 0.02 0.03
19:04:24

Figure 2: VQA entry (top left), chart view (bottom left), and history (right) for an execution of the TPC-DS Query-2

Metrics for some operators may be delayed but eventually things
will converge. If an operator is shown completed it is safe to infer
its input operators have also completed.

One challenge with a graphical display of the query tree is that
the screen space needed to render a large tree may exceed what is
available. VQA addresses this in two ways. First, nodes in the tree
may be hidden when they have low information value or are not ac-
tive, much as the chart views hide operators and paths with little or
no data. Second, a synopsis of the entire query tree is displayed in a
fixed-sized box below below the legend on the left. The synopsis is
active in that clicking on a portion of the tree in the synopsis shifts
the screen to display that portion of the query tree.

Note that a user may reorient the tree display (e.g., left-to-right
rather than top-down) to better use the available space depending
on the shape of the tree (e.g., especially broad or deep). Finally,
on the left of the display above the tree synopsis, is shown a query
progress indicator. It estimates the completion percentage of the
running query using techniques like those in [4].

3.3 Analyze

The Analyze function may be invoked after metrics are collected
for a query. It invokes a series of heuristic algorithms that mine the
query metrics for patterns of performance problems.

As a simple example, consider a scan of a hash partitioned ta-
ble. Ideally, the number of result rows will be approximately equal
across all nodes. Otherwise, there is skew in the data distribution
and the amount of work done per node will vary at this level and
possibly higher levels in the query. Similarly, a parallel hash join
may repartition its input which could result in skew. So, differences
in execution or elapsed time may be accounted for by skew.

Another important analysis function is identification of critical
paths in query execution. By critical path, we mean those paths
with the highest impact on query execution or those responsible

703

for deviations between estimated and actual performance. Know-
ing the critical paths may reveal query design or execution prob-
lems and can help users focus on the most important areas to im-
prove performance. VQA can inform the user in a variety of ways:
through the analysis report, annotations on the explain plan tree
or highlighting the SQL code fragment responsible for the critical
path. Alternatively, for users not comfortable with SQL, a natural
language description of the SQL code fragment may be generated
using techniques as in [3].

Figure 3(right) illustrates example sections of an Analyze report
for a query, listing for example, the critical paths, scan skew, ac-
curacy of estimated rows, and the execution time of a user-defined
function. The analysis function has a plug-in architecture so it is
easy to add algorithms for different performance patterns.

3.4 Actions

VQA provides a number of actions on both the collected metrics
for a query and the operator tree. Recall the History chart shows
the timestamps when metrics were collected for a query (see Fig-
ure 2(right)). A user may click on any timestamp and time-travel to
that point in the query’s execution, i.e., the chart and tree views will
reflect the state of the query at that point in time. From that point, a
user may replay a query execution either forward or backward at a
user-specified speed. A user may save the metrics snapshots for a
query execution to a log file. In addition, a user may share those
metrics with another user (e.g., customer support) or later get the
metrics for replay or for comparison with another execution of that
query.

Note that a long-running query may require a large memory foot-
print, so a user may compress the metric snapshots for a query exe-
cution. An upper bound may be placed on the VQA server memory
used to store metric values for a single query. If that is exceeded
while monitoring a query, a deletion algorithm is used to selectively

Options Skew in Scan Rows Produced

average

Tree Orfenation[Top v
O citica Paths Analysis

0 Logarithmicscaed Metrics|

% progress gar

+ Path -3 SCAN-tem) average rows pe node 503.75

Estimated Rows Accuracy

+ Path 1613 (SCAN-gate_gi

Analysis Report for Query: [49539595901401737, 101

Execution Details

149539595501401737

Browser ;| 13948434252723361213

wRowsad] Critical Paths

sesT%
20587%

« patnig:
© PathIc:15 (SCAN-t
“ PatnIg: 17 (SCAN-Tg
+ Path6:25 (sCAN-c

nsI%
n561%
RE
e

6360%

PaInIc: 10 UOIN-H 11,16)
PalnIc: 11 UOIN-H1213)
PaihIe: 12 (SCAN store_sates)
an

. a
+ Path16:26 (SCAN-5
* PatnIg: 28 (SCAN-Tg
+ Path1e:30 SCAN-t
+ Pathlg: 43 (SCAN-Item) av

Memory Reserved
@ Rows Produced

Execution time
Path1e:38 (SCAN-web_sales) 7150%
Potnle: 12 (SCAN-store_sales) 14.45%
Memory allocated

Pathc: 2 (GROUPBY) as%

Estimated Rows

Produced

© Bytes sent
BytesReceived

Node States
©® Waiting
@ Running

Path1e:38 (5CA putogl0] 16.825e
PatnIe: 39 (SCAN-ate_Gm) cpubog(0] 0.05sec
PalnIc: 13 (SCAN-Gate_GIm) CpuHog (0] 0.04sec

UDFName _ExecTime v

u otal Path Execution Time

path Total.
B236% 1952 se0)
7881%(007 520
86.45% 005 520

Patn e 7 (GROUPBY)
Painic: 20 GROUPBY)
PainIc: 33 GROUPBY)
Path1e:3 UOIN-H10,15)

2%
2%
82
756%

Figure 3: VQA tree view (left) and analyze (right)

remove metrics with little information content. Essentially, it sam-
ples a multivariate time series in real-time but does so in a way that
retains approximately equal time intervals between retained snap-
shots and also attempts to retain high-value data; e.g., snapshots
that include minimum or maximum performance metrics or that
represent an inflection point.

4. OUR PRESENTATION

Our presentation will demonstrate VQA features using TPC-DS [5]

benchmark queries running on a multi-node Vertica cluster. These
queries have a wide range of execution times and query complexity
so they provide many options for illustrating features. As a back-
ground demonstration, we will have VQA loop through the TPC-DS
queries, monitoring the execution of each while showing the oper-
ator tree. This will show a variety of query tree shapes and animate
their execution.

Our demonstration script begins by monitoring a relatively short
TPC-DS query that is easy to understand. Various metric charts
will be shown, e.g., different levels of aggregation, different chart
types, and so on, along with drill-down to different levels of detail.
Since the ultimate goal is to understand performance problems, an
artificial load will be placed on one Vertica node and the query
monitored again. The charts will then show significant CPU latency
on the loaded node.

The next demonstration will monitor a longer-running query that
undergoes several phase changes (alternating periods of high CPU,
memory and disk usage). During execution, the charts will be re-
freshed automatically showing how different operators and paths
use resources and produce rows. When the query completes, the
History chart will be displayed to show the phase changes over time
as inflection points in the timeline of metric values. We will then
click on one inflection point to go back in time and view the met-
rics at the time of the inflection point. We then repeat the monitor
action with an artificial, memory-intensive load on one node.

The tree view will be demonstrated with a small query tree that
easily fits on the screen, but that runs for about 10 seconds. This
will show the basic animation features and the progress indicator.
Next, we will show a variety of very large query trees and show how
the synopsis tree can be used to navigate to different fragments of
the query tree.

The analyze function will be demonstrated by monitoring the
TPC-DS queries. As an example, we will use a TPC-DS query

704

that is slightly modified to invoke a user-defined function that is
a cpu hog. The operator tree view will show the large fraction of
execution time devoted to the operator that invokes the user-defined
function. Next, the analyze function will be invoked to produce a
report showing, for example, critical paths, accuracy of estimated
values, scan skew, and join skew.

Finally, for off-script presentation and discussion, we will pro-
vide interactivity, where the participants can browse example queries
and experiment with VQA.

S. RELATED WORK

The Vertica Management Console (MC) provides a comprehen-
sive, real-time view of the state of the database and includes database
and node management functions [2]. MC also includes some func-
tions adapted from VQA, e.g., users can view query explain plans,
profile query execution, and view aggregate query performance
metrics for each logical operator.

We also note that several other database systems provide some
of the features of VQA. Probably the most closely related to VQA is
Stethoscope [1]. But we know of no system that works with a par-
allel database engine and offers a real-time, interactive analytics of
query performance metrics at a fine granularity like that in VQA.

6. ACKNOWLEDGMENTS

The authors thanks Jorge Saldivar Galli (Univ. of Trento), Chris
Sulawko (HP Vertica), Craig Sayers (HP Labs), Fernando Mar-
tinez (HP GUAPO), Samuel Heaney (ITESM), and Andres Trevino
(ITESM) for their help in various stages of VQA.

7.
(1]

REFERENCES

M. Gawade and M. L. Kersten. Stethoscope: A platform for interactive
visual analysis of query execution plans. PVLDB, 5(12):1926-1929,
2012.

HP Vertica. Vertica Management Console, v. 7.0.x. Available at: https://
my.vertica.com/docs/7.0.x/HTML/index.htm#Authoring/ConceptsGuide/
Components/ManagementConsole/ManagementConsole.htm, 2014.
G. Koutrika, A. Simitsis, and Y. E. Ioannidis. Explaining structured
queries in natural language. In /ICDE, pages 333-344, 2010.

J. Li, R. V. Nehme, and J. F. Naughton. Gslpi: A cost-based query
progress indicator. In ICDE, pages 678—689, 2012.

TPC. TPC Benchmark DS, v. 1.1.0. available at:
http://www.tpc.org/tpcds/spec/tpeds_1.1.0.pdf, 2012.

(2]

(3]
(4]
[5]

