
Debugging Big Data Analytics in Spark with BigDebug

Muhammad Ali Gulzar, Matteo Interlandi, Tyson Condie, Miryung Kim
University of California, Los Angeles , USA

{gulzar, minterlandi, tcondie, miryung}@cs.ucla.edu

ABSTRACT
To process massive quantities of data, developers leverage Data-
Intensive Scalable Computing (DISC) systems such as Apache
Spark. In terms of debugging, DISC systems support only post-
mortem log analysis and do not provide any debugging function-
ality. This demonstration paper showcases BIGDEBUG: a tool en-
hancing Apache Spark with a set of interactive debugging features
that can help users in debug their Big Data Applications.

1. INTRODUCTION
An abundance of data in many disciplines of science, engineer-

ing, national security, health care, and business is now urging the
need for developing Big Data analytics. To process massive quan-
tities of data in the cloud, developers leverage Data-Intensive Scal-
able Computing (DISC) systems such as Apache Hadoop [2], and
Apache Spark [3]. In DISC systems, scaling to large datasets is
handled by partitioning data and assigning tasks that execute a por-
tion of the application logic on each partition in parallel. Unfor-
tunately, this gain in scalability creates an enormous challenge for
data scientists in understanding and resolving program errors.

The application programming interfaces (API) provided by
DISC systems expose a batch model of execution: applications are
run in the cloud, and the results, including notification of runtime
failures, are sent back to users upon completion. Therefore, de-
bugging is done post-mortem and the primary source of debugging
information is an execution log. However, the log presents only the
physical view—the job status at individual nodes, the overall job
progress rate, the messages passed between nodes, etc, but does
not provide the logical view—which intermediate outputs are pro-
duced from which inputs, what inputs are causing incorrect results
or delays, etc. Alternatively, a developer may test their programs by
downloading a small subset of big data from the cloud onto their lo-
cal disk, and then run the application in local mode. However, this
approach is not thorough and can easily miss errors when the faulty
data is not part of the downloaded subset.

In this demonstration we showcase BIGDEBUG, a library pro-
viding expressive and interactive debugging features for Big Data
analytics in Apache Spark [3]. This tool demonstration paper re-

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

SIGMOD’17, May 14 - 19, 2017, Chicago, IL, USA
c© 2017 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ISBN 978-1-4503-4197-4/17/05. . . $15.00

DOI: http://dx.doi.org/10.1145/3035918.3058737

iterates the technology from our previous system [6] and is based
on our prior work on the design and implementation of interac-
tive debugging and workflow analysis primitives and optimizations
for Apache Spark [4, 7, 8]. Designing BIGDEBUG required re-
thinking the notion of breakpoints, watchpoints, and step-through
debugging in a traditional debugger such as gdb. For example,
simply pausing the entire computation would waste a large amount
of computational resources and prevent correct tasks from complet-
ing, reducing the overall throughput. Requiring the user to inspect
the millions of intermediate records at a watchpoint is also clearly
unfeasible. To emulate interactive step-wise debugging without re-
ducing throughput, BIGDEBUG provides simulated breakpoints
that enable a user to inspect a program without actually pausing the
entire computation. It also supports on-demand watchpoints that
enable a user to retrieve intermediate data using a guard predicate
and transfer the selected data on demand. To understand the flow of
individual records within a data parallel pipeline, BIGDEBUG pro-
vides data provenance capability, which can help understand how
errors propagate through data processing steps. To support efficient
trial-and-error debugging, BIGDEBUG enables users to change pro-
gram logic in response to an error at runtime through a realtime
code fix feature and selectively replay the execution from that step.
Finally, BIGDEBUG proposes an automated fault localization ser-
vice that leverage all the above features together to automatically
isolate failure-inducing inputs, diagnose the root cause of an error,
and resume the workflow for only affected data and code. We think
that the BIGDEBUG system will contribute in improving developer
productivity and correctness of Big Data applications.

For readers interested in the performance overhead of each single
feature packed into BIGDEBUG, we refer to our previous papers [4,
7]. The current version of BIGDEBUG is publicly available at [1].

2. BACKGROUND: APACHE SPARK
BIGDEBUG targets Spark because of its wide adoption and sup-

port for interactive ad-hoc analytics. The Spark programming
model can be viewed as an extension to the Map Reduce model
with direct support of a large variety of operators (e.g., group-
by, join, filter). Spark programmers leverage Resilient Distributed
Datasets (RDDs) [9] to apply a series of transformations to a col-
lection of data records stored in a distributed fashion e.g., in HDFS.

Calling a transformation on an RDD produces a new RDD that
represents the result of applying the given transformation to the in-
put RDD. Transformations are lazily evaluated. The actual evalua-
tion of an RDD occurs when an action such as count or collect
is called. The Spark platform consists of three main entities: a
driver program, a master node, and a set of workers. The master
node controls distributed job execution and provides a rendezvous
point between the driver and the workers. Internally, the Spark

1627

Ê

Ë

Ì

Í

Figure 1: BIGDEBUG extends Spark’s user interface to provide runtime debugging features

master translates a series of RDD transformations into a Directed
Acyclic Graph (DAG) of stages, where each stage contains some
sub-series of transformations, until a shuffle step is required (i.e.,
data must be re-partitioned). The Spark scheduler is responsible
for executing each stage in topological order, with tasks that per-
form the work of a stage on input partitions. Each stage is fully
executed before downstream dependent stages are scheduled. The
final output stage evaluates the action that triggered the execution.
The action result values are collected from each task and returned
(via the master) to the driver program.

3. DEMONSTRATION SCENARIO
1 val log = "s3n://xcr:wJY@ws/logs/enroll.log"
2 val text_file = spark.textFile(log)
3 val avg = text_file
4 .map(line = > (line.split()[2] ,

line.split()[3].toInt))
5 .groupByKey()
6 .map(v => (v._1 , average(v._2)))
7 .collect()

Figure 2: College student data analysis program in Scala
In this section we will walk through the demonstration of

BIGDEBUG with the help of Alice, an imaginary Spark user. Sup-
pose Alice wants to process all US college student data. Be-
cause of the dataset massive size, she cannot store and analyze
the data in a single machine. Suppose that she intends to com-
pute the average age of all college students in each year (fresh-
man, sophomore, junior, and senior) using the program of Fig-
ure 2. 1 Timothy Sophomore 21 is the
format of a sample input record.

She starts by loading the US college student data from an Ama-
zon S3 storage into the cluster (line 2). She the parses the data

into appropriate key-value date types, where a key is the status cat-
egory for a student and the value is the age of that student (line 4).
Records are then grouped with respect to the key, and the average
for each category is computed (lines 5 and 6). Finally, at line 7 she
executes the job and requests the result to be sent to the driver.

Simulated Breakpoint and Guarded Watchpoint
To maximize the throughput in a big data debugging session,
BIGDEBUG provides simulated breakpoints that enable a user to
inspect a program state in a remote executor node without actu-
ally pausing the entire computation. When such breakpoint is in
place, a program state is regenerated, on-demand, from the last ma-
terialization point, while the original process is still running in the
background. The last materialization point refers to the last stage
boundary before the simulated breakpoint. These materialization
points are determined beforehand by Spark’s scheduler.

To reduce developer burden in inspecting a large amount of in-
termediate records at a particular breakpoint within the workflow,
BIGDEBUG’s on-demand guarded watchpoints retrieve interme-
diate data matching a user-defined predicate and transfer the se-
lected data on demand. Furthermore, BIGDEBUG enables the user
to update the guard predicate at runtime, while the job is still run-
ning. This dynamic guard update feature is useful when the user
is not familiar with the data initially, and she wants to gradually
narrow down the scope of the intermediate records to be inspected.

For example, suppose that Alice wants to inspect the pro-
gram state at line 3. She can insert a simulated breakpoint
using BIGDEBUG’s API i.e., simulatedBreakpoint(r =>
!COLLEGEYEAR.contains(r.split()[2])) with the
guard predicate indicating that the second field is not one of the
pre-defined college years. The benefit of this breakpoint combined
with the guarded watchpoint is twofold. First, Alice can now
inspect intermediate program results distributed across multiple

1628

nodes on the cloud, which is impossible in the original Spark.
Second, she can also inspect records matching the guard predicate
only, which tremendously reduces the inspection overhead.

While the Spark program instrumented with breakpoints is run-
ning on the cluster, Alice can use a web-based debugger interface
by connecting to a configured port. Using this interface, she can
view the DAG of the data flow program. On the left hand side of
Figure 1, the yellow node (Ê) in the DAG represents a breakpoint.
Alice can use the code editor window on the right hand side to see
the Spark program in execution. Statements with a breakpoint are
tagged using a red arrow.

Realtime Code Fix
After inspecting a program state at a breakpoint, if a user decides
to patch code appearing later in the pipeline, she can use the re-
altime code fix feature to repair code on the fly. In this case,
the original job is canceled and a new job is created from the last
materialization point before the breakpoint. This approach avoids
restarting the entire job from scratch. For example, in Figure 1,
since a simulated breakpoint is in place (Ê), BIGDEBUG records
the last materialization point before the breakpoint, in this case,
after textFile. While the job is still executing, Alice can in-
spect the internal program state at the breakpoint. She can click
on the green node (Ë) on the DAG, which redirects her to a new
web page, where intermediate records are displayed. When she
requests to view the internal program state, the captured records
from the guarded watchpoint are transferred to the driver node
and displayed as shown in Figure 3. Upon viewing the interme-
diate records at the breakpoint, Alice discovers that some records
use number 2 instead of Sophomore to indicate the status year:

1 Timothy 2 21 .

Figure 3: A user can edit the guard predicate using an editor.

From this outlier record, Alice immediately learns that her pro-
gram should handle records with a status year written in numbers.
To apply realtime code fix, Alice can click on the corresponding
transformation (Ì) marked in blue in the DAG. She can then insert
a new user-defined function to replace the old one using the related
code editor provided by the BIGDEBUG UI. The code fix can now
handle status year both in number and string formats. When Alice
presses a submit button, BIGDEBUG compiles and redistributes the
new function to each worker node and restarts the job from the lat-
est materialization point. When the job finishes its execution, the
final result after the fix is shown to Alice. In addition to a realtime
code fix feature, Alice can use resume and step over commands.
These control commands are available in BIGDEBUG’s UI.

Crash Culprit Remediation
In normal Spark, a runtime exception terminates the whole job,
throwing away hours of computation while giving no information
of the root cause of the error. When a Spark program fails with a
runtime exception on the cluster, BIGDEBUG reports a crash cul-
prit record in the intermediate stage but also identifies a crash-
inducing input(s) in the original input data. While waiting for

Figure 4: Options provided by the crash remediation UI

a user intervention, BIGDEBUG runs pending tasks continuously
to utilize idle resources in order to achieve high throughput. If a
crash occurs, the original job keeps on running, while the user is
notified of the fine-grained details of the crash. Once the crash cul-
prit is reported to the user, the user can choose among three crash
remediation options. First, a user can choose to skip the crash
inducing record. The final output, in this case, will not reflect the
skipped records. Second, a user can modify crash culprit records
in realtime, so that the modified record can be injected back into
the pipeline. Third, a user can repair code. The whole process
of modifying crash culprits is optimized through lazy remediation.
While the user takes time to resolve crash culprits, BIGDEBUG con-
tinues processing the rest of the records, while also reporting any
additional crashing record. More details about crash remediation
methods are discussed elsewhere [4].

Suppose that, after several hours of computation, a runtime ex-
ception occurs during the data processing. BIGDEBUG alerts Alice
on the intermediate record responsible for the crash. These alerts
turn the corresponding transformation node of the DAG to be red
(Í in our example workflow of Figure 1) and highlight the cor-
responding code line in the main editor window to be red as well.
When Alice clicks on the red node (Í) in the DAG, she is redirected
to the crash culprit page of Figure 4. This page contains the follow-
ing crash culprit record: 1221 Matthew 4 24yr .

While Alice is informed of the crash culprit record, BIGDEBUG
continues executing the rest of the records and waits for the crash
resolution from Alice. Alice may skip or modify the crash induc-
ing intermediate record directly. Figure 4 shows the options pro-
vided on the UI to perform these remediation operations on the
crash-inducing records. Alice skips the crashing record by press-
ing the skip button on the crash culprit UI. BIGDEBUG also allows
the batch repair of modifying all crash-inducing records at once
using a user-defined repair script.

Forward and Backward Tracing
BIGDEBUG supports fine-grained tracing of individual records by
invoking a data provenance query on the fly. The data provenance
problem refers to identifying the origin of final (or intermediate)
output. Data provenance support for DISC systems is challenging,
because operators such as aggregation, join, and group-by
create many-to-one or many-to-many mappings for inputs and out-
puts and these mappings are physically distributed across different
worker nodes. BIGDEBUG uses data provenance capability imple-
mented through an extension of Spark’s RDD abstraction [7]. Fine-
grained tracing allows users to reason about the faults in the pro-
gram output or intermediate results, and explain why a certain prob-
lem has occurred. Using backward tracing, a crash culprit record
can be traced back to the original inputs responsible for the crash
record. Forward tracing allows user to find the output records af-
fected by a selected input.

For example, during crash remediation, Alice can invoke for-
ward and backward tracing features at runtime to find the original
input records responsible for the crash. On the crash culprit UI,
Alice can invoke the backward tracing query by pressing the trace
to input button. BIGDEBUG performs backward tracing in a new

1629

Figure 5: Top most straggling records are visualized in bar
chart showing the delays relative to average

process to trace crash-inducing records in the original input data.
Alice can also perform step-by-step backward tracing, showing all
intermediate records tracing back to crash-inducing input records.

Fine-Grained Latency Monitoring
In big data processing, it is important to identify which records
are causing delay. To localize performance anomalies at the record
level, BIGDEBUG wraps each operator with a latency monitor. For
each record at each transformation, BIGDEBUG computes the time
taken to process each record, keeps track of a moving average, and
sends a report to the monitor if the time is greater than k standard
deviations above the moving average, where default k is 2.

Users can select a latency-enabled RDD from a drop-down
menu; straggler records (i.e., delay-causing records) are then vi-
sualized in a streaming fashion. Figure 5 depicts a set of stragglers
that Alice sees when enabling latency monitoring for RDD 3.

Automated Fault Localization
With automated fault localization, developers can isolate the trace
of failure-inducing inputs and diagnose the root cause of an er-
ror. We equipped BIGDEBUG with the well known Delta Debug-
ging [10] (DD) fault localization algorithm. DD performs repetitive
runs on different configurations of input to systematically isolate
the root cause of failures. The DD algorithm splits the original in-
put into different sub-configurations using a binary search strategy
and runs the same program with these sub-configurations as inputs.
If one of the tests fails for a particular subset, it recursively applies
the same procedure for only that input configuration. BIGDEBUG
run a version of the DD algorithm specifically optimized for Big
Data applications [5].

1 def test(record:Tuple2[Int,Float]):Boolean = {
2 return 15< record._2 < 26
3 }

Figure 6: Test function to verify the validity of the output
Going back to our scenario, Alice perform the analysis depicted

in program 2 and found out that the average age of sophomore-year
students is 31.4 years which does not seem to be reasonable. In
order to get the correct results from this analysis, Alice decides to
understand the origin of the invalid output. Alice has different sets
of tools at her disposal: data provenance for instance. The prob-
lem with data provenance is that millions of input records can be
returned for this specific query. Alice hence decides to use DD on
the inputs isolated by data provenance to localize the source of the
fault. She writes a test function, depicted in Figure 6, which is used
by delta debugging to identify if an input configuration returns an
erroneous output. This test function checks the validity of average
age value (known from prior knowledge). DD automatically and it-
eratively apply the test function over data splits until it outputs the
precise source of the fault.

4. IMPLEMENTATION
All the features in BIGDEBUG are supported through the corre-

sponding web-based user interface. BIGDEBUG extends the cur-
rent Spark UI and provides a live stream of debugging informa-
tion in an interactive and user-friendly manner. A screen-shot of
this interface is shown in Figure 1. Instead of creating a wrap-
per around existing Spark modules to track the input and out-
put of each stage, BIGDEBUG directly extends Spark to moni-
tor pipelined intra-stage transformations. Additionally, BIGDE-
BUG’s API extends the RDD interface. Instead of using the UI,
a developer can therefore programmatically use function calls like
watchpoint() and simulatedBreakpoint() on an RDD
object to insert watchpoints and breakpoints. BIGDEBUG allows
user to enable crash and latency monitoring on individual RDDs by
calling appropriate methods on that RDD object. Tracing works at
the granularity of each job and can be enabled or disabled through
the SparkContext object. For instance, Alice could use tracing
capabilities outside the crash culprit remediation feature, by pro-
grammatically use the tracing API, similarly to [7].

All debugger configuration and control commands are linked
with a driver that broadcasts the debugger information to each
worker. The runtime code patching is received and compiled at a
driver and is then loaded into each worker, where an instrumented
task is running. We think that the interactive nature, and double
visual / programmatic flavor of BIGDEBUG enable users to better
debug their Big Data applications w.r.t. post-mortem analysis.

5. CONCLUSION
BIGDEBUG offers interactive debugging primitives for an in-

memory Data-Intensive Scalable Computing (DISC) framework.
BIGDEBUG is able to scale to massive dataset of the order of ter-
abytes [4], and thanks to its interactive set of features improves
both Big Data application debugging experience, and fault local-
izability. BIGDEBUG is available for download at [1]. A version
of this demo was previously published at FSE 2016 Research Tool
Demonstration Track [6]; the goal of this paper is to advertise our
work in the SIGMOD community.

6. ACKNOWLEDGMENT
This work is supported by NSF CCF- 1527923, CNS-1239498,

CCF-1460325, CNS-1161595, IIS-1302698, CNS-1351047.

7. REFERENCES
[1] Bigdebug. https://sites.google.com/site/sparkbigdebug/.
[2] Hadoop. http://hadoop.apache.org/.
[3] Spark. https://spark.apache.org/.
[4] M. A. Gulzar and et al. Bigdebug: Debugging primitives for

interactive big data processing in spark. In ICSE, 2016.
[5] M. A. Gulzar, X. Han, M. Interlandi, and et al. Interactive

debugging for big data analytics. In HotCloud, 2016.
[6] M. A. Gulzar, M. Interlandi, T. Condie, and M. Kim.

Bigdebug: Interactive debugger for big data analytics in
apache spark. In FSE, pages 1033–1037, 2016.

[7] M. Interlandi, K. Shah, S. D. Tetali, and et al. Titian: Data
provenance support in spark. PVLDB, 9(3):216–227, 2015.

[8] M. Interlandi, S. D. Tetali, and et al. Optimizing interactive
development of data-intensive applications. In SoCC, 2016.

[9] M. Zaharia and et al. Resilient distributed datasets: A
fault-tolerant abstraction for in-memory cluster computing.
In NSDI, 2012.

[10] A. Zeller and R. Hildebrandt. Simplifying and isolating
failure-inducing input. IEEE Trans. Software Eng., 2002.

1630

