
Granula: Toward Fine-grained Performance Analysis of
Large-scale Graph Processing Platforms

Wing Lung Ngai
VU Amsterdam, the Netherlands

w.l.ngai@vu.nl

Tim Hegeman
Delft University of Technology, the Netherlands

t.m.hegeman@student.tudelft.nl

Stijn Heldens
University of Twente, the Netherlands

s.j.heldens@utwente.nl

Alexandru Iosup
VU Amsterdam and the Delft University of Technology

a.iosup@vu.nl

ABSTRACT

Big Data processing has become an integral part of many applica-

tions that are vital to our industry, academic endeavors, and society

at large. To cope with the data deluge, existing Big Data platforms

require significant conceptual and engineering advances. In partic-

ular, Big Data platforms for large-scale graph processing require

in-depth performance analysis to continue to support the broad

applicability of linked data processing. However, in-depth perfor-

mance analysis of such platforms remains challenging due to many

factors, among which the inherent complexity of the platforms, the

limited insight provided by coarse-grained “black-box” and ineffi-

ciency of fine-grained analysis, and the lack of reusability of results.

In this work, we propose Granula, a performance analysis system

for Big Data platforms that focuses on graph processing. Granula

facilitates the complex, end-to-end processes of fine-grained perfor-

mance modeling, monitoring, archiving, and visualization. It offers

a comprehensive evaluation process that can be iteratively tuned to

deliver more fine-grained performance information. We showcase

with a prototype of Granula how it can provide meaningful insights

into the operation of two large-scale graph processing platforms,

Giraph and PowerGraph.

1 INTRODUCTION

Our society generates and processes increasingly more massive

datasets, which are part of the worldwide digital universe already

amounting to zettabyte [17]. Extracting useful knowledge from

these large and complex datasets is one of key drivers of growth in

the digital economy [10], but requires significant advances in the

performance and efficiency of Big Data processing tools. To enable

these advances, understanding the performance of a Big Data sys-

tem is a crucial but challenging step. Coarse-grained performance

analysis is useful for high-level system comparison and benchmark-

ing [18], but cannot explain choke-points [2] or indicate which parts

of the system can be improved. Fine-grained performance analysis

is crucial in debugging, tuning system performance, and in finding

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

GRADES’17, Chicago, IL, USA

© 2017 ACM. 978-1-4503-5038-9/17/05. . . $15.00
DOI: http://dx.doi.org/10.1145/3078447.3078455

points that require new system designs, but remains challenging

and costly at scale even for non-data-intensive applications [4]. In

this work, we propose our vision for and show preliminary experi-

mental results obtained with Granula, a framework for fine-grained

performance analysis of one specific but widely used class of large-

scale Big Data processing systems.

Large-scale graph processing is a type of Big Data processing

that specializes in the processing of massive graphs. A graph is

typically defined as a data structure consisting of a collection of

vertices and a set of edges connecting the vertices. As edges can

occur between any two arbitrary vertices, the workload of graph ap-

plication is highly irregular and imposes challenges in parallelizing

and distributing the workload into multiple machines that do not

appear in regular workloads. Thus, large-scale graph processing is

one of the more challenging Big Data domains.

Due to the rapid development of and the large variations be-

tween Big Data platforms, it is challenging for users to compare

and select the platformmost suitable for their needs, or even for one

application. Currently, tens of specialized Big Data platforms focus

on diverse aspects of large-scale graph processing [7], e.g., Apache

Giraph [6] on scalability, PowerGraph [19] on graphs with power-

law distributions vertex-/edge-degrees, Oracle PGX.D [16] on the

capabilities of powerful resources, and Intel GraphMat [24] on the

similarities between graph processing and linear algebra. They also

take widely different implementation approaches, as indicated by

our summary in Table 1 and exemplified in Section 3.4.

Furthermore, incorrect configuration or poor use of a Big Data

platform can lead to performance slowdowns of several orders of

magnitude [14, 23]. Generic platforms, such as the MapReduce-

based Apache Hadoop [25], have not been able so far to process

graphs without severe performance penalties [14, 20, 23]. Special-

ized platforms can also raise intricate configuration problems [14],

and tuning challenges that vary across applications and datasets [18].

Performance evaluation is the process of deepening the under-

standing of the performance of these Big Data platforms by quan-

tifying system performance, explaining performance differences,

identifying overheads/bottlenecks, and recommending configura-

tion improvements. We argue that the current state of performance

evaluation of Big Data platforms in general, and of graph-processing

platforms in particular [18, 20, 23], does not completely accomplish

these goals. There are non-trivial issues in focusing on the complex

architecture of each platform; in enabling the analyst to control

the trade-offs between the fast, coarse-grained, “black-box” perfor-

mance analysis, and the costly, fine-grained analysis; in analyzing

Table 1: Diversity in (large-scale) graph processing platforms. The systems in bold are the focus of experiments in this article.

Name Vendor Vers. Lang. Distr. Provisioning Programming Model Data Format File Sys.

Giraph [6] Apache 1.2.0 Java yes Yarn Pregel VertexStore HDFS

PowerGraph [13] CMU 2.2 C++ yes OpenMPI GAS Edge-based local/shared

GraphMat [1] Intel - C++ yes Intel-MPI SpMV SpMV local/shared

PGX.D [16] Oracle - C++ yes Native, Slurm Push-pull CSR local/shared

OpenG [22] Georgia Tech - C++/CUDA no Native CPU/GPU CSR local

TOTEM [12] UBC - C++/CUDA no Native CPU+GPU CSR local

Hadoop [25] Apache - Java yes Yarn MapRed Out-of-core HDFS

data-processing end-to-end; and in sharing performance results for

the entire community of analysts. Toward addressing these issues,

the main contributions of this work are threefold:

(1) We identify four main issues in the performance evaluation

of Big Data platforms (Section 2).

(2) We present the design of Granula, a performance eval-

uation system for Big Data (graph-processing) platforms

(Section 3).Granula facilitates performancemodeling, mon-

itoring, archiving, and visualization.

(3) We conduct fine-grained performance evaluation for two

large-scale graph processing platforms (Section 4). By fo-

cusing on significantly different platforms, Giraph and

PowerGraph, we show evidence thatGranula uses a generic

evaluation process.

2 ISSUES IN PERFORMANCE EVALUATION
FOR BIG DATA PLATFORMS

We identify four main issues in the current performance-evaluation

approaches for Big Data platforms, which in our view need to be

addressed systematically and comprehensively through approaches

such as our Granula:

1. Lack of an end-to-end evaluation process: Overall, with-

out a well-defined, standardized evaluation process, analysts need

to redesign from scratch important or even all steps of the process:

analyzing the Big Data platform, collecting metrics from the envi-

ronment, storing data in specific format, and visualizing the final

results. Different designs can lead to widely different processes, and

even incomparable results.

2.Limited reusability of performance studies:Aperformance

study can only be considered widely applicable when its results

provide fundamental insights into system performance, and/or its

evaluation process can be easily applied in different scenarios. How-

ever, in practice, performance studies are often out-dated quickly,

as the Big Data ecosystem is rapidly evolving with new systems and

updates [7]. Most performance studies are not easily reproducible

and the results are not directly comparable. As a result, developers

and users cannot fully benefit from these performance studies.

3. Shortcomings in coarse-grained evaluation: Many stud-

ies [14, 22, 23] consider a Big Data platform as a "black-box": by

varying the input parameters (e.g., data size, type of algorithms,

configuration) and by observing the corresponding changes in out-

puts (e.g., the execution time, resource utilization, cache hits), the

analysts derive general, benchmarking-like conclusions on the per-

formance of these platforms. However, overall outputs are poor

indicators of where new concepts or good implementation can be

most effective, because such outputs are consequences of many

hidden internal operations. Neglecting the internal architecture of

these platforms, the coarse-grained approach can only quantify, but

not explain the performance differences between platforms.

4. Inefficiency of fine-grained evaluation: To gain a compre-

hensive understanding, the analysts could resort to fine-grained

performance evaluation, for analyzing and quantifying the perfor-

mance of the internal operations of Big Data jobs. However, con-

ducting fine-grained performance evaluation requires much time

and many (specialized) resources: in-depth and specific knowledge

of each platform, effort to set up the experimental environment, oc-

cupation of computing and data infrastructure during experiments,

and generation of large volumes of empirical data than must later

be processed and further understood. Often, the effort required to

conduct full-platform fine-grained evaluation cannot be justified.

3 GRANULA: VISION AND DESIGN

In this section, we present our vision for Granula, a fine-grained

performance evaluation system for Big Data platforms.

3.1 Requirements

Comprehensive performance evaluation is challenging, due to the

high complexity and diversity of Big Data platforms. To mitigate

the significant yet inevitable investment in time and effort required

to evaluate system performance, and allowing analysts to navigate

the issues presented in Section 2, the design of Granula needs to

satisfy the following requirements:

(R1) Comprehensive: Support an end-to-end evaluation

process. (This addresses Issue 1.)

(R2) Standardized: Facilitate a reusable procedure across

different platforms, so that the evaluation process is repro-

ducible and the results are comparable. (Issue 2)

(R3) Incremental: Provide an iterative procedure that al-

lows performance study to be done incrementally, balanc-

ing between the investment of effort and the comprehen-

siveness of results. (Issues 3-4)

(R4) Automatable: Reduce the amount of technical work by

providing an implementation that automates the repetitive

procedures in the evaluation process. (Issue 4)

3.2 PerformanceModel (for Big Data platforms)

To study system performance, Granula applies a modeling language

(see Figure 1) to abstract the complex operations and their relation-

ships, which is designed to be generically applicable (requirement

R2) to many Big Data platforms. The modeling language describes

2

Operation [actor x @ mission y]

O
pe
ra
tio
n

Info [StartTime]

Info [EndTime]

Info [...]

:

Operation

Operation

Operation

Info [Duration]

Info [...]

Info [...]

:

: :
: :

: :

Jo
b

Figure 1: The Granula performance model.

a Big Data job as a hierarchy of operations; a job at the top level of

the performance model, consisting of multiple internal operations

which are recursively decomposable into underlying operations.

This enables expressing Big Data jobs as a complex flow of opera-

tions consisting of multiple stages, running on multiple machines.

Operations are the most important concept in the performance

models developed with Granula. Each operation is annotated as

an actor (e.g., resource) executing a mission (e.g., a computational

algorithm, a communication protocol). Granula supports explicit

description of operational patterns typically found in Big Data plat-

forms, including task parallelism (multiple actors executing the

same mission) and iterative processing (a mission being executed

repeatedly by the same actor). Internally, the performance charac-

teristics of each operation are described by its information set (info),

which can be used to derive sophisticated performance metrics. Ex-

ternally, the role of each operation in the platform is described by

its links to the parent operation, and/or to the filial operations.

By using a top-down approach, analysts are able to study a

Big Data platform and develop its performance model incremen-

tally (R3), from coarse-grained to fine-grained, focusing only on

system-components of interest. Analysts can build incrementally a

performance model for each platform, to express their increasing

understanding of system operations and to focus on the key per-

formance issues. Although models depend on the vision of their

creators, we propose that each platform could be modeled with at

least three levels of abstraction: the domain level (1st), the system

level (2nd), and the implementation level (3rd and finer-grained).

The domain level summarizes the common elements in a particular

domain, i.e., graph processing. The system level describes the op-

eration workflow of each platform, allowing analysts to pin-point

which system operations are suffering from performance issues.

Finally, the implementation level reflects various implementation

details, demonstrating the effectiveness of optimization techniques

and showing the actual causes of performance issues.

3.3 Evaluation Process

To support a comprehensive end-to-end evaluation process (R1),

the key elements of the evaluation process are formalized as four

standard, consecutive sub-processes (R2): modeling, monitoring,

archiving and visualization (Figure 2).

(P1) Modeling: First, analysts study the design and the im-

plementation of a platform, and express their understand-

ing in the form of a performance model (Section 3.2), an ab-

stract representation of the system’s operations and perfor-

mance characteristics. In the performance model, analysts

define (1) the relationships between operations inside a job,

(2) the set of raw data to be collected from the platform,

 Visualizing4

 Modeling1 Monitoring2

 Archiving3

 feedback

abstractions

data

 results

Figure 2: Overview of the Granula evaluation process.

and (3) the rules to transform raw info into performance

metrics.

(P2) Monitoring: Then, analysts set up an experimental en-

vironment to run platform jobs and monitor the system,

gathering info as defined in the performance model. Two

types of performance data are collected: (1) platform logs

reveal the internal operations of the platform; (2) environ-

ment logs reveal the performance impact on the underlying

cluster environment.

(P3) Archiving: After experiments, the info of each job is

collected, filtered, and stored in a performance archive with

a standardized format. This performance archive encapsu-

lates the performance results of each job, and allows users

to query the contents systematically.

(P4) Visualization: Finally, the archived performance re-

sults are presented in human-readable visuals, which al-

lows efficient navigation and presentation of the results

among analysts.

Knowledge about a Big Data platform’s performance is built

incrementally (R3). In each iteration of the evaluation process, ana-

lysts first study the platform and update the performance model

with the insights gained during the previous iteration. Then, they

execute platform jobs and acquire new performance archives. By

reviewing and analyzing the resulting visuals, new insights in the

platform’s performance may be gained. In each iteration, analysts

focus only on the system components that need finer-grained anal-

ysis, refining at most a subset of the model.

The entire evaluation process is implemented and modularized

in Granula, which allows the process to be highly automated (R4):

analysts only need to focus on the conceptual analysis (modeling),

while Granula performs the repetitive technical tasks (monitoring,

archiving, and visualization).

3.4 Large-scale Graph Processing

Showing how Granula can evaluate the performance of distributed

graph processing platforms allows us to demonstrate the usability of

Granula for a concrete application-domain. Many graph-processing

platforms already exist, covering a broad set of characteristics [7].

Table 1 compares 7 platforms widely used in academia and practice,

across 8 high-level characteristics. For example,Giraph [6] uses an

iterative vertex-centric programming model similarly to Google’s

Pregel, is designed for generic graphs, and is implemented on top

of Apache Hadoop’s compute- and storage-management systems.

PowerGraph [13] uses a programming model known as Gather-

Apply-Scatter (GAS), is designed for real-world graphs which have

3

ProcessingSetup Input/output

Figure 3: A high-level breakdown of a graph processing job.

a skewed power-law degree distribution, and does its own resource

management.

To cope with platform diversity, we focus with Granula on the

core process of any large-scale graph processing system. To process

graph data, users implement algorithms on a graph processing

platform and run graph-processing jobs on a specific dataset. Each

job can consist of tens or more operations, which are hidden to the

analyst unless explicitly modeled. We categorize these operations

into three types: setup, input/output, and processing operations

(See Figure 3).

1. Setup/Startup operations reserve computational resources

in distributed environments and prepare the system for operation.

For example, Yarn-based platforms (e.g., Giraph and Hadoop) com-

municate with the Yarn manager to allocate resources, and MPI-

based systems (e.g., PowerGraph, GraphMat) require an MPI cluster

to use multiple nodes. Single-node platforms (e.g., OpenG, TOTEM)

do not require any underlying resource manager other than the

operating system. We denote setup time by Ts .
2. Input/output operations transfer graph data from storage

to the memory space, and convert the data to specific formats

before/after data processing. Some platforms load data from a dis-

tributed file system (such as HDFS [5] for Apache Giraph and

Hadoop). Other distributed platforms load data from local storage

in each node. Conversion of the input data format is also classified

as an I/O operation. We denote I/O time by Td .
3. Processing operations take in-memory data and process

it according to an user-defined algorithm and its expression in a

programming paradigm. For example, Giraph is based on the Pregel

model [21], PGX.D allows both pushing and pulling of data, and

GraphMat processes graphs as sparse matrices [26]. We denote

processing time by Tp .

4 EXPERIMENTAL RESULTS

We conduct for this work experiments with Granula, focusing on

Granula’s ability to support performance analysts in studying the

performance of Big Data platforms, in particular graph processing

platforms. We take with Granula a systematic approach for each

platform under analysis (system under test): (1) develop a perfor-

mance model to understand the system operations, (2) break down

the job performance to quantify the performance of the fine-grained

operations inside each job, (3) analyze the results by mapping re-

sources usage pattern to the corresponding operations, and (4) visu-

alize the internal system behaviours to identify hidden performance

issues.

In this work, we compare two platforms: Giraph and Power-

Graph. For each, we run the BFS algorithm on dg1000 (a large

Datagen [9] graph with 1.03 billion vertices and edges), using 8

compute nodes on the DAS5 Dutch supercomputer [3].

ProcessGraph

OffloadGraph

LoadGraph

JobStartup

LaunchWorkers

JobCleanup

AbortWorkers ClientCleanup

ServerCleanup

ZkCleanup

LocalOffload

LocalLoad

LocalStartup

PreStep

Compute

Message

PostStep

Level 1

Startup

Cleanup

Domain System Implementation

Gi
ra

ph
Jo
b

Level 2 Level 3 Level 4

Superstep LocalSuperstep

SyncZookeeper

LoadHdfsData

OffloadHdfsData

Figure 4: A Granula performance-model of Giraph.

4.1 Building Performance Models

Using the concepts and following the levels introduced in Sec-

tion 3.2), we have built Granula performance-models for various

type of graph processing platforms, e.g., Giraph and Powergraph.

To exemplify the results, Figure 4 depicts a 4-level Giraph model;

finer-grained models are possible if needed.

At the domain level, a Giraph job, similar to other platforms

specialized in graph processing, contains five common operations

(see Section 3): Startup, LoadGraph, ProcessGraph, OffloadGraph,

and Cleanup. Identical domain-level operations allow us to de-

rive common performance metrics across all platforms, enabling

cross-platform performance comparison and benchmarking [18].

For example, we can compare the performance of graph-processing

platforms by deriving the processing time (Tp) from the duration

of ProcessGraph, which for Giraph is the aggregated runtime of all

Giraph-supersteps. Similarly, we can compare the input/output per-

formance, by defining the I/O time (Td) as the sum of the LoadGraph

and OffloadGraph duration.

At the system level, each platform executes jobs through its

specialized workflow. For example, during the Startup operation,

Giraph initiates its workers by launching Yarn containers, whereas

Powergraph uses MPI commands for deployment; during the Load-

Graph operation, Giraph loads its data partitions fromHDFS, whereas

Powergraph reads directly from a local/shared file system. Although

both Giraph and Powergraph apply iterative graph processing (a se-

ries of supersteps), they have significantly different implementation

details.

At the implementation level, the system-level operations of Gi-

raph can be further broken down into smaller operations. However,

a full performance breakdown is time-consuming, and should only

be done when analysts encounter actual performance issues. For

example, to understand the performance overhead in algorithm

execution, the Superstep operation can be further broken down

4

PowerGraph LoadGraph

0.00%

0.00s

20.00%

80.08s

40.00%

160.15s

60.00%

240.23s

80.00%

320.31s

100.00%

400.38s

Giraph LoadGraph ProcessGraphStartup Cleanup

0.00%

0.00s

20.00%

16.32s

40.00%

32.64s

60.00%

48.96s

80.00%

65.27s

100.00%

81.59s

Setup Input/output Processing

Figure 5: Job decomposition at the domain level.

into three stages, PreStep, Compute, and PostStep, which could

then be further broken down into finer-grained operations.

4.2 Quantifying System Performance

To quantify system performance, Granula gathers empirical per-

formance data by executing real-world graph processing jobs on

these platforms. The collected data are automatically filtered, an-

alyzed, and eventually stored in a performance archive, based on

the Granula performance model defined by the analyst.

Figure 5 depicts the domain-level job decomposition of execut-

ing the BFS algorithm on dg1000 graph using Giraph and Power-

graph. Conceptually, the performance models at the domain level

are similar across platforms (See Figure 3), but lead to significant

performance differences during real-world execution. For Giraph,

the setup (Startup and Cleanup), input/output (LoadGraph and Of-

floadGraph), and processing (ProcessGraph) operations contribute

30.9% , 43.3%, and 25.8% to the overall runtime, respectively. For

Powergraph, despite a faster processing time, 94.8% of the runtime

is spent on input/output operations (LoadGraph and OffloadGraph),

leaving the algorithm execution (ProcessGraph) at under 3.1% of

the runtime. The prolonged I/O time indicates performance issues

in the data loading process of Powergraph.

Based on the domain-level job decomposition, analysts can iden-

tify potential performance issues in different stages of the system

operation workflow, and make strategic decisions whether it is

necessary to continue more fine-grained investigation to uncover

the root cause of the performance issues.

4.3 Monitoring Resource Usage

To further help diagnose the problem, Granula can also make use

of fine-grained performance data (such as the resource utilization,

i.e., CPU usage) from the underlying cluster environment, and map

these data to the each corresponding system operation. For example,

Figures 6-7 depict the cumulative CPU usage of distributed Linux

processes on eight DAS5 compute nodes mapped to Giraph and

Powergraph jobs, respectively.

For Giraph (Figure 6), we observe that setup operations (Startup

andCleanup) are not compute-intensive. Surprisingly, the input/output

operations (LoadGraph) are the ones that make heavy use of the

CPU. There are also several peaks in CPU utilization during the

algorithm execution (ProcessGraph), but in general the CPU re-

sources are under-utilized. The low CPU utilization of the setup

operations indicates that the performance bottleneck is not CPU-

bound, but rather possibly caused by latency issues in the Giraph

deployment mechanism. The high CPU utilization of I/O opera-

tions indicates a compute-intensive data loading mechanism, which

node340 node345 node341 node346
node342 node347 node344 node339

20 40 60
Execution Time (s)

0 81.59

100.00

C
P

U
 ti

m
e

/ s
ec

on
d

0.00

190.30

LoadGraph ProcessGraphStartup Cleanup

0.00%

0.00s

20.00%

16.32s

40.00%

32.64s

60.00%

48.96s

80.00%

65.27s

100.00%

81.59s

Setup Input/output Processing

Figure 6: CPU utilization of Giraph operations.

Setup Processing

LoadGraph

0.00%

0.00s

20.00%

80.08s

40.00%

160.15s

60.00%

240.23s

80.00%

320.31s

100.00%

400.38s

node309 node312 node314 node310
node311 node308 node307 node313

100 200 300
Execution Time (s)

0 400.38

20.00

40.00

C
P

U
 ti

m
e

/ s
ec

on
d

0.00

46.93

0.00000000000000000

Setup Input/output Processing

Figure 7: CPU utilization of Powergraph operations.

shows a clear direction for tuning or optimization. During the al-

gorithm execution, the peaks of and differences in CPU usage per

node indicate workload-imbalance between supersteps, and also

between compute nodes in the same superstep.

For Powergraph (Figure 7), we observe that, during the data

loading stage (LoadGraph), only one compute node is utilizing the

CPU, while the other nodes are idle. This confirms that only one

compute node is responsible for loading the graph dataset from

the local/shared file system to memory. Only towards the end of

data loading stage (LoadGraph), other nodes start to participate

in constructing the in-memory graph data structure and continue

with executing the algorithm (ProcessGraph). This indicates that

the data loading mechanism of Powergraph, which loads input

sequentially from the storage system, is not properly configured or

implemented for the distributed execution environment.

The mapping of fine-grained performance data to corresponding

system operations allows analysts not only to pin-point hidden

performance issues in system operations, but also to hypothesize

about the types of possible performance issues in the different

stages and to test these hypotheses.

4.4 Visualizing System Behavior

To understand better how finer-grained operations function, an-

alysts can also use Granula to visualize operations at the system

and, especially, at the implementation level. For example, Figure 8

depicts the details in the execution of superstep, when running the

BFS algorithm on Giraph.

As defined by the Giraph performance model (See Figure 1),

each Superstep operation can be further decomposed into PreStep,

Compute, and PostStep. We observe that the compute workload is

not distributed evenly among supersteps; for example, superstep

Compute-4 takes significantly longer to run than the others. We

also observe that the workload is not balanced among workers; for

5

Worker-1

Worker-2

Worker-3

Worker-4

Worker-5

Worker-6

Worker-7

Worker-8

Compute-4

Compute-4

Compute-4

Compute-4

Compute-4

Compute-4

Compute-4

Compute-4

39.44%

0.00s

48.10%

7.07s

56.76%

14.13s

65.42%

21.20s

74.08%

28.26s

82.74%

35.33s

Computation Overhead

Figure 8: Compute-workload distribution among workers,

as visualized by Granula.

example, for Compute-4 and for other supersteps, some workers

take more time to complete their computation than others, while

the other Giraph workers are simply waiting at the superstep bar-

rier. Furthermore, there are significant performance overheads in

superstep synchronization, which can be observed in the idling

time, that is, large (visible) gray PreStep and PostStep operations

around the light-blue Compute operations.

The visualization of workload imbalance in the Giraph example

indicates that performance analysts can use Granula to test existing

performance issues, especially of the kind visible only at very fine

granularity.

5 RELATEDWORK
Overall, Granula adds to related work in Big Data support for a

standardized and automatable evaluation process. It also improves

the specific step of performance evaluation: performance studies,

including our previous work, either employ an inaccurate coarse-

grained evaluation method that is typical to benchmarking [8, 14,

15, 20, 23]; or focus on a reduced subset of internal operations of Big

data platforms, e.g., use of fine-grained hardware resources [11, 22].

In contrast, through its incremental evaluation, Granula empowers

the analyst to control the trade-off coarse-/fine-grained analysis.

Our work on Granula also extends significantly our state-of-the-

art work in benchmarking graph-processing platforms [18]—with

Granula, we focus on a complete evalution process including model-

ing, and on fine-grained analysis vs. coarse-grained benchmarking.

6 CONCLUSION AND FUTUREWORK

End-to-end, shareable performance evaluation remains a needed

yet missing capability in Big Data processing. In this work, we pro-

pose the design of Granula1: a fine-grained performance analysis

system for Big Data platforms which facilitates performance mod-

eling, monitoring, archiving, and visualization. Granula applies an

incremental evaluation process, in which analysts can develop their

understanding of a Big Data platform by systematically building

a comprehensive performance model for that platform. This gives

analysts a tool to control the trade-off between the high-accuracy of

fine-grained analysis and the low-cost of coarse-grained analysis.

We demonstrate the capabilities of Granula by conducting fine-

grained performance evaluation on two graph processing platforms,

1Acknowledgements: This research is supported by the Dutch NWO projects Vidi
MagnaData, KIEM KIESA, COMMIT COMMIssioner; and by LDBC (ldbcouncil.org),
originally funded by EU FP7-317548. This work is also partially supported by a donation
and valuable input from Oracle Research Labs; we particularly thank Hassan Chafi,
Sungpack Hong, and Davide Bartolini.

Giraph and Powergraph. The results show that our system can sim-

plify the work of performance analysts, help them quantify the per-

formance characteristics of system operations, identify hidden per-

formance issues, and explain system behaviours with fine-grained

performance data.

In our ongoing work, we continue toward our vision of Gran-

ula: to continue the development of our research prototype and

fully implement the four main Granula modules to support an

end-to-end performance evaluation process; to further enhance

Granula’s ability to support performance analysis, for example on

choke-point analysis and failure diagnosis; to help integrate perfor-

mance analysis as part of standard software engineering practices,

in the form of performance regression tests; to develop a larger

library of comprehensive performance models for various types of

large-scale graph processing platforms, and to conduct fine-grained

performance analysis on more Big Data platforms.

REFERENCES
[1] M. Anderson et al. GraphPad: optimized graph primitives for parallel and distr.

platforms. In IPDPS, 2016.
[2] R. Angles et al. The linked data benchmark council: A graph and rdf industry

benchmarking effort. SIGMOD Rec., 43(1):27–31, May 2014.
[3] H. Bal et al. A medium-scale distributed system for computer science research:

Infrastructure for the long term. Computer, 49(5):54–63, 2016.
[4] D. Böhme et al. Caliper: performance introspection for HPC software stacks.

In Proceedings of the International Conference for High Performance Computing,
Networking, Storage and Analysis, SC 2016, Salt Lake City, UT, USA, November
13-18, 2016, pages 550–560, 2016.

[5] D. Borthakur et al. HDFS architecture guide. Hadoop Apache Project, 53, 2008.
[6] A. Ching et al. One trillion edges: Graph processing at Facebook-scale. PVLDB,

8(12):1804–1815, 2015.
[7] N. Doekemeijer et al. A survey of parallel graph processing frameworks. 2014.
[8] B. Elser et al. An evaluation study of bigdata frameworks for graph processing.

In Big Data, pages 60–67, 2013.
[9] O. Erling et al. The LDBC Social Network Benchmark: Interactive workload. In

SIGMOD, pages 619–630, 2015.
[10] European Commission. A digital single market for Europe: Commission sets

out 16 initiatives to make it happen. http://europa.eu/rapid/press-release_
IP-15-4919_en.htm, 2015.

[11] M. Ferdman et al. Quantifying the mismatch between emerging scale-out ap-
plications and modern processors. ACM Trans. Comput. Syst., 30(4):15:1–15:24,
2012.

[12] A. Gharaibeh et al. A yoke of oxen and a thousand chickens for heavy lifting
graph processing. In PACT, pages 345–354. ACM, 2012.

[13] J. E. Gonzalez et al. PowerGraph: Distributed graph parallel computation on
natural graphs. In OSDI, pages 17–30, 2012.

[14] Y. Guo et al. How well do graph-processing platforms perform? an empirical
performance evaluation and analysis. IPDPS, 2014.

[15] M. Han et al. An experimental comparison of pregel-like graph processing
systems. PVLDB, 7(12):1047–1058, 2014.

[16] S. Hong et al. PGX.D: a fast distributed graph processing engine. In SC, pages
58:1–58:12, 2015.

[17] IDC. The digital universe of opportunities. https://www.emc.com/collateral/
analyst-reports/idc-digital-universe-2014.pdf, 2014.

[18] A. Iosup et al. LDBC Graphalytics: A benchmark for large-scale graph analysis
on parallel and distributed platforms. PVLDB, 9(13):1317–1328, 2016.

[19] Y. Low et al. Distributed GraphLab: a framework for machine learning and data
mining in the cloud. PVLDB, 5(8):716–727, 2012.

[20] Y. Lu et al. Large-scale distributed graph computing systems: An experimental
evaluation. PVLDB, 8(3), 2014.

[21] G. Malewicz et al. Pregel: a system for large-scale graph processing. In SIGMOD,
pages 135–146, 2010.

[22] L. Nai et al. GraphBIG: understanding graph computing in the context of indus-
trial solutions. In SC, pages 69:1–69:12, 2015.

[23] N. Satish et al. Navigating the maze of graph analytics frameworks using massive
datasets. In SIGMOD, pages 979–990, 2014.

[24] N. Sundaram et al. Graphmat: High performance graph analytics made produc-
tive. PVLDB, 8(11):1214–1225, 2015.

[25] V. Vavilapalli et al. Apache Hadoop YARN: Yet another resource negotiator. In
SOCC, page 5, 2013.

[26] A.-J. Yzelman et al. High-level strategies for parallel shared-memory sparse
matrix-vector multiplication. TPDS, 25(1):116–125, 2014.

6

