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ABSTRACT
This demonstration presents our Uncertain-Spatio-Temporal (UST)
framework that we have developed in recent years. The framework
allows not only to visualize and explore spatio-temporal data con-
sisting of (location, time, object)-triples but also provides an ex-
tensive codebase easily extensible and customizable by developers
and researchers. The main research focus of this UST-framework
is the explicit consideration of uncertainty, an aspect that is in-
herent in spatio-temporal data, due to infrequent position upda-
tes, due to physical limitations and due to power constraints. The
UST-framework can be used to obtain a deeper intuition of the
quality of spatio-temporal data models. Such models aim at esti-
mating the position of a spatio-temporal object at a time where
the object’s position is not explicitly known, for example by using
both historic (traffic-) pattern information, and by using explicit ob-
servations of objects. The UST-framework illustrates the resulting
distributions by allowing a user to move forward and backward
in time. Additionally the framework allows users to specify sim-
ple spatio-temporal queries, such as spatio-temporal window que-
ries and spatio-temporal nearest neighbor (NN) queries. Based on
recently published theoretic concepts, the UST-framework allows
to visually explore the impact of different models and parameters
on spatio-temporal data. The main result showcased by the UST-
framework is a minimization of uncertainty by employing stocha-
stic processes, leading to small expected distances between ground
truth trajectories and modelled positions.

Categories and Subject Descriptors
H.3.3 [INFORMATION STORAGE AND RETRIEVAL]: Infor-
mation Search and Retrieval—Query Processing
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1. INTRODUCTION
Both the current trends in technology such as smartphones, ge-

neral mobile devices, stationary sensors and satellites as well as a
new user mentality of utilizing this technology to voluntarily share
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information produce a huge flood of geo-spatio-temporal data. The
main goal of this demonstration is to provide an intuitive yet power-
ful framework to evaluate and explore techniques for managing and
querying historical spatio-temporal data in explicit consideration of
the inherent uncertainty. By historical spatio-temporal data ([5]),
we refer to a collection of data triples having the form (location,
time, object). In a plethora of research fields and industrial applica-
tions, these techniques can substantially improve decision making,
minimize risk and unearth valuable insights that would otherwise
remain hidden. In practice, such triples correspond to observati-
ons (e.g. GPS positions, RFID signals, or visual observations) of
moving objects in the past. Thus, each triple corresponds to an ob-
servation of the trajectory of a moving object.

In many applications, the position of an object is observed at dis-
crete times only, leading to an inherent uncertainty between these
discrete times and creating the notion of uncertain spatio-temporal
data – an aspect raising an imminent need for scalable and flexi-
ble data management. In practice, moving objects for which the
position at any time cannot be determined deterministically, are de-
noted as uncertain moving objects. The indeterministic trajectory
of an uncertain moving object is an uncertain trajectory. Existing
works to model, manage and query uncertain spatio-temporal data,
including interpolation models ([8, 9, 10, 12, 11]) and geometric
approximation models ([14, 15, 16, 6, 4, 13]), identify trajectories
that may possibly satisfy a user-specified query predicate. These
approaches cannot return to the user an indication of the likelihood
of these trajectories to satisfy the query predicate, i.e., these ap-
proaches cannot give the user any information about the quality
and significance of the returned result. First approaches to alleviate
this problem have been proposed in [6, 18, 1, 17]. These approa-
ches return uncertain moving objects associated with a probability
estimating the likelihood of the corresponding object to satisfy the
query predicate. They treat realizations of uncertain moving objects
at different points of time as mutually independent random varia-
bles. However, the location of objects at subsequent discrete points
of time are highly correlated, as commanded for example by laws
of physics and speed limits. Ignoring this positive correlation leads
to systematic and significant errors as shown in [7].

The shortcomings of these models have been addressed in pre-
vious work ([3, 2, 7]), by applying models from statistics, name-
ly stochastic processes and Bayesian inference, to treat uncertain
moving objects in a probabilistic way. In the following Section 2,
the theoretic base of these works is sketched. Section 3 describes
the system architecture, functionality and the main purpose of the
UST-framework. Finally, Section 4 describes the demonstrator, by
describing the impact on the field of managing spatio-temporal da-
ta, and explaining how the framework’s visualization tools will be
used to convince the audience of this impact.
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Figure 1: Data Visualization

2. PRELIMINARIES
A main challenge of uncertain spatio-temporal data is to infer

the position of an uncertain object o at time t when the exact posi-
tion has not been observed. The quality of this inference depends
on our ability to effectively use the wealth of information stored in
a spatio-temporal database. Firstly, we need to consider informa-
tion about movement patterns, such as turn probabilities at a road
intersection, learned empirically from historical data. Secondly, ob-
servations of o that may temporally precede or succeed t need to be
considered to predict the position of o at time t.

The key idea of the demonstrated approach to model uncertain
spatio-temporal data is to model possible object trajectories by
a stochastic process, more precisely a Markov chain. Employing
the Markov chain model for representing spatio-temporal data has
three major advantages over previous work:

1. It allows answering queries such that results are associated
with their corresponding probabilities.

2. Dependencies between object locations at consecutive points
in time are taken into account.

3. It is often possible to express queries using simple matrix
operations only, thus allowing to utilize highly efficient exi-
sting solutions for interactive query processing.

The Markov model is estimated empirically. The resulting model
is called a-priori model and contains general transition probabili-
ties; i.e., probabilities of any object moving from one node to an
adjacent node in the network. However, using the a-priori model,
i.e., the usage of a Markov random-walk model yields unacceptable
inference quality in applications such as traffic monitoring, where
objects aim at moving on a more-or-less shortest path, rather than
randomly selecting a new direction at each intersection of a road
network.

To solve this problem, the main challenge that we approached in
our most recent publication ([7]) is to enrich these general move-
ment patterns given by the Markov model by knowledge of indivi-
dual observations of an uncertain moving object. We pre-compute
the probabilities that, at a given time, a given object performs a
transition between two nodes of the network, given all observati-
ons of an object, at past, present and future times. These adapted
transition probabilities define an a-posteriori model, which combi-
nes all sources of information given by a spatio-temporal database.

A main experimental result of this work shows that the adapted a-
posteriori model, i.e., the fusion between empirical trajectory data
and observation data of objects, allows to accurately estimate the
position of an uncertain moving object at times between observati-
ons. In particular, the expected error in terms of distance between
the real trajectory and the modelled position (which is a random
variable) was shown to be vastly reduced by this data integration.
For a detailt evaluation of the runtime of queries under the Markov
model we refer to the corresponding papers [3, 2, 7].

Figure 1(a) visualizes the set of spatial states used for the Mar-
kov model. During a preprocessing phase, these states have to be
extracted from a spatio-temporal data set. Furthermore it is neces-
sary to build an a-priori Markov model as described in our initial
work ([3]). The resulting data is then imported into the database.
The model is visualized in Figure 1(b), where line segments indi-
cate possible transitions, and the thickness of a line indicates the
probability of making a transition between the pair of connected
nodes.1 The ground-truth object trajectories are visualized in Figu-
re 1(c). This figure shows the full trajectory of an object, indepen-
dent of time. In the above picture, observations are highlighted by
larger black circles. Based on such observations, the a-posteriori
model can be derived using our techniques of [7]. Figure 1(d) illu-
strates the a-posteriori model, analogous to Figure 1(b). Given the
adapted model, the probability to visit each node of the network is
visualized in Figure 1(e).

In our recent work we have used distance metrics, especially the
expected distance between the ground truth data and the model ba-
sed on observations, to numerically prove the vast improvement
over other approaches. Yet, the intention of this demonstration is
not to re-run existing experiments on modeling and querying un-
certain spatio-temportal data. Rather, the main goal is to present
to a broad audience the practical impact of this data integration of
combining historical trajectory data and concrete observations of
an object to reduce uncertainty in spatio-temporal data. The main
modules of the UST-framework, which show this impact and which
we wish to present to the SIGMOD audience, will be described in
the following two sections.

1The image shows the maximum transition probabilities of both di-
rections. On the other hand, it would also be possible to split line
segment into two equi-distant parts, each having individual thick-
ness.
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Figure 2: UST-framework: System Architecture

3. FRAMEWORK DESCRIPTION
For the purpose of exploring data models for uncertain spatio-

temporal data, a first aspect of our demonstrator allows visualizati-
on of various aspect of such data. For this purpose, a data set con-
sisting of (location, time, object)-triples can be imported into the
framework. The data sets that we want to demonstrate include – in
addition to a number of artificial spatio-temporal data sets – the T-
Drive data set ([19]) pertaining to GPS-traces of taxis in the city of
Beijing. In addition to simple data visualization, the framework can
also be used to evaluate the model accuracy of uncertainty models,
such as interpolation (which has been used previously in [8, 9, 10,
12, 11]), geometric models (that have been investigated in [14, 15,
16, 6, 4, 13]) and stochastic processes, especially under the Mar-
kov chain model ([3, 7]). Beside the Markov chain model we have
implemented two exemplary approaches, an interpolation approach
based on the shortest paths between observations, and a geometric
approach representing the uncertainty area between observations
by diamonds. While the accuracy of our approach has already been
evaluated in [7], this numeric evaluation gives little insights on the
impact this research can have on concrete systems. This demonstra-
tion shows how the fusion of both data sources, historic traffic data
and current object observations, can very accurately describe the
motion of an uncertain spatio-temporal object. The main features
of the UST-framework are:

• Integration of the latest techniques for managing and query-
ing uncertain spatio-temporal data.

• A powerful visualization toolbox used for spatio-temporal
data sets and query results.

• An intuitive framework which can easily be extended by new
query types, visualization techniques, and index structures.

The general structure of the framework is sketched in Figure 2:
The database consists of a set of uncertain objects, each represen-
ted by a set of (location, time) pairs called observations. Uncertain
objects are stored in a database (UST DB) that stores all uncer-
tain objects and contains one or more index structures (for example
a UST-Tree) to efficiently access them. The database stores an a-
priori Markov model ([3]), i.e. a (global) transition matrix. This
model is usually learned from the full historical data set stored in
the database. Using observations of individual objects, the transi-
tion matrix can be adapted using the approach from [7]. The re-
sulting a-posteriori Markov model accounts for these observartions
by adapting transition probabilities such that all possible trajecto-
ries match all observations. While these models could be computed
during query time, they are stored in the database to improve the
runtime performance of the system.

The implemented interpolation and geometric models are sto-
red in the system as well, together with their corresponding index
structures. Queries are posed on a query processor that forwards the
query to the database and underlying index structure. Depending on
the hardness of the query, the query process either computes exact
result probabilities, or employs a sampling approach to approxima-
te result probabilities. The visualizer module is used to visualize
both the database contents and query results.

4. DEMONSTRATION SCENARIOS
Per default, the spatio-temporal T-Drive [19] data set will be

showcased, using the street network of Beijing, China. During the
presentation, the presenter will browse the data set by moving the
current focus to different parts of the city, moving forward and back
in time and switching between data models. A snapshot of the fra-
mework is shown in Figure 3. In our demonstration we will pre-
sent several application scenarios to the audience with the goal of
providing visual insights to the practical impact resulting from our
previous theoretical work. For this purpose we will address three
different scenarios, which we will present using real-world as well
as synthetic data sets:

4.1 Database Visualization
The framework visualizes a database of uncertain spatio-

temporal objects. After opening the database connection, the user
has access to a map showing the uncertain objects in the database at
a given point in time, and a timeline visualizing the distribution of
uncertain objects over the database time horizon. To illustrate the
underlying road network (of Beijing in Figure 3), the demonstrator
uses Open-Street-Map data. The map view provides bounding bo-
xes of the uncertain objects approximating the position of each ob-
ject at the given point of time. The visualized boxes correspond to
spatial approximations of our spatio-temporal index structure ([2])
for the Markov model. The implemented geometric model is des-
cribed by these bounding boxes as well. Certain and interpolated
trajectories are visualized by their discrete positions. For a selec-
ted object (Markov model) the map shows non-zero probabilities
of staying at the corresponding position as circles, while non-zero
transition probabilities of moving from a given state to a neighbo-
ring state are visualized as lines between states.

4.2 Spatio-Temporal Query Processing
We further provide an easy-to-use interface for performing win-

dow queries to the user. The user interface for this feature is also
depicted in Figure 3. To pose a window query on the database, the
user has to first select a time-horizon on the timeline located in the
bottom part of the user interface. Furthermore, the user is requi-
red to specify a spatial query window in the map view located at
the upper-left part of the user interface. After defining the spatio-
temporal window query, results are shown in a result view on the
right-hand side. The type of result depends on the selected uncer-
tainty model. In the case of interpolation models, a set of objects,
corresponding to a raw guess (which might indeed not even be pos-
sible) is returned. In the case of geometric models, a set of possible
results (which may indeed have a zero probability) are returned. If
the Markov model ([3]) is selected, objects are returned together
with their probabilities of being results. Furthermore, result objects
can be highlighted in the map visualization. In the case of nearest
neighbor queries, the user defines a query point on the map and
a time interval on the timeline. After query processing, the user
can highlight the objects with a nearest neighbor probability grea-
ter than zero for the given time interval on the map.
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Figure 3: Graphical user interfaces for window queries (left) and NN queries (right).

4.3 Data Modification
Last but not least we will show how the user is able to insert

new observations to uncertain trajectories. This is particularly of
interest since the integration of new observations into the model
yields new uncertainty regions of the corresponding object leading
to a smaller degree of uncertainty. The uncertainty regions of all
models are adapted to the new observation after insertion.

The demonstration will be side-kicked by a poster, to introduce
the audience to the field of modeling uncertainty in spatio-temporal
data. The main purpose of the poster is to present theoretic founda-
tions of our recent publications ([3, 2, 7]) which are too complex
(and thus time consuming) to be presented orally. Thus, the poster
will provide the basics of our Markov model and the approach used
to perform a data integration between historic movement patterns
and individual object observations. Our UST-framework has been
implemented in C++ and Java. For further information regarding
the model and framework we refer to the UST project page.
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