
SpongeFiles: Mitigating Data Skew in MapReduce
Using Distributed Memory

Khaled Elmeleegy∗

Turn Inc.
kelmeleegy@turn.com

Christopher Olston∗

Google Inc.
olston@google.com

Benjamin Reed∗

Facebook Inc.
br33d@fb.com

ABSTRACT
Data skew is a major problem for data processing platforms
like MapReduce. Skew causes worker tasks to spill to disk
what they cannot fit in memory, which slows down the task
and the overall job. Moreover, performance of other jobs
sharing same disk degrades. In many cases, this situation
occurs even as the cluster has plenty of spare memory—it is
just not used evenly.

We introduce SpongeFiles, a novel distributed-memory
abstraction tailored to data processing environments like
MapReduce. A SpongeFile is a logical byte array, com-
prised of large chunks that can be stored in a variety of
locations in the cluster. Spilled data goes to SpongeFiles,
which route it to the nearest location with sufficient capacity
(local memory, remote memory, local disk, or remote disk as
a last resort). By enabling memory-sapped nodes to tap into
the spare capacity of their neighbors, SpongeFiles minimize
expensive disk spilling, thereby improving performance. In
our experiments with Hadoop1 and Pig2, SpongeFiles reduce
overall job runtimes by up to 55% and by up to 85% under
disk contention.

Categories and Subject Descriptors
H.4 [Information Systems Applications]: Miscellaneous

1. INTRODUCTION
MapReduce environments are the primary platform for

processing web and social networking datasets (e.g. at Google,
Yahoo, and Facebook). Such data tends to be heavily skewed
(e.g. millions of anchortext snippets referring to a single
web site), and are also subject to “spamming” efforts by
automated agents (“bots”) that can exacerbate skew issues.
Machine learning techniques are relied on heavily to make

∗Majority of this work was done at Yahoo!Research–the au-
thors’ previous employer.
1Hadoop is an open source implementation of MapReduce.
2A Pig query is translated to one or more MapReduce jobs.
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sense of the data, and sometimes high uncertainty causes
the default return value of a classifier or extraction function
(e.g. “unknown topic” or “unknown city”) to be assigned to
a large fraction of the data items.

Figures 1(a) and 1(b) show the data skew experienced in a
production multi-thousand-node Hadoop cluster at Yahoo!
over a one-month period. Figure 1(a) shows the reduce task
input size distribution across all jobs. It also shows the dis-
tribution of the average input size per reduce task per job.
The maximum input size is about eight orders of magnitude
larger than the median. To study intra-job skew, Figure 1(b)
shows the distribution of the unbiased estimator of the skew-
ness3 [4] of the same-job reduce task input sizes. Skewness
below -1 or above +1 is considered highly skewed, which is
the case for a big fraction of the jobs studied.

Data skew has long been a thorn in the side of shared-
nothing data processing systems [10, 29], including Map-
Reduce-based ones [9, 12]. It can cause the data assigned
to one processing node to overwhelm that node’s memory
capacity. The standard way to handle this in database man-
agement systems is to have the application spill the data it
cannot fit in memory into disk [23, 26, 28]. Similarly, as
shown in Figure 2(a), MapReduce-based systems have their
tasks spill their data to disk if their memories are over-
whelmed. At a high level, application-level data spilling is
analogous to demand paging in virtual memory. There are
key differences though. Unlike the kernel, the application
has full knowledge of its data access pattern as it is aware
of its execution plan. Hence, it can make perfect memory
replacement decisions, which is not the case when using stan-
dard cache replacement policies in the kernel’s virtual mem-
ory system. That is a key reason application-level spilling is
the method of choice in data management systems.

Spilling to disk causes a major slowdown. The running
time of a parallel job is tied to the makespan, so a disk spill
on one node can slow the entire job down substantially.4

Moreover, it disrupts the sequential access pattern of the
disk characteristic to MapReduce workloads. As while a
task is sequentially reading its input from disk, it may be
spilling to the same disk.

3Skewness is a measure of the asymmetry of a probability
distribution. Qualitatively, a negative skew indicates that
the tail of the distribution is to the left of its mean. Con-
versely, positive values indicate that the tail is to the right
of the mean.
4In the MapReduce literature, slow tasks slowing down an
entire job are called stragglers or outliers [1, 9, 19,32]. How-
ever, only straggling due to faulty or slow nodes, not data
skew, was covered.
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(a) The first curve shows the distribution of inputs
across all reduce tasks, while the second curve shows
the distribution for the average input per reduce task
per job. Please note that the X-axis is in log scale.
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(b) Skewness of reduce tasks’ input sizes within the
same job. Note that a skewness value below -1 or above
1 suggests that the distribution is highly skewed.

Figure 1: CDFs depicting data skew in a production Yahoo! cluster over a duration of one month.

Complete spill avoidance is often impractical and some-
times is even impossible. Avoiding spilling requires either
providing every task with enough memory for its working
set or using data skew avoidance techniques to eliminate
data skew. First, always providing sufficient memory is often
difficult to do efficiently and sometimes is even impossible.
This is because tasks’ memory requirements are only known
at runtime as they execute arbitrary user code having arbi-
trary inputs. Further, the required memory may not exist
at the node executing the task, especially that, as seen in
Figure 1(a), many tasks have inputs larger than any single
node’s total physical memory. However, although wasteful,
over-provisioning memory allocated to tasks can mitigate
spilling. Second, data skew avoidance techniques are often
ineffective or impractical as we will explain in Section 2.2.

Unfortunately due to data skew, while some tasks expe-
rience spilling to disk, the rest of the cluster has plenty of
idle memory. A lot of previous work have studied utiliz-
ing remote idle memory, when a machine is under memory
pressure [6,14]. This work was primarily done in the context
of the kernel’s virtual memory system, where local memory
pages are paged to remote memory. This has the short-
coming of paging in a single page (typically few KBs) at a
time as it is difficult to speculate in the general case, which
pages will be accessed in the future. Consequently, each re-
mote page access incurs a network round trip, significantly
increasing the access time. Further, this previous work was
not done at the cloud scale, as tracking individual memory
pages on clusters having thousands of machines, each having
tens of GBs of memory is both complex and expensive.

Like remote paging, SpongeFiles utilize remote idle mem-
ory for spilling, as shown in Figure 2(b), for better perfor-
mance. However, unlike remote paging, SpongeFiles oper-
ate at the application level, giving applications full control
over the memory replacement policy. A spilled object is
stored in a single SpongeFile, where there is an one-to-one
mapping between spills and SpongeFiles. Since applications
try to spill the bigger objects to free more memory, a single
spill, especially for MapReduce workloads, can be arbitrarily
large (usually tens or hundreds of MBs). To accommodate
such spills, a SpongeFile is composed of large chunks (mea-

sured in MBs). A chunk is allocated from local memory or
remote memory depending on free space availability, with
disk chunks used as a last resort. Finally, Sponge- Files ex-
port a file interface to be backward compatible with different
spilling applications.

Unlike remote paging, SpongeFiles are not as vulnerable
to remote memory latency and scalability problems with re-
spect to supporting large clusters with huge memory pools.
A SpongeFile is either read or written sequentially in its en-
tirety. Hence, each remote chunk is accessed sequentially
and in full, amortizing the network latency over the whole
chunk’s transfer time. Moreover, chunks within the same
file are accessed sequentially as well, which allows for per-
fect prefetching of chunks to further mask the network la-
tency. Furthermore, because memory chunks are typically
large, cluster-wide memory tracking can scale to large clus-
ters with substantial memory pools.

Note that in the rest of this paper, we limit the discus-
sion of data skew to the context of Hadoop’s MapReduce
and Pig [3]. However, data skew can happen in other cloud
data processing platforms like BigTable [5], HBase [2], and
PNUTS [7], where some nodes in the cluster may end up
with larger active working sets than others. Hence, all these
other platforms can use SpongeFiles to mitigate data skew.

The rest of the paper is organized as follows. Section 2
provides the necessary background. Section 3 describes our
design and implementation of the SpongeFile. Our evalua-
tion of the performance of SpongeFiles using realistic work-
loads is presented in Section 4. Then, related work is dis-
cussed in Section 5. Finally, Section 6 concludes the paper.

2. BACKGROUND
This section gives background about two topics. First, it

talks about data spilling in the Pig/Hadoop data process-
ing stack, providing some necessary background about the
execution model. Then, it discusses data skew avoidance
methods and their limitations in practice.

2.1 Data Spilling in Pig/Hadoop
Pig takes high-level structured dataflow scripts or queries

written in Pig Latin [24], translates them into MapReduce
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(a) Current spilling approach. (b) Sponge Spilling.

Figure 2: Memory usage and spilling in Hadoop

execution plans, and runs the plans in Hadoop. Pig and
Hadoop are open-source, run on tens of thousands of com-
puters at large internet companies, and are available on
Amazon’s Elastic MapReduce cloud computing service.

2.1.1 Hadoop’s Architecture
The Hadoop MapReduce environment runs on an n + 1

node cluster, consisting of one master node, and n worker
nodes. Each worker node communicates with the master
to obtain tasks to run; a task is a parallel slice of a map
or reduce phase of a MapReduce job. In the Pig context,
a Hadoop task corresponds to one parallel partition of a
query processing pipeline (e.g. project-filter); operators that
require hashing or sorting (e.g. most group-by and join al-
gorithms) span the end of a map phase and the beginning
of the subsequent reduce phase (see [15] for details).

When the worker node executes a map or reduce task, it
runs the task in its own JVM to ensure fault isolation and
security in the presence of custom user code. A side effect of
this design is that each task has a dedicated memory pool5,
and “leftover” memory of tasks that underutilize their mem-
ory pool is wasted. It is possible to tailor memory alloca-
tion on a per-job basis, but unfortunately it can be difficult
to predict job memory requirements a-priori, and skew can
cause highly nonuniform memory requirements across tasks
of a given job’s map or reduce phase.

Each worker node may execute at most T simultaneous
tasks (T is a system-wide parameter). It is useful to think
of each worker node as having T task “slots,” as depicted
in Figure 2. When occupied, each slot contains an execut-
ing JVM that consumes certain disk, CPU and memory re-
sources. Ideally, the cluster is configured such that the num-
ber of CPU cores, disk heads and slots are well matched to
achieve high utilization and good throughput under the an-
ticipated workload. Jobs cap their JVM memory size to
M/T , where M denotes the total physical memory available
for tasks on a node. In other words, tasks are not permitted
to swap their virtual memory, because experience has shown
that doing so leads to bad random IO access patterns and
terrible performance.

5This is because Java mandates specifying the required heap
at startup time.

2.1.2 Hadoop Spilling
Hadoop jobs can spill to disk both in the map and the

reduce phases.
In the map phase, each map task maps its input into

<key,value> pairs. These pairs are sorted by the key. To
perform this sort, Hadoop uses an in-memory sort buffer,
with a default fixed size of 128 MB. If the buffer is filled
before all the input is processed, its contents are spilled to
local disk. Before the map task finishes, it merges all the
spills into a single output file. Note that the input to a map
task is typically a single Hadoop Distributed File System
(HDFS) block, which has the default maximum size of 128
MB. Hence, for a reasonably provisioned map task, spilling
is uncommon.

Each reduce task is assigned a range of the map output
key space. The reduce task first collects all its inputs from
the outputs of all the map tasks in its job. It then performs
a k-way merge (where k is the number of on these sorted
inputs) to produce a sorted list of keys, with a list of val-
ues associated with each key. This list is then passed to the
task’s reduce function. The input data can have an arbi-
trary size as it depends on the number of map tasks in this
job and the size of each partition a map task produces for
this reduce. For performance reasons, the reduce task tries
to perform the merge step in memory. To this end, it assigns
a constant fraction of its memory for the merge—by default
70%. If the aggregate size of the input data is more than
that, inputs are spilled to disk and they are merged off disk.
If the number of input files exceeds a constant value, 10 by
default, the merge is done in multiple rounds to reduce disk
seeks due to the concurrent reading of a lot of files. Finally,
only a fraction of the merged inputs is allowed to remain
in memory for consumption by the reduce operation. This
fraction depends on the configurable fraction of memory al-
located to the reduce task to retain the merged inputs. The
default value of this memory fraction is zero. This is to pre-
serve the maximum amount of memory for the higher level
application code (e.g. Pig) running in the reduce function.
Hence, the default behavior is that the merged inputs are
spilled again to disk after the merger.
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2.1.3 Pig Memory Manager and Spilling
If a task surpasses the JVM memory limit, Pig’s mem-

ory manager spills data to disk. The memory manager is
described in detail in [15]; we give an overview here:

Pig’s primary structure for intermediate data is called a
data bag. A data bag is a collection of tuples that permits
insertion and iteration. Bags are registered with Pig’s data
manager, which keeps track of all bags in the system, es-
timates their sizes, and keeps tabs on memory utilization
relative to the JVM memory size. If available memory be-
comes low, the JVM delivers an upcall to Pig. In response,
Pig invokes its memory manager to spill (portions of) large
bags to disk. If spilling is required, a bag is divided into
large chunks of size C (typically C = 10MB), and chunks
are spilled independently.

2.2 The Limits of Skew Avoidance
In the database literature, approaches exist to avoid skew

and reduce the likelihood of spilling:

• Skew-resistant partitioning schemes, most of which focus
on joins [11,16], use data distribution estimates to route
data to processing nodes in a balanced fashion. A skew-
resistant join algorithm [11] was recently added to Pig,
alleviating some, but not all, of the skew-related query6

slowdown problems.

• Skew detection and work migration techniques [1,18] de-
tect over-stressed nodes and transfer work to other nodes
that have more favorable memory, processing or network-
ing conditions.

To utilize these approaches, a Hadoop user has to be ex-
perienced with them and employ them in his job. Other-
wise, he can use a specialized higher level query language
like Pig. These query language provide primitive functions
like SUM, AVERAGE,.. with built-in skew-avoidance tech-
niques. However, if the user needs more specialized func-
tions, he is required to write his own. Similarly, users not
comfortable with complex expressions composed of these
primitive functions, opt for writing their own functions. If
these User Defined Functions (UDFs) are not carefully writ-
ten to properly utilize the query language’s API, they be-
come vulnerable to data skew as they contain arbitrary user
code.

Data processing platforms like MapReduce are built to
enable non-expert programmers to analyze large datasets.
Hence, in practice, it is common for users to write queries
vulnerable to data skew. The burden is on the system to
make these queries perform best.

Moreover, there are cases, where skew-avoidance funda-
mentally does not work (e.g. in holistic aggregation func-
tions like median).

Furthermore, even if data and queries are structured to
permit optimal use of memory, the query processing engine
itself may not handle all cases optimally: it may materialize
some intermediate data collections that could, in principle,
be streamed instead. Here again, spilling can occur. In the
case of Pig, which has existed as a production system for
more than three years and has gone through several over-
hauls aimed at reducing spilling, spills remain one of the
most acute performance issues. Rather than attempting to
exhaustively root out all causes of spilling, our approach is

6A Pig query is translated to one or more MapReduce jobs.

Figure 3: The structure of SpongeFiles.

to ensure that spilling does not cause a breakdown in per-
formance.

To conclude, skew-avoidance techniques have significant
limitations in practice, which explains the magnitude of data
skew observed in Figure 1

3. THE SPONGEFILE

3.1 Design
Unlike regular files, a SpongeFile is not meant for persis-

tent storage or data sharing across processes. Instead, it is
used to complement a process’s memory pool. This differ-
ence leads to different design goals and also creates optimiza-
tion opportunities. The main design goal for SpongeFiles is
fast read and write access for bulk data. On the other hand,
SpongeFiles are much simpler than regular files. They sup-
port very limited number of operations: create, read, write,
and delete. A SpongeFile has a single writer and a single
reader with no concurrent access. It is written once; then
it is closed and at a later point in time is read back; finally
it is deleted. Consequently, its access pattern is always se-
quential. Moreover, its lifetime is well known. Furthermore,
it does not have durability requirements as it does not per-
sist after it is read. If a SpongeFile’s chunk is lost due to
a failure before it is read, the task owning the SpongeFile
fails. In this case, the Hadoop framework restarts this failed
task. Finally, SpongeFiles do not need global name space
and consequently do not need a naming service.

A SpongeFile is structured as a list of chunks as shown in
Figure 3. Each chunk can lie in the machine’s local memory,
a remote machine’s memory, a local file system, or a dis-
tributed file system. Each process (task) is responsible for
allocating, maintaining, and freeing chunks for its Sponge-
Files.

3.1.1 Chunk Allocation
When a SpongeFile is written to, it caches the data in

an internal buffer. When the buffer is filled, the Sponge-
File attempts to allocate a new free chunk from the local
machine’s shared memory pool. If the local pool is full, re-
mote memory pools are then tried, with preference given to
remote machines whose memory pools are currently being
used by the spilling task. This affinity is enforced to improve
fault tolerance, because it reduces the number of machines
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used by the spilling task. Hence, it reduces the probabil-
ity of failure of any of the task’s components, reducing the
task’s overall failure probability. In-memory chunks have
fixed size to simplify memory allocation. The SpongeFile’s
internal buffer size is set to have the the same size of the in-
memory chunk size. This size should be chosen to be fairly
large (in the order of megabytes) to amortize the setup cost
for storing the chunk, e.g. the network round trips, when
storing the chunk to remote memory. Since SpillFiles are
used to spill large bulks of data, using large chunk sizes will
not result in significant internal fragmentation.

Depending on the location of the allocated chunk, the
SpongeFile uses the corresponding allocator. For in-memory
chunks, SpongeFiles have two different allocators—one for
local memory and another for remote memory. For on-disk
chunks, SpongeFiles rely on the underlying file systems for
space allocation.

Local Memory Chunk Allocator
Each machine reserves a separate memory pool (memory
sponge) that is shared between tasks running on the same
machine. In Hadoop, all the tasks have this memory pool
outside their JVMs’ heaps. This pool is mapped to each
JVM’s address space using memory mapped files. As shown
in Figure 3, the pool is divided into multiple fixed, equal-
sized chunks plus a region for the pool’s meta data. The
meta data includes a global lock to synchronize access to
the metadata by different tasks, plus an entry per chunk
indicating which task in the cluster is using it. Each entry
includes the process ID and the IP address of the machine,
where it runs. Free chunks have a special value in their
corresponding metadata entries representing that they are
free.

When a SpongeFile needs to allocate a new free chunk
from the shared pool, it first acquires the pool’s lock using
a spin lock. It then tries to find a free chunk. If a chunk
is found, its entry is updated to reflect the new owner task;
then the lock is released and a handle to the chunk is re-
turned. The handle is used to update the SpongeFile’s pri-
vate metadata7 to point to the allocated chunk in the shared
pool. This is used when the SpongeFile is read to index into
the corresponding location in memory sponge. Otherwise if
no free chunk is available, an error is returned after the lock
is released.

Note that sponge memory’s metadata is not accessed (avoid-
ing potentially expensive synchronization) when reading from
or writing to a SpongeFile except for chunk allocation, when
the file is grown.

Remote Memory Chunk Allocator
For a SpongeFile to get access to remote memories in the
cluster, all machines run sponge servers. A sponge server
shares the local sponge memory with the local tasks us-
ing the local allocator explained above. It also exports the
amount of free space in its local sponge to the cluster. More-
over, it receives and serves allocation requests from remote
SpongeFiles.

When storing a chunk in remote memory, the SpongeFile
first finds a server with free space. It then writes its data

7One can think of the SpongeFile’s metadata as an inode.
However, it is private to the SpongeFile and is only main-
tained by the file itself.

to the newly allocated chunk and gets back a handle to this
chunk, which it stores in its metadata.

For optimal remote allocation decisions, a SpongeFile needs
current, global, and consistent view of the remote free space.
To achieve this, it would require significant communication
and synchronization overhead as this state is distributed
across many nodes and is updated frequently. Instead, we
use a simpler approach with relaxed consistency. In our ap-
proach, we rely on a single memory tracking server8 that pe-
riodically (e.g. every one second) polls all the sponge servers
for free space. It then constructs a list of sponge servers with
free memory. When a SpongeFile is created, it queries the
memory tracking server to get the list of sponge servers with
free memory. If it needs to allocate a remote memory chunk,
it tries a sponge server from the list. Since the information
received from the memory tracker could be stale, the sponge
server may no longer have free memory. Consequently, the
SpongeFile tries the rest of the servers in the free list one at
a time until it finds a server with free memory to store its
chunk. If no free remote memory is found, the SpongeFile
falls back to allocating an on-disk chunk. Note that while
some of the information in the free list of sponge servers
could be stale, if the overall sponge memory is reasonably
provisioned such that sponge memory utilization in the clus-
ter is not very high, the remote allocator will likely succeed.
Conversely, under high memory utilization, the remote allo-
cator may fail even though there is some free remote sponge
memory. In this case, the SpongeFile will fall back to the
classical technique of spilling to disk. We believe that this is
the right tradeoff as we are trading full utilization of sponge
memory under heavy load for lighter weight remote memory
allocation. Arguably, under high sponge memory utilization,
not being able to allocate all the free sponge memory is use-
ful. This is because unused memory is used by the operating
system’s buffer cache to improve disk’s performance, which
might be stressed at this point.

Finally, in many data centers, including the Yahoo! ones,
cross-rack bandwidth becomes a bottleneck at times due to
oversubscribed off-rack network links, so spilling across racks
may not be advisable. Hence, in our design, we restrict
remote spilling to nodes on the same rack, where network
bandwidth is plentiful (10 Gb links are now common place).
Given that tasks with huge datasets are uncommon (see Fig-
ure 1(a)) and given that machines on a single rack often have
plenty of memory, skew can be absorbed within a rack. For
example, at Yahoo!, each rack has 40 machines, each having
16 GB of memory running 10 tasks per machine, while the
biggest input size for a task in Figure 1(a) is 105 GB.

Note that, for uniformity, the remote allocator using the
sponge server could have been used for both remote and
local in-memory chunk allocation. However, as we will see
in Section 4.1, the local allocator is much more efficient.
Hence, we use it for local chunk allocation.

Disk Chunk Allocator
In the unlikely event of a SpongeFile not finding free memory
in the local and remote memory, it falls back to spilling to
disk in the local file system. In this case, the chunk is stored
as a local file on disk, where the SpongeFile relies on the

8The memory tracking server can run on any node. A
leader election protocol using a coordination service like
Zookeeper [17] can be used for that. Since the server is
stateless, it can restart on any node in the event of failure.
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underlying local file system for the chunk allocation. If the
local file system does not have free space either, then, as
a last resort, the distributed file systems are tried for the
chunk allocation.

On-disk chunks need not have fixed sizes, as allocation
is done by the underlying file systems, which use fixed size
disk blocks anyway. Moreover, for better performance, it
is preferable to keep disk chunks as large as possible to re-
duce the number of files stored on the underlying filesystem.
This keeps the data contiguous on disk and reduces expen-
sive file systems metadata operations. Consequently, when
a SpongeFile has a new chunk to store, if there is no free
in-memory space available, and if the last stored chunk was
on-disk, the new chunk is appended to this on-disk chunk
generating a single, larger, on-disk chunk.

3.1.2 Optimizing Reads and Writes
Since SpongeFiles are only accessed sequentially, this cre-

ates optimization opportunities. For reads, SpongeFiles pre-
fetch the next non-local-memory chunk. This allows for
overlapping computation with IO. Similarly, for writes to
non-local-memory chunk, SpongeFiles write the chunk asyn-
chronously to the underlying media to overlap IO with com-
putation as well.

3.1.3 Garbage Collection
When a SpongeFile is deleted, it frees all its allocated

chunks by invoking the corresponding chunk deallocator for
all of its chunks. Tasks using SpongeFiles should delete their
SpongeFiles before they exit. However, tasks may fail to
delete their SpongeFiles due to failures or bugs. To handle
this, sponge servers perform periodic garbage collections. In
a garbage collection, the server checks for chunks in the local
sponge, which are owned by dead tasks. These orphaned
chunks are then freed. The sponge server checks for liveness
of local processes itself, while when it needs to check the
liveness of a remote process, it consults the corresponding
sponge server to do it on its behalf.

Note that sponge servers and the memory tracker are
stateless. Hence, they can easily tolerate failures.

For on-disk chunks, Hadoop tasks write their temporary
files into local directories named after the task. When a
job ends successfully or unsuccessfully, the Hadoop frame-
work cleans up its directory. Hence, on-disk chunks would
be cleaned up automatically by the Hadoop framework. If
SpongeFiles are used by non-Hadoop applications, the sponge
server could perform the same thing like Hadoop by deleting
the directories of dead processes, where its on-disk chunks
reside.

3.1.4 Access Control
SpongeFiles are designed to be used in a collaborative en-

vironment. However, if access control is needed, tasks can
encrypt their chunks before storing them, as once stored the
data can be accessible by anyone in the cluster. Moreover,
if enforcing quotas is needed, enforcement can be done dis-
tributedly, where each task can be prevented from allocat-
ing more than a certain amount per node. In this case, each
sponge server can stop allocating chunks to a task beyond
its per-node quota. Sponge servers can also check for locally
allocated chunks by tasks exceeding their quota limits. For
these offending tasks, some corrective action can be taken,
e.g. killing the task and reclaiming its allocated space.

3.1.5 Discussion
Network spilling is fundamentally superior to disk spilling.

This because unlike for network, disk’s throughput degrades
substantially (possibly by many orders of magnitude), when
there is concurrent access due to disk seeks. Often, spilling
incurs concurrent access to many spill files. For example,
a reduce task, during the k-way merge explained in Sec-
tion 2.1.2, reads many files simultaneously. So even though
each of these files is individually accessed sequentially, this
merge involves concurrent access to many files (one file per
map output), which can be a significant number depending
on the job size. This results in overall random disk access.

It is impractical to provision machines with disks having
aggregate random IO bandwidth comparable to available
network bandwidth as this may involve hundreds of disks
per machine. Even if it were possible to provision machines
with sufficient random disk IO bandwidth (e.g. using SSDs),
it is inefficient to provision each machine for the infrequent
peak load. Conversely, network spilling is more efficient as
it allows for pooling the cluster’s resources.

3.2 Implementation
We implemented SpongeFiles as a Java library to be used

with Hadoop and the software stacks that run on top of it.
We chose the fixed chunk size for in-memory chunks to be
one MB to balance between smaller internal fragmentation
and the setup cost (network round trips) for writing a chunk
over the network. Since Java supports memory mapped files
only up to 2 GB, we implemented the sponge memory as
multiple segments to be able to scale to larger sponge mem-
ory sizes. Each segment is a separate memory mapped file.
Allocators try to allocate memory from any of the segments.
Finally, in our current SpongeFiles implementation, we do
not support access control. We leave this as future work.

We integrated SpongeFiles with two applications—Hadoop
and Pig. In both applications, each spilled object is writ-
ten into a separate SpongeFile. For Hadoop, in the reduce
tasks, we modified the merger of the shuffled map outputs
from being done over the disk to be done over SpongeFiles.
For Pig, its DataBags were modified to self spill to Sponge-
Files instead of disk when Pig’s memory manager detects
memory pressure.

Limitations
Since Hadoop tasks run arbitrary user code, Hadoop uses
JVMs to execute these tasks for isolation and fault con-
tainment. In production Hadoop deployments, the common
practice is not to oversubscribe the machine’s physical mem-
ory. Instead, each JVM is restricted to use memory up to a
fixed threshold, such that the sum of memories used by all
JVMs on a single machine does not exceed the machine’s to-
tal physical memory size. This avoids thrashing as it is hard
for the OS to make informed decisions about which mem-
ory pages to swap. For example, it may swap active pages
while keeping garbage pages in memory. Java9 provides a
configuration parameter that caps the heap size. This pa-
rameter is only configurable at start-up time though. Java
then can on-demand grow its heap at runtime up to this cap.
Although restrictive, this limitation is useful in preventing
runaway tasks from exhausting the machine’s memory forc-
ing it into thrashing. It also handles the case, when multiple

9This is in reference to Java 7 and before.
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tasks each having a large dataset accidentally run simulta-
neously. Instead of having the kernel thrash the memory (in
case the heap size is not capped, e.g. if tasks were imple-
mented in c), control is returned to the application to do
targeted application-level spilling.

As a work around to the limitation of not being able to
grow the JVMs’ heap size at runtime beyond the precon-
figured threshold, while input sizes can vary wildly across
tasks, we propose that machines’ memories are structured
as follows. All JVMs have their heap sizes capped to a
smaller size that is needed to run small tasks. All the rest
of the physical memory in the machine is assigned to the
shared sponge memory. Tasks with larger working sets and
consequently larger memory footprints are forced to spill to
sponge memory. Although this is suboptimal due to copying,
serialization, and deserialization overheads, the performance
hit is relatively insignificant as we will see in Section 4.2.3.
On the other hand, this allows for efficient sharing of mem-
ory across the cluster improving its overall utilization.

4. EVALUATION
We conducted two sets of experiments: (1) Microbench-

marks to measure the raw performance of various spill me-
dia (local sponge memory, remote sponge memory, disk with
and without contention) and (2) Macrobenchmarks on end-
to-end workloads to see what kind of overall performance dif-
ferences one can expect. Finally, we study the effectiveness
of SpongeFiles in practice by examining relevant production
measurements.

4.1 Microbenchmarks
In this experiment, we spill a 1 MB buffer 10,000 times

to disk and memory using different configurations. In each
configuration, we measure the average spill time and report
it in Table 1. For the disk case, we seek to a random offset
before every new buffer is written to take into account the
disk seek incurred for every write. Also, writing to random
offsets reduces the chance that the IO operation is absorbed
by the OS’s buffer cache.

The machines used have two 2.5Ghz quad core Xeon CPUs
with 16GB of memory with 7200RPM 300G ATA drives.
They are connected via 1Gb ethernet. The machines ran
Red Hat Enterprise Linux Server release 5.3 with kernel ver-
sion 2.6.18 and Ext4 file system.

In the disk experiments, we used the following three con-
figurations: (1) the experiment is running alone on the ma-
chine writing buffers to disk, (2) the experiment runs along
with a background disk load. The background disk load is
similar to that used in 4.2.3, which is from two tasks in a
running Hadoop job performing a grep over a large file, and
(3) the experiment is running along with the background
disk workload plus a background process generating mem-
ory pressure. The memory pressure simulates a busy Had-
oop node—it pins 12 GB of memory, which leaves very little
memory for the buffer cache, reducing the ability of the op-
erating system to batch disk operations to reorder them in
a sequential fashion. Consequently, this leads to more disk
seeks, reducing achieved bandwidth.

In the memory spilling experiments, we used three con-
figurations, two of which used local memory and one used
remote memory. For the local memory cases, we spilled the
buffer directly to shared memory and over a socket to the

local sponge server. For the remote memory case, we spilled
the buffer across the network to a remote sponge server.

As we see in Table 1, spilling to shared memory is the least
expensive, then comes spilling locally via the local sponge
server as it involves more processing and multiple message
exchanges and context switches between two processes. Re-
mote spilling across the network follows as it is limited by
the network link bandwidth. Disk spilling follows, where its
performance degrades as more background IO load is added
in the system. We note that disk spilling is two orders of
magnitude slower than memory.

4.2 Macrobenchmarks
We describe the workloads, computing environment, ex-

periments and results in turn.

4.2.1 Data and Queries
Our macro experiments use real web data. The data

available to us is a random sample multi-million URLs and
associated metadata (e.g. crawl time, domain, language,
spam score, inlinks, anchortext). Many web analyses are
performed at the domain level (examples of domains are
google.com and stanford.edu), but we were unable to ob-
tain a sample of complete domains. Hence we constructed a
dataset that resembles one that contains complete samples
of 100 domains, as follows: We sampled 100 domains, and
filtered our URL sample to retain URLs from those domains
only; then we scaled up the dataset such that the size of the
largest domain in the sample matches the actual size of that
domain on the full web. The resulting dataset is about 10GB
in size.

The goal of our macro experiments is to test Hadoop’s
performance, when using SpongeFiles for jobs/queries hav-
ing significant data skew. To this end we selected one Map-
Reduce job and two Pig queries from the web search domain
that are vulnerable to skew-induced spilling due to a nested
data format, holistic function, and/or naive lack of projec-
tion.

The MapReduce job computes the median of one billion
numbers. It has a single reduce task that computes the
median. Hence, there is no data skew across the tasks of
the same job. However, the reduce task has an input size of
roughly 10GB, which, according to Figure 1(a), is in the very
high end of input sizes. Hence, this job represent inter-job
data skew.

The two Pig queries are realistic production queries that
deal with web crawl data:

Frequent Anchortext (holistic UDF over skewed groups):
group web pages by language (English, French, etc.), and
for each language group find the k most frequently-occurring
anchortext terms.

The TopK UDF uses a simple one-pass algorithm to com-
pute the approximate top-k most frequent items (this query
sets k = 10). 2

Spam Quantiles (holistic UDF with internal state over
skewed groups, without projection): group web pages by do-
main, and for each domain group find the spam score quan-
tiles.

The SpamQuantiles UDF places tuples in an ordered bag,
and then traverses the bag in sorted order to determine the
quantiles of the spam score column. This query represents
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Spill
medium:

Local shared
memory

Local memory (lo-
cal sponge server)

Remote mem-
ory, over the
network

Disk Disk with back-
ground IO

Disk with back-
ground IO and
memory pressure

Time
(ms)

1 7 9 25 174 499

Table 1: Spilling cost of a 1 MB buffer to different media.

a situation in which the skew problem is exacerbated by
a hastily-assembled ad-hoc UDF for spam quantiles that
neglects the basic optimization step of projecting the data
down to just the needed fields. 2

Note that the two UDFs above execute in the reduce phase
of the MapReduce job. They make multiple passes over the
data. Also, note that the spam quantiles query has a naive
sub-optimal execution plan. This represents a common case
in our workload as explained in Section 2.2.

Both Pig queries have a single reduce task with a large
and highly skewed input size. The runtime of this straggling
reduce dominates the overall job runtime.

4.2.2 Computing Environment
These experiments were run on a 30 node Hadoop clus-

ter. The machines have the same configuration described in
Section 4.1. We use standard Java 6 and Hadoop 0.20.2 and
Pig 0.7. For both Hadoop and Pig, we used two versions in
our experiments – the stock version and a modified version
that spills to SpongeFiles.

The cluster has one master node (running the Hadoop
JobTracker and NameNode processes) and 29 worker nodes
(running TaskTracker and DataNode processes). The ma-
chines are co-located within a single rack, connected to a
common switch with 1G ethernet.

Each worker has two map task slots and one reduce task
slot . Each slot runs a JVM configured with 1 GB of maxi-
mum heap size (this is the slot’s private memory). We also
used 1 GB of sponge memory per node.

It is worth mentioning that although this cluster used in
the experiments is much smaller than the clusters used in
production at Yahoo!, we believe that it is adequate to eval-
uate our system and SpongeFiles’ spilling. This is because,
in our system, SpongeFiles only spill within a single rack,
which has at most 40 machines.

4.2.3 Experiments
In this section, we evaluate the effectiveness of SpongeFile

spilling in reducing the running time of jobs suffering from
data skew. Afterwards, we study internal memory fragmen-
tation in sponge memory’s chunks. Then, we evaluate how
tasks spilling to disk disrupt the execution of other tasks.
Finally, we study the performance of spilling to different
memory configurations and compare this to the optimal case
of no spilling.

Spilling to SpongeFiles Vs Disk

In this experiment, we ran the three jobs described in Sec-
tion 4.2.1 with spilling to disk versus spilling to SpongeFiles.
We also varied the amount of physical memory per node in
the cluster to be either low memory (4 GB) or high memory
(16 GB). This is to study the effects of available memory
on disk performance (due to the operating system’s buffer
cache) and relate that to SpongeFiles’ performance. In this

Input
Bytes

Spilled
Bytes

Spilled
Chunks

Median 10 GB 10.3 GB 10527
Frequent Anchortext 2.5 GB 7.2 GB 7383
Spam Quantiles 3 GB 10.2 GB 10478

Table 2: Statistics about the straggling reduce task
processing the large dataset.

Figure 4: Comparing the performance of Sponge-
Files spilling to that of disk spilling under no disk
contention.

experiment and subsequent experiments, SpongeFiles only
use in-memory chunks (either local or remote), as our test
cluster had enough memory to absorb spills. This is typically
the case in production clusters too as only a small fraction
of tasks need spilling, while racks have plenty of memory in
aggregate to absorb these spills.

All reported numbers represent averages over three runs,
to dampen variance.

Figure 4 shows the running times when jobs are run in iso-
lation, with no other active jobs in the system contending for
resources. For each job it shows four configurations, varying
two things—spilling to disk versus spilling to SpongeFiles
and the amount of physical memory available per node. On
the other hand, Table 2 shows some statistics about the
three jobs, when using SpongeFiles. Each row shows the
input size, the size of the spilled data, and the number of
SpongeFiles’ chunks spilled for the longest-running reduce
task in its corresponding job. We focus on the straggling
reduce task because it is the one processing the largest data
partition and its runtime dominates the overall job runtime.

In Figure 4, we observe few things. First, when available
memory is limited, spilling to SpongeFiles performs better
than spilling to disk. Conversely, if memory is abundant
performance depends on the amount of data spilled and the
time difference between when the data is spilled and when
it is read back. For example, in the median job, which is
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Figure 5: Comparing the performance of Sponge-
Files spilling to that of disk spilling under disk con-
tention.

a MapReduce job, the straggling reduce spills all its input
data before it starts reading it back to perform the merge
process. When spilling to disk, this overwhelms the buffer
cache forcing significant disk IO, which hurts performance.
Moreover, this spilled input data spans multiple files. As ex-
plained in Section 3.1.5, performing a k-way merge of these
files introduces disk seeks, which further hurts performance.
Consequently, spilling to SpongeFiles provides significantly
better performance in this case. On the other hand, for
the two other jobs, the input data of the straggling reduce
tasks is much smaller. Moreover, when executing the Pig
queries, Pig alternates between spilling and reading. Hence,
only relatively small amounts of data are spilled before they
are read back. This allows the buffer cache to absorb these
spills, when memory is abundant. Consequently, spilling to
disk performs better in this case as it is effectively spilling to
local memory versus spilling to remote memory. Second, un-
like disk spilling, we find that SpongeFile spilling does not
depend on the amount of physical memory in the system.
This is because, it does not rely on the buffer cache, also,
because there is enough physical memory in the system such
that it does not thrash due to using sponge memory.

Effects of Disk Contention

The above experiment is not realistic enough though as in
a typical production environment, there are many jobs run-
ning simultaneously. To simulate a real multi-tenant envi-
ronment in which multiple jobs run concurrently and com-
pete for resources, we repeated the experiment with a back-
ground job. For the background job, we used a “grep” Map-
Reduce job that performs a map-only pass over a 1TB of the
web dataset, producing disk contention. The background
job is submitted to Hadoop following the main job we are
measuring, which ensures that the tasks of the background
job constantly occupy all map slots not used by the job we
are studying.

Figure 5 shows the running times of disk-based spilling
and SpongeFile spilling in the presence of background jobs.
Again, we notice that the median job performs worst when
spilling to disk. This is due to the amount of disk IO it
incurs. As we have seen in Table 1, this IO is very expen-
sive due to contention. Using SpongeFiles reduces the job’s
runtime by over 85% in case of disk contention and memory
pressure. Similar behavior is seen for the spam quantiles

Figure 6: Comparing the performance of Sponge-
Files spilling under four memory configurations—no
disk I/O.

job. For the frequent anchor text job, spilling to Sponge-
Files performs much better than spilling to disk under disk
contention and scarce memory. However, when memory is
abundant and even with disk contention, spilling to disk
performs slightly better than spilling to SpongeFiles. This
is because the amount of spilled data in this case is small
enough to remain in the buffer cache and not get evicted
before it is read again.

Fragmentation in In-memory SpongeFile Chunks
From Table 2, we can compute the fraction of memory wasted
in SpongeFile chunks due to internal fragmentation. The
wasted memory equals the difference between the number
of spilled chunks multiplied by the chunk size (1 MB) and
the number of the bytes spilled. We find that it is well below
1%. Hence, one can conclude that for our workloads and for
one MB chunks, internal fragmentation is negligible.

Effects of Disk Spilling on Other Jobs

To study the effects of spilling to disk on other tasks in
the system, we considered the running times of tasks from
the background grep job running concurrently with spilling
tasks. We noticed that spilling to disk induces substantial
variance in the running times of the background job’s tasks:
most grep task instances ran for about 16 seconds, whereas
“unlucky” ones that overlapped with disk spilling took as
much as 39 seconds to complete. This effect hurts system
throughput somewhat, but more importantly it reduces per-
formance predictability for all jobs in the system.

Performance of Different Memory Configurations

In this experiment, we investigate the performance of dif-
ferent memory spilling schemes and contrast them with the
optimal case, where no spilling takes place. More specifi-
cally, for all of the three jobs, we study: (1) spilling to disk,
where there is plenty of physical memory (16 GB) that the
buffer cache virtually absorbs all the spilling, (2) spilling
exclusively to local memory sponge, where a large memory
sponge (12 GB) is used to absorb all the spilling, (3) no
spilling, where the JVM is given a large heap (12 GB) so
that it can fit all the data in its memory without having
to spill, and (4) SpongeFile spilling, where each node has 1
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GB of memory sponge. Hence, most of the spilling goes to
remote memory.

Figure 6 shows the results of this experiment. No spilling
performs best for all jobs as data does not go through the
overhead of serialization and spilling, then reading and dese-
rialization. Spilling to local sponge memory performs second
best for the three jobs. Spilling to disk (buffer cache) per-
forms better than spilling to the SpongeFile for the frequent
anchortext and the spam quantile jobs. This because writing
to the local memory, for the case of the buffer cache, is faster
than writing over the network. For the median job though,
spilling to the SpongeFile performs better than spilling to
the disk (buffer cache). This is because, as explained in Sec-
tion 2.1.2, when the reduce task does the k-way merge of
its input data, it is done in multiple rounds to decrease the
disk seeks that could result from reading multiple files con-
currently. Consequently, for the disk case, a lot more data
is spilled due to the multiple merges—a total of 16.1 GB
Vs 10.3 GB for SpongeFiles spilling. On the other hand,
merging off the SpongeFile is done in one round as there are
no disk seeks to avoid. Note that for the disk spilling case
all the data is in the buffer cache, so no disk seeks would
have occurred had all the inputs been merged together in
one round. However, the application has no way of know-
ing whether the data is available in the buffer cache or not.
Hence, it assumes the worst, i.e. the data will be read off
the disk.

Note that all of the above schemes, except spilling to
SpongeFiles, are impractical. This is because they require
grossly over-provisioning a machine’s memory to accommo-
date peak load, especially given the amount of data skew
shown in Figures 1(a) and 1(b). Conversely, when using
SpongeFiles, peak load can be easily accommodated due to
sharing of memory across many machines. Moreover, the
performance of SpongeFile’s spilling is comparable to the
optimal (no spilling) case.

4.3 SpongeFiles in Practice
Effectiveness: For maximum effectiveness, SpongeFiles

need to keep their data in memory. In the MapReduce con-
text, SpongeFiles are well suited for hosting intermediate
data. Consequently, the aggregate size of intermediate data
of running jobs should be comparable to the aggregate mem-
ory size in the cluster. By studying the distribution of in-
termediate data sizes in Yahoo! clusters for one month, we
found that, at any point in time, the aggregate intermediate
data size is at at most 25% of the total cluster’s memory
size. This is due to multiple reasons. First, many jobs do
significant filtering of data at the map phase with 90% of
the inputs filtered on average. Second, as reported by Face-
book [31], a large fraction of the workload is for small small
jobs with small inputs, and consequently small intermediate
data. These jobs are ad-hoc queries issued by users to mine
the data.

Also, we find that in practice using remote memory is
important. In Figure 1(a), we see that some reduce tasks
have inputs larger than 105GB, which does not fit into the
memory of a single machine.

Failure Analysis: Another potential weakness of Sponge-
Files is the fact that when a task’s data is spread around onto
multiple nodes, failure of any of these nodes would cause the
task to fail. To study this, we model the probability of task
failure due to machine failure as a Poisson process using two

parameters: the running time t of the task and the Mean
Time To Failure (MTTF) of a machine. If a task’s data is
spread onto N machines, the probability that one or more
of those machines fails (and thus brings down the task) is:

P = 1 − (e−N·t/MTTF )

Yahoo! has tens of thousands of machines in its clusters.
The observed failure rate there is roughly 1% per month [13].
This translates to a MTTF of 100 months. In our experi-
ments reported in Section 4.2, the longest running time of
any task was about 120 minutes. Hence, the probability of
failure would still remain very low even for tasks spilling to
many nodes. With these parameters, the additional risk of
failure due to cross-memory spilling to remote machines is
not significant. In fact, pre-existing task failure causes dom-
inate the task failure likelihood. These causes include over-
load of the various components of the Hadoop Distributed
File System, unhandled exceptions thrown by UDFs and
runaway processes.

With very long-running tasks, the probability of failure
due to spilling to remote machines can become substan-
tial. However, this increased vulnerability is offset by the
fact that SpongeFiles spilling enables long-running tasks to
complete more quickly, thereby reducing the duration of vul-
nerability.

5. RELATED WORK
Our work is complementary to skew-resistant partition-

ing [11, 16, 27]. Whereas skew avoidance aims to minimize
or eliminate the need to spill, our approach makes spilling
more efficient in cases where it cannot be avoided easily, e.g.
due to user-defined processing elements and nested datasets,
as discussed in Section 2.2.

Cooperative caching [8] permits nodes in a cluster to read
data cached at peer nodes (versus retrieving it directly from
a central server). Whereas cooperative caching deals with
shared access to portions of a database or file system, our
focus is on how to manage temporary data spilled from a
worker node.

Network memory has been used by many systems for ob-
ject storage like Memcached [22] and RAMCloud [25]. Un-
like SpongeFiles, Memcached cannot store arbitrarily large
objects as its objects do not span multiple machines. RAM-
Cloud is an in-memory ultra-low-latency key-value store, fo-
cusing on small objects.

Remote paging systems [20, 21, 30] page to the memory
of other machines over the network rather than going to
disk. This approach must be implemented in the operating
system, which has a limited view of what is happening in
the application layer. Our approach takes advantage of a
clear understanding of how the memory is used, e.g. the
application knows which data to spill and which data to
keep. Also, SpillFiles have perfect knowledge of their access
pattern, allowing for optimizations like prefetching.

6. CONCLUSION
SpongeFiles allow tasks to utilize the aggregate storage

resources of the cluster to mitigate the effects of data skew
and reduce load on the disk during periods of high mem-
ory usage. They do this by exploiting the non-uniformity
of the memory utilization in the cluster. This approach is
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complementary to skew avoidance: for cases where skew can-
not (easily) be avoided, and helps ensure than when spilling
needs to happen, it happens as fast as possible. We showed
that by taking advantage of the properties of spilling: non-
shared storage, sequentially accessed, and a lifecycle that
is well-defined and short, we can design a flexible system
that can adapt to the dynamic distributed environments of
MapReduce clusters. Our experiments show that spilling to
SpongeFiles reduce job runtimes by up to 55% in absence
of disk contention and by up to 85% when there is disk
contention compared to traditional disk spilling. We expect
other distributed applications that must handle skewed data
or spikes in load can also benefit from SpongeFiles.
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